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A novel technique for modelling interfaces in reinforced brittle materials 
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ABSTRACT: A novel numerical technique for the modelling of interfaces is introduced for the analysis of 
reinforced brittle materials. The method exploits the partition of unity property of finite element shape functions. 
By considering finite element shape functions as partitions of unity, extra degrees of freedom are added to the 
nodes at the interface between the matrix and reinforcement. A gradient-enhanced damage model is used 
to simulate the continuum response. Numerical results for a three-point bending test and a pull-out test are 
presented. The numerical procedure proposed here is suitable for a great variety of applications ranging from 
discrete cracking and steel-concrete interaction in concrete to delamination processes in composite materials. 

INTRODUCTION 
For the computational modelling of interface phe­
nomena, special elements are required to simulate rel­
ative movement between two surfaces. Interface ele­
ments allow such phenomena to be captured and they 
are widely used for the modelling of discontinuities in 
materials. Fields of application are, for instance, con­
crete mechanics, for the description of the interface 
between steel and concrete, and modelling of delami­
nation processes in layered composites. 

A critical point in the proper use of standard inter­
face elements is the choice of the mechanical prop­
erties. Ideally, no deformation should occur at an in­
terface in the elastic stage of loading. Standard inter­
face elements fail in this respect as they need an initial 
elastic stiffness (Rots 1988). Moreover, the presence 
of spurious oscillations in the stress field makes non­
linear computations which are performed with stan­
dard interface elements very sensitive. 

Recently, different numerical techniques have been 
developed which allow displacement discontinuities 
to pass through solid finite elements. It is then possi­
ble to describe crack propagation without remeshing, 
with the path of the discontinuity independent of the 
spatial discretisation. The technique proposed here 
makes use of the partition of unity property of finite 
element shape functions (the sum of the shape func­
tions must equal unity at each spatial point) noted by 
Melenk and Babuska ( 1996). The essential idea in this 
method is to extend the standard approximation ba­
sis with enriched functions. This enhancement results 
in extra degrees of freedom for an enhanced node, 
without modification of the mesh topology. In this pa-
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per, following Wells and Sluys (2001 b ), the standard 
FEM polynomial basis is enriched with discontinu­
ous functions. This approach has been succesfully ap­
plied for the analysis of quasi-static (Wells and Sluys 
2001b) and dynamic (Wells and Sluys 2001a) failure 
in quasi-brittle materials. Unlike the model proposed 
by Wells and Sluys (2001b), in which a propagating 
discontinuity is allowed to cross through solid finite 
elements, the model proposed here considers a dis­
continuity whose location is known a priori. 

For interface modelling, a discontinuity may de­
velop at the common boundary of concrete matrix and 
reinforcement. The model results in an interface-like 
element in which extra degrees of freedom are acti­
vated on nodes lying on a discontinuity. A bond-slip 
constitutive law is used at the discontinuity. 

Inelastic deformations in the concrete matrix are 
represented using a continuum damage model. To 
avoid depencence on the spatial discretisation an en­
hanced continuum description is necessary. Here, the 
inclusion of higher-order spatial derivatives (Peer­
lings 1999) is used. Numerical simulations of a three­
point bending test and a pull-out test highlight the 
properties of the method and its ability to overcome 
the difficulties encountered when using standard in­
terface elements. 

2 KINEMATIC FIELDS 
A body Q bounded by r and crossed by a disconti­
nuity rd is considered (see Figure 1). Prescribed dis­
placements are imposed on ru, while tractions are im­
posed on r 1. The internal discontinuity surfacer d di­
vides the body into two sub-domains, n+ and n-



Figure 1: Body n crossed by a discontinuity rd. 

(Q = n+ U Q-). The displacement field can be de­
scribed by 

u(x,t) =u(x,t)+~(x)ii(x,t), (1) 
d 

where~ (x) is the Heaviside function centred at the 
d 

discontinuity surfacer d (~ = 1 't/ x E Q+, ~ = 0 
d d 

't/ x E n-) and u and ii are continuous functions on 
Q. Note that the displacement jump is given by u at 
the discontinuity surface rd. The corresponding strain 
field is obtained as the symmetric part of the gradient 
of the displacement field: 

IE = V 5u = V 5u + ~ (\75ii) + 8 (ii® n) 5 (2) 
['d ['d ' 

where (-)'refers to the symmetric part of(-), ~ is 
d 

the Dirac delta-function centred at the discontinuity 
rd and n is the unit normal vector to the discontinuity 
(pointing to Q+). Due to the jump in the displacement 
field, the strain at the discontinuity is unbounded. This 
lacks physical meaning and it will be eliminated ana­
lytically from the virtual work equation. 

3 FINITE ELEMENT IMPLEMENTATION 
3 .1 Kinematic description 
In a finite element framework, the kinematic field 
must be described in terms of nodal values. The dis­
placement field in equation ( 1) is expressed as 

u = Na+~dNb, (3) 

where N is a matrix containing element shape func­
tions and a and b represent regular and enhanced 
nodal degrees of freedom, respectively. The discreti­
sation for the strain field reads: 

e=Ba+~}3b+(<\}1)Nb, (4) 

where the gradients in equation (2) have been ex­
pressed as V5u =Ba and \75ii = Bb, with the matrix B 
containing the spatial derivatives of the element shape 
functions and n is a matrix containing normal compo­
nents to the discontinuity. 

3.2 Variational formulation 
The variational formulation follows Wells and Sluys 
(200lb). The virtual work equation, without body 
forces, reads: 
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1 V 51J:G dQ = r fl. J: ctr, (5) 
Q J,, 

where 11 are admissible displacement variations, a is 
the stress field and t are external traction forces on 
the boundary r 1• From equation (1), the displacement 
variation Tj is decomposed as 

(6) 

From equation (2), the symmetric part of the gradient 
of 'I} is equal to 

Substituting the admissible displacement variation ( 6) 
and its gradient (7) into the virtual work equation (5) 
gives: 

Using the integral property of the Dirac-delta distri­
bution, 

{ ~ (ij ®n)5 :CF dQ lo d 

where t = Cl'n are the traction forces acting across the 
discontinuity rd' Inserting equation (9) into equation 
(8), the weak form reads: 

From the decomposition of the displacement field it 
follows that any admissible variation 11 of u can be re­
garded as admissible variations fl and ij, thus leading 
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Figure 2: Enhanced nodes lying on a discontinuity. 

to two variational statements. Taking first variation ij 
and then ij gives: 

f V'ij:ad!l= f i)·tdr (lla) 
Jn Jr, 

Note that the second variational statement ensures 
that traction continuity is satisfied in a weak sense 
across the discontinuity rd. 

3.3 Spatial discretisation 

) Due to the presence of two materials, a discontinuity 
is added at the boundary between concrete matrix and 
reinforcement. While an interface lies at the boundary 
between two elements, the discontinuity belongs to 
the element upon which £1. = 1. This is illustrated 

d 
in Figure 2, in which the shaded elements, sharing a 
common boundary with the white elements, contain 
a discontinuity placed along the common side. It is 
emphasized that the enhancement regards only those 
nodes of interface-like elements (the shaded elements 
in Figure 2) lying on a discontinuity. 

For elements with a discontinuity, it is convenient 
to define the discretised expressions for the admis­
sible displacement jump variations and their gradi­
ents as £1. ij = N .Yt' b1 and £1. V'ij = B .Yt' b', respec-

d d 
tively, where the primes refer to variations. The ma-
trices N.Yt' and B .Yt' are such that only the contribution 
of the nodes lying on the discontinuity are consid­
ered. Defining analogous expressions for the admis­
sible displacement variations (ij =Na' and ij =Nb') 
and for their gradients (V'ij = Ba' and V'ij = Bb'), 
and inserting these expressions into equation ( 11 ), 
leads to two discrete weak governing equations valid 
at element level: 

{ BT<J' dQ = { NTt dr (12a) 
Jn+ Jr, 
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The requirement of zero enhanced displacement (ii= 
0) is enforced where essential boundary conditions 
are applied (Wells and Sluys 2001b). From equa­
tion (12), the equivalent nodal forces related to ad­
missible variations of a and b result in 

(13a) 

(13b) 

3.4 Linearised weak equations 

The stress rate G in the continuum is expressed in 
terms of nodal displacement velocities as 

where the material tangent D links stress rate a to 
strain rate e. Similarly, the traction rate at a disconti­
nuity is expressed as 

i = T[u] = TNb, (15) 

where T relates traction rate i and displacement jump 
rate [u]. The linearised weak form is formed by insert­
ing the above stress and traction rate expressions into 
the discretised weak governing equations in equa­
tion (12), thus obtaining 

where the sub-matrices are defined as 

and fext are the externally applied forces (RHS of 
equation (12)). 



4 INTERFACE CONSTITUTIVE MODELS 
The traction-sepan\tion relation t = T[u] of equa­
tion (15) is formulated in a local n,s coordinate sys­
tem. To test the model and to make comparisons with 
standard interface element problems, a simple law of 
the type 

is used, where dn and ds are constant, Un and Us are the 
displacement jumps in the local (discontinuity) refer­
ence system and tn and ts are the normal and tangential 
interface tractions. 

A more refined model is required for the descrip­
tion of pull-out failure. A loading function is defined 
as 

f(us, K) =Us - K, (19) 

where K is a history parameter, equal to the largest 
value of Us reached. Loading is indicated by f 2'. 0 
and unloading by f < 0. 

The constitutive response along the common 
boundary of reinforcement and matrix has been ide­
alised considering a damaging interface in which 

ts= ds(l -Ws)K, (20) 

where Ws is the tangential damage factor. A perfect 
normal bond is assumed. For the tangential traction­
slip relationship, a linear softening damage evolution 
law is used: 

Ws = 1 - --1. --- , IC. (Ku- K) 
K Ku - K; 

(21) 

which is characterised, after the threshold value K; has 
been reached, by a linear decrease of the tangential 
traction until a zero tangential traction level is reached 
for the ultimate slip Ku. Secant unloading is adopted. 

5 IMPLEMENTATION 
The model has been implemented using four- and 
eight-noded quadrilateral elements. For elements with 
a discontinuity, the integration scheme needs to be ad­
justed in order to integrate the tractions at the discon­
tinuity. Figure 3 shows a four-noded quadrilateral ele­
ment with the discontinuity along side jk and the aug­
mented integration scheme. It is stressed that, even if 
the discontinuity is placed along the common bound­
ary of two elements (see Figure 2), the traction law is 
integrated only along the side jk of the interface-like 
element. A the Gauss integration scheme has been 
used for the integration over the continuum ne and 
on the discontinuity rd. 
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Figure 3: Integration scheme and degrees of freedom 
for an interface-like four-noded quadrilateral element. 

Since the gradient-enhanced damage model re­
quires an extra interpolation field for the non-~ocal 
equivalent strain (Peerlings 1999), the Heav1s1de 
jump is chosen to be non-zero on displacement-based 
continuum elements. For this reason, in the analysis 
of a reinforced brittle material, in which the concrete 
is described by a gradient-enhanced damage model, 
the displacement jump was added to the nodes of the 
element representing the reinforcement. 

Although it is possible to activate a discontinuity 
after a specific condition is met (Wells and Sluys 
2001b), here it is assumed that the discontinutiy is 
considered to be present from the beginning of an 
analysis. This keeps the implementation relatively 
simple and allows for a direct comparison with stan­
dard interface elements. 

6 APPLICATIONS 
The performace of the method is examined by means 
of two examples. The first application illustrates the 
ability of the interface-like element in reproducing the 
rigid solution. This is a critical issue in numerically 
integrated continuous interface elements. The second 
application examines the pull-out of a steel fibre from 
a concrete matrix. 

6.1 Two-dimensional linear elastic analysis of a 
notched beam 

The performance of the numerical procedure is in­
vestigated for the two-dimensional notched beam de­
picted in Figure 4. This test was used by Rots (1988) 
to test the performance of numerically integrated con­
tinuous interface elements. Four noded quadrilateral 
elements are used under plane stress conditions. A 
Young's modulus of 20000 N /mm2 and a Poisson's 
ratio of 0.2 have been used for the continuum part. 
Interface-like elements, shaded in Figure 4, have been 
added in front of the notch. To reproduce a pure 
mode-I opening, only displacement jumps in the hor­
izontal direction are activated. The analyses reported 
by Rots show a normal traction profile along the cen­
tral line of the beam which is highly dependent on the 
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Figure 4: Mesh for linear interface analysis of a 
notched beam (dimensions in mm). 
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Figure 5: Traction profile in front of the notch of the 
beam. 

stiffness of the interface and on the chosen numerical 
integration scheme. In particular, it was shown that 
high values of the normal stiffness lead to significant 
oscillation of the normal traction profile. 

The ability of the partition of unity method to re­
produce the correct traction profile is shown in Fig­
ure 5, in which the tractions have been sampled at 
the integration points at the discontinuity. The stiff­
ness d11 at the discontinuity ranges from 10+3 to 10+5 

N / mm3 . To achieve a negligible separation in the 
initial uncracked state and to capture the high trac­
tion gradient ahead of the notch it is suggested that 
a good estimate of the initial discontinuity stiffness 
dn could be of the same order as the stiffness of the 
surrounding continuum. As shown in Figure 5, for 
d11 = 10+5 N /mm3 the traction profile of the rigid so­
lution is reproduced exactly. It is stressed that higher 
values of d11 result in a traction profile that is indis­
tinguishable from the rigid one, and no stress oscilla­
tions are observed. 
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Figure 6: Geometry of the pull-out specimen (dimen­
sions in mm). 

6.2 Pull-out modelling 

The non-linear behaviour of the interface-like ele­
ment has been examined by analysing a pull-out test 
of a steel fibre with a short embeddement length 
(see Figure 6). The fibre is loaded by a prescribed 
displacement incrementally applied at the right end. 
The simulations have been performed under plane 
strain condition using eight noded quadrilateral ele-

(a) 
¥cLC lc-C '""'le•• I•; li.\c i31 

(b) 

Figure 7: Meshes for the pull-out test: (a) 352 ele­
ments; (b) 1408 elements. Interface-like elements are 
shaded grey. 
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Figure 8: Load displacement curve for the pull-out 
test. 

ments. The cementitious matrix is modelled using a 
gradient-enhanced damage model. Young's modulus 
of 20000 N /mm2 and a Poisson's ratio of 0.2 have 
been used for the cementitious matrix. The gradient 
parameter has been set to 1 mm2 and a value of 10 for 
the ratio of the compressive and the tensile uniaxial 
strength in the Modified von Mises equivalent strain 
definition has been used (see Peerlings (1999) for de­
tails on the gradient-enhanced continuum model). For 
the steel fibre, linear elastic behaviour with Young's 
modulus of 200000 N / mm2 and a Poisson's ratio 
equal to zero are used. The damaging interface model 
in equation (20) with ds = 200000 N /mm3 , K; = 8 x 
10-6 mm and Ku = 100 mm has been used for the 
shaded elements in Figure 7. The load-displacement 
curve depicted in Figure 8 shows the objectivity of the 
model with respect to spatial discretisation and a near­
horizontal plateau in the load-displacement response 
just post the peak load. This is typical of pull-out tests. 

7 CONCLUSIONS 

The use of the partition of unity method to develop an 
interface-like element has been considered. The dis­
placement field is enriched with the Heaviside jump 
function, thus providing the natural environment to 
describe fibre pull-out failure in concrete. It is empha­
sized that the method is suitable for any class of prob­
lems in which a material discontinuity is expected. 

A limitation of numerically integrated continuous 
elements is the difficulty in reproducing the rigid so­
lution. Moreover, the presence of stress oscillations 
introduces undesirable difficulties in non-linear com­
putations. It has been shown that this method can 
succesfully overcome these deficiencies. The two­
dimensional linear elastic analysis of a notched beam 
showed that this method is able to reproduce the rigid 
solution. 

Further, it is important to note that no additional 
elements are required to model a discontinuity; only 
extra degrees of freedom are added to the nodes that 
correspond to the interface. The ability of the method 
to properly model interface behaviour makes it a valu-

able tool for the analysis of reinforced brittle materi­
als. 
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