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ABSTRACT: The paper presents a novel method making it possible to apply complex material models, such 
as the microplane model, in finite element calculations with variable finite element sizes, and with element 
sizes larger than the material characteristic length. 

1 INTRODUCTION 

Brittle materials such as concrete, rock or masomy 
exhibit strain-softening behavior in the post-peak, 
both in tension and in compression. In numerical 
modeling by the finite element method, the first 
consequence of the strain softening is the depend­
ence of results on the finite element sizes. If a mate­
rial model is defined using solely stress-strain rela­
tions, the energy dissipated during brittle failure will 
depend on the finite element sizes in the critical re­
gions. In the limit of a vanishing element size, this 
can result in a zero energy dissipation during failure, 
which is physically impossible. 

The second consequence of the strain softening is 
that the underlying mathematical formulation be­
comes ill-posed. In non-linear numerical solutions 
by the finite element method, which usually involve 
some sort of an iterative algorithm, this phenomenon 
gets manifested by oscillatory convergence or even 
the failure to reach prescribed convergence limits. 
This consequence produces a dependence on the ori­
entation of the finite element mesh. 

One remedy for the first consequence of strain 
softening, i.e. the mesh size dependence, is the crack 
band model ofBaiant and Oh (1983). The basic idea 
of this model is to modify the material parameters 
such that the energy dissipated by large and small 
elements be identical. 

Non-local approaches were introduced as a rem­
edy to the mesh orientation bias when sufficiently 
small elements can be used. 

The crack band model is currently used in com­
mercial finite element codes only in combination 
with relatively simple material models. The new and 
more advanced material models are usually deve­
loped within the framework of the non-local ap­
proach. These new models can usually simulate 
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rather complex loading scenarios, but their applica­
tion to practical engineering problems is difficult, 
due to the requirement that the finite element size in 
the failure zone should be significantly less than the 
characteristic length of the material. For real-life 
structures, this requirement leads to a very large 
number of elements, although this can be mitigated 
by some elaborate adaptive scheme. The crack band 
model cannot be applied in its current form, since 
for such material models it is not easy to identify 
which material parameters should be adjusted ac­
cording to the element size to ensure correct energy 
dissipation. A typical such material model is the mi­
croplane model, whose initial version was developed 
by Baiant (1984). This model contains parameters, 
which were calibrated for sizes close to the material 
characteristic length and cannot be easily adjusted. 

This paper presents a novel method that makes it 
possible to apply the rnicroplane model in finite 
element computations with elements of different 
sizes, much larger then the material characteristic 
length. Applicable though the present method is to 
other material models and other materials, this paper 
deals only with applications to the microplane 
model and to concrete. The specific formulation of 
the microplane by Bazant et. al (2000a, 2000b) is 
used throughout this paper. 

2 CRACK BAND MODEL 

In the crack band model, the material parameters are 
adjusted such that the same amount of energy is dis­
sipated during the failures of a large and a small fi­
nite element. This is usually accomplished using the 
assumption that a single localization zone (i.e., a 
crack or crack band) develops inside the element. 
Using this assumption, the crack opening displace-



ment w can be calculated from the fracturing strain 
c 1 using the crack band size L (width) and the fol­
lowing simple formula: 

w=Lc1 (1) 

where L can be determined based on the finite ele­
ment size projected into the direction of maximum 
principal strain for the case of tensile cracking and 
low order finite elements. 

3 MICROPLANE MODEL 

The basic idea of the microplane model is to aban­
don constitutive modeling in terms of tensors and 
their invariants and formulate the stress-strain rela­
tion in terms of stress and strain vectors on planes of 
various orientation in the material, now generally 
called the microplanes. This idea arose in G.I. Tay­
lor's (1938) pioneering study of hardening plasticity 
of polycrystalline metals. Proposing the first version 
of the microplane model, Baiant (1984), in order to 
model strain-softening, extended or modified Tay­
lor's model in several ways (in detail see Bafant et 
al. 2000a), of which the main one was the kinematic 
constraint between the strain tensor and the micro­
plane strain vectors. Since 1984, there have been 
numerous improvements and variations of the mi­
croplane approach. A detailed overview of the his­
tory of the microplane model is included in Bafant 
et. al (2000a, 2000b). This paper also contains the 
detailed derivations of the microplane model that is 
used in this work. 

In the microplane model, the constitutive equa­
tions are formulated on a plane called microplane 
with an arbitrary orientation characterized by its unit 
normal n,. The kinematic contraint means that the 
normal straincN and shear strains cM,cL on the mi­
croplane are calculated as the projections of the 
macroscopic strain tensor: 
SN =nin/~iJ' 

(2) 

1 
cL = l(Z;n1 + l1n,) cij 

where m, and 11 are chosen orthogonal vectors lying 
in the microplane and defining the shear strain com­
ponents. The constitutive relations for the micro­
plane strains and stresses can be generally stated as: 

aN (t) = F:~o [ c,v(r),cM (r), cL (r)] 

aM(t)=G~~0 [c,v(r),cM(r),c1,(r)] (3) 

aL (t) = H~~o [ cN (r), cM (r), c1,(r)] 

where F, G and Hare functionals of the history of 
the microplane strains in time t. For a detailed deri­
vation of these functionals a reader is referred to 
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(a) (b) 
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Figure 1. Fundamental concepts of the microplane 
model 

Bafant et. al (2000a, 2000b). The macroscopic stress 
tensor is obtained by the principle of virtual work 
that is formulated for a unit hemisphere Q. After the 
integration, the following expression for the macro­
scopic stress tensor is recovered (Bazant et. al 
2000a, 2000b): 

3 Nm 

aij =- s1idQ""6 w,sd'l (4) 
2ff Q . µ~1 

_ aM ( ) aL ( ) sij-aNn,n1 + 2 m,n1+m1n, +2 z,n1+l1n1 (5) 

where the integral is approximated by an optimal 
Gaussian integration formula for a spherical surface. 

The version M4 of the microplane model has 
been implemented into a commercial finite element 
code ATENA and will be used in all the examples 
throughout this paper. 

4 ONE-DIMENSIONAL EQUIVALENT 
ELEMENT 

The basic idea of the equivalent localization element 
is identical to the crack band model approach. This 
time, however, the material properties and parame­
ters of the softening material model are not modified 
to account for the different finite element size, but 
rather the softening material is coupled with an elas­
tic spring in a series arrangement. For a large finite 
element, the length of the additional elastic spring 
will be much larger then the size of the localization 
zone. Thus, after the crack initiation, the energy 
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Figure 2. Equivalent localization element 
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stored in the elastic spring can be readily transferred 
to the localization zone and dissipated in the soften­
ing (i.e. fracturing) process. 

Inside each finite element at each integration 
point, an equivalent localization element is assumed. 
The localization element represents a serial ar­
rangement of a localization zone which is loading 
and an elastic zone (spring) which is unloading. The 
total length of the element is equivalent to the crack 
band sizeL (width), and can be determined using 
the same methods as described in Section 2. The 
width of the localization zone is given by the char­
acteristic length of the material, or by the size of the 
test specimen for which the material model used has 
been calibrated. The direction of the localization 
element, given by the normal to the localization and 
elastic zone, should be perpendicular to the plane of 
failure propagation. An appropriate definition of this 
direction is significant and not trivial, and it will be 
discussed later in this paper. For the time being, let 
us assume that the direction of failure propagation is 
known. The direction of crack propagation is de­
noted by local cartesian coordinate subscript 2 , and 
the direction of the localization element by 1. 

The strain tensor can be separated into two parts: 
strains in the elastic spring that are denoted by su­
perscript u , and strains in the localization band with 
superscript b . 

The displacement compatibility condition for the 
whole length of the equivalent localization element 
gives the following relationship between the finite 
element strain vector i: , the strain vector i;" in the 
unloading elastic zone and the strain vector in the 
localization band i:b : 

LE=hf.b+(L-h)f." (6) 

where his the width of the localization band. The 
components of the strain and stress vectors are as­
sumed to be transformed into a frame defined by di­
rections 1 and 2, and they are arranged in the fol­
lowing manner: 

E = g,-qr and 6' = {s, tr (7) 

where 
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1' 1' 
~ = [ 5 11' 2£12' 2£13} ' ''1 = { £22' 533' 2£23} (8) 

{ 
T T 

S= CY11>CY12,CY13} '[={0-22,0"33,0"23} (9) 

Using the foregoing stress and strain vector com­
ponents, one can define the analogous components 
of the constitutive matrix and write 

(10) 

The localization element is considered only in the 
direction 1, which is perpendicular to the failure 
propagation. This implies the following conditions 
for the components of the strain vectors: 
L~=h~b+(L-h)~" (11) 

'11 = 'llb = '11" 
and stress vectors: 
S =Sb = s" 

t=!!_i6+L-ht" 
L L 

(12) 

(13) 

(14) 

The equilibrium condition (13) must be satisfied 
by the stresses in the elastic and localization zones. 
The stresses in the elastic zone are easily calculated 
using the elastic constitutive matrix; 

s" = s" 0 + llY' ][]15 ' i A~" ~ (15) 
A11 

Sb = F5 (Ebo' t:,,r,b) (16) 

The equations (11) to (16) form a system of non­
linear equations which can be solved for instance by 
the Newton-Raphson iterations as it is described in 
detail in Cervenka et. al. (2001 ). 

Once the iterative algorithm has satisfied the pre­
scribed convergence criteria, the separation of the 
total strain tensor into the elastic zone strains and the 
localization band strain is known. The global stress 
tensor is then calculated from (13) and (14). 

After a close examination of these formulas, it is 
important to note that stress components on planes 
parallel to the localization element direction are cal­
culated by summation of the appropriate stress com­
ponents in the elastic zone and the localization band. 
This means that the one-dimensional equivalent lo­
calization element is suitable only for problems in 
which the localization causes the increase of only 
one principal strain component, while the others re­
main small and within the elastic regime. To allevi­
ate these restrictions, the proposed method will now 
be extended to a full three-dimensional setting. 

5 THE THREE-DIMENSIONAL EQUN ALENT 
LOCALIZATION ELEMENT 

The method proposed in the previous section 
would be applicable only for cases with pure tension 
or bending. This constraint can be removed by ex­
tending the suggested technique into full 3D with 
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Figure 3. The arrangement of the three-dimensional 
equivalent localization element. 

three localization directions. Arbitrary three perpen­
dicular direction could be used, but it is suitable to 
use the directions defined by the principal frame of 
the total macroscopic strain tensor. 

The three-dimensional equivalent localization 
element is constructed in analogy to the one­
dimensional case, but this time three serial arrange­
ments of the elastic zone (spring) and localization 
band are defined. The spring-band systems are per­
pendicular to each other, and are arranged in parallel 
to the principal strain directions (Figure 3). In this 
arrangement of spring-band systems it is possible to 
identify the following unknown stresses and strains: 
CTi, ia;;, 2CJ~, 30-~ and c:i, is~, 2&~, Jc; 

where the superscript b denotes the quantities in the 
localization band and the superscript u"' defines the 
quantities in the elastic spring in the direction m . 
Altogether there are 48 unlmown variables. In the 
subsequent derivations, it is assumed that these 
stresses and strains are defined in the principal frame 
of the total macroscopic strain tensor. 

The set of available equations for their determi­
nation starts with the constitutive formulas for the 
band and the elastic springs: 

O't = F(si) (17) 

'"O'~ = Du11c '"&~1 for m = 1...3 (18) 

The first formula, (17), represents the evaluation of 
the non-linear material model, which in our case is 
the microplane model for concrete. The second 
equation, (18), is a set of three elastic constitutive 
formulations for the three linear springs that are in­
volved in the arrangement in Figure 3. This provides 
the first 24 equations that can be used for the calcu­
lation ofunlmown strains and stresses. 
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The second set of equations is provided by kine­
matic constraints on the strain tensors. 

1 b lh 1 u (IL lh) 
5 11 =r &11 + &11 -

& =_!_ i 2h+ 2s" ( 1L- 2h) 
22 L1 22 22 

1 b 3h ' " ( 'L 'h) &33 = I} &33 + &33 -

1 ~ 1 b lh 1 u (IL lh) 
&11 =2 LIL &12 + &12 -

+_!_ &b 2h+ 2&" (1L- 2h) I 
2 L 12 12 ( 

1 ~ 1 b lh 1 u ( 1 lh) 
&13 =2 LIL &13 + &13 L-

(19) 

+_!_ &6 'h+'s" ('L- 3h) I 3L 13 13 ( 

These 6 additional equations can be written 
bolically as: 

sym-

(20) 

+_!_ &6 ih+is~(JL_Jh) I 
'L u u ( 

The next set of equations is obtained by enforcing 
equilibrium in each direction between the corre­
sponding stress components in the elastic spring and 
in the localization band. For each direction m, the 
following condition must be satisfied: 

at mej= 111 Q"~. 111 ej for m=l. .. 3 (21) 

where "'e J denotes the coordinates of a unit direction 

vector for principal strain direction m . Since the 
principal frame of the total macroscopic strain tensor 
is used, the unit vectors have the following coordi­
nates: 
1e1 =(1,0,0), 2e/ =(0,1,0), 3e/ =(0,0,1) (22) 

The remaining equations are obtained by enforc­
ing equilibrium between the tractions on the other 
surfaces of the band and the elastic spring; 

(23) 
where m 1..3, n 1.. .3, m n 

It should be noted that this is different from the 
one-dimensional localization element where the 
kinematic constraint (12) was used for these sur­
faces. The equatfon (23) is equivalent to a static con-



straint on the remaining stress and strain components 
of the elastic springs. Formulas (21) and (23) to­
gether with the assumption of stress te.nsor symme­
try represent the remaining 18 equations that are 
needed for the solution of the three-dimensional 
equivalent localization element. These 18 equations 
can be written as: 
O't = '"O'~ for m = 1...3 (24) 

This means that the macroscopic stress must be 
equal to O'i, i.e. stress in the localization element, 

and that the stresses in all three elastic springs must 
be equal to each other and to the microplane stress 
O't . This implies also the equivalence of all three 

elastic strain tensors. 
The resulting system of non-linear equations is 

again solved by Newton-Raphson iterations (Cer­
venka et. al. (2001).). 

The macroscopic stress is then equal to the stress 
in the localization band O'i . Contrary to the one­

dimensional localization element there are no re­
strictions. All the types of localization modes and 
all the directions of failure propagation can be con­
sidered. 

6 EXAMPLES OF APPLICATION 

This section demonstrates the application of the 
presented method on three example problems. The 
goal is to investigate the objectivity of resul~s with 
respect to the element size when the eqmval~nt 
crack band localization element is. used. The fimte 
element method is employed, and always several 
element sizes are used to demonstrate the mesh size 
objectivity. The same example problems and the 
same meshes are also calculated with the rnicroplane 
model without the equivalent crack band approach. 
This comparison should clearly show the benefits of 
the proposed approach. All examples presented in 
this paper are calculated by the program ATENA. 
ATENA is an implicit code based on the fimte ele­
ment method incorporating modem numerical tech­
niques such as for instance: the object oriented ap­
proach and template meta-programming. 

6.1 A single large element in tension 

The first example is a uni-axial tension problem. The 
geometry of the problem corresponds to the tension 
specimens tested by Hordijk (1991). Three speci­
mens were analyzed, with the same cross-sectional 
area but with different lengths. The dimensions and 
geometry are shown in Table 1 and Figure 4, re­
spectively. 
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Table 1: Specimen dimensions 

Specimen Length Width Height 
[mml [mml [mml 

A 250 50 50 
B 125 50 50 
c 50 50 50 

When large finite elements are used in a finite 
element calculation that is dominated by a tensile 
failure, each element should correctly reproduce the 
macroscopic behavior of a tensile experiment. For 
this reason, every specimen is modeled by only one 
finite element with a different length. Each case 
should reproduce the macroscopic behavior of the 
corresponding uni-axial tension test. . 

All the specimens are loaded by prescnbed de­
formations, and the reaction forces are monitored 
during the analysis. 

----.i<ll ~I -~O,_____,...~ 
Figure 4. Tensile specimen geometry and loading 

The results of numerical analysis are compared 
with the experiment of Hordijk (1991). In the ex­
periment the following material properties of con­
crete were measured: the modulus of elasticity 
E=l8000 MPa, cubic compresive strength fcu =-50.4 
MPa, direct tensile strength ft= 3.3 MPa, and maxi­
mal aggregate size dmax=2 mm. The default material 
parameters of the microplane model are used in the 
analysis (k2=500,k3=15,ki=l50, as defined in Bafant 
et al. 2000a) with the exception of the microplane 
parameter k1 that was determined by fitting the ex­
perimental tensile strength 

Two finite element analyses are performed for 
each geometry: one with the equivalent crack band 
model and one without it. The crack band size h is 
set to 1 '.:> d where d is the aggregate size, i.e. 
h = 3 ~. mFigure 5 sh~ws the obtained stress­
deformation relations for all specimens; the label 
"band" indicates the analyses in which the equiva­
lent crack band element (ECBE) method is used. 
The curves without this label are calculated by the 
standard microplane model. The L means the length 
of the specimen. The deformation corresponds to 
the crack opening displacements. The figure shows 
that the specimens failed at the same tensile stress 
level. The computed data are compared with the 
measured data from the experiment by Hordijk 
(1991). This figure clearly shows the benefit of the 
proposed method. It can correctly reproduce the 
crack opening law, independently of the fimte ele­
ment size. This is in sharp contrast to the results 
from the plain use of the microplane model, in 
which a strong dependence on the finite element size 
is observed. 
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Figure 5. Diagrams of stress versus crack opening 
displacement from the tension test. 

6.2 A single large element in compression 

The second example problem is similar to the first 
one, but this time a compressive behavior is consid­
ered. Prisms with square cross-section and with dif­
ferent length are analyzed using a single finite ele­
ment. Each analysis should be able to reproduce the 
behavior of a similar experiment. This time the ex­
perimental data by van Mier (1986) are used for 
comparison. Table 2 shows the important dimen­
sions of the tested specimens. 

Table 2: Dimensions of compressive specimens 

Specimen Length Width Height 
fmml fmml fmml 

A 50 100 100 
B 100 100 100 
c 200 100 100 

In the experimental work the following basic 
material properties are reported: the elastic modulus 
E=28 000 MPa, cubic strength fcu=42.6 MPa, maxi­
mal aggregate size dmax=16 mm. The default mate­
rial parameters of the microplane model are again 
used in the analysis (k2=500,k3=15,1(4=150) with the 
exception of the microplane parameter k1 that was 
determined by fitting the experimental compressive 
strength. The final value of this parameter is set to 
k1=1.72xl0-4 . 

These specimens are loaded by prescribed defor­
mations, and the reaction forces are monitored and 
used for the stress calculation. Again the numerical 
model is formed by a single finite element. Two 
analyses are performed for each length: one with the 
ECBE method and one without it. In the ECBE 
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Figure 6: Diagrams of stress versus post-peak dis­
placement u = u,0 , -upeak" 

method, two crack band sizes are used. For direc­
tions parallel with the negative principal strain di­
rection b- = 3 dmax = 48 mm, and for positive princi-

pal strains b+ = 1.5 dmax = 24 mm. Figure 6 

demonstrates the effect that was documented by van 
Mier (1986). It was observed that if the peak defor­
mation is subtracted from the total deformation, the 
obtained post-peak curves are quite independent of 
the specimen length. This experimental observation 
is well reproduced by the ECBE method. 

6.3 The shear beam of Leonhardt and Walther 

This example shows a simply supported reinforced 
concrete beam without shear reinforcement. An ef­
fect of the finite element mesh and crack band size 
on the shear failure of the beam is investigated. The 
geometry, loading, material properties and results 
are obtained from the work of Leonhardt & Walther 
(1962). The dimensions are depicted in Figure 7. 
The measured material properties of concrete were 
the modulus of elasticity E = 31 720 MPa and the 
cylindrical uni-axial compressive strength 
J; = -8.5 MPa. The steel properties were the 

modulus of elasticity E = 210 000 MP a and the yield 
stress fy = 400 MPa. The same default material pa­
rameters of the microplane model were used as in 
the previous sections (k2=500,k3=15,ki=l50), with 
the exception of parameter k1 that was determined 
by fitting the peak load. 

The finite element models, shown in Figure 8, 
take advantage of the symmetry. The fine mesh has 
twelve elements along the height, the middle mesh 
six elements, the coarse mesh four elements. The 
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Figure 7: Geometry of Leonhardt and Walther's 
reinforced concrete beam. 

Figure 8. Meshes for the shear beam analysis. 

computational model is loaded by prescribed defor­
mations, and the reaction forces are monitored. For 
each mesh, two analyses are performed: one without 
and one with ECBE. The crack band size is set to 
h = 25 mm .. The calculated results without and with 
ECBE are shown in Figure 9. 

The load-deflection diagrams again demonstrate 
the applicability of the proposed equivalent crack 
band element for the practical calculations. The dia­
grams calculated by the ECBE method are less sen­
sitive to element size, and they very well predict the 
peak load. It may be mentioned that the analyses 
have again been performed using the default mate­
rial parameters, with minimal fitting. 

7 CONCLUSIONS 

This paper presents a novel method for the im­
plementation of softening material models defined 
by stress-strain relationships into finite element cal­
culations with variable and large element sizes. The 
only additional parameter is the size h of the local­
ization band. This size physically represents the 
characteristic dimension of the material for which 
the material formulation is calibrated. The underly-
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Figure 9: The load-deflection relation for the shear 
beam with ECBE (crack band size h=25mm) 

ing assumption is that only one localization zone de­
velops in a single finite element. The presented ap­
proach allows the use of different sizes h for each 
direction. In the current implementation, the spring 
directions are aligned with the principal strain direc­
tions, and two values of hare used: h = 1.5 d0,,x for 

directions with positive principal strain and 
h = 3 dmax for directions with negative principal 

strain. The different values of hare introduced to 
differentiate between the tensile fracturing and com­
pressive crushing. 

The disadvantage of the proposed method is the 
necessity to evaluate the microplane model several 
times, which increases the computational time. 
Typically, about 8 iterations are needed. 

The proposed approach is demonstrated using the 
microplane model of Bafant et. al. (2000a), but is 
suitable for other material models as well. It can 
eliminate the mesh size sensitivity of strain softening 
material models. 

The sensitivity of finite element calculations to 
mesh orientation cannot be addressed by this ap­
proach. It can be alleviated only by some non-local 
techniques. 

The proposed method, however, could be used to 
supplement non-local concepts so as to eliminate the 
need for using very small finite elements. With the 
proposed method, the averaging volume in the non­
local concept does not have to be fixed, but it can 
depend on the finite element size, such that the 
number of elements lying within the averaging vol­
ume (probably at least 3 to 4 in 2D analysis) would 
suffice to eliminate the mesh orientation bias. 
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