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ABSTRACT: The safety of cracked concrete dams is fundamentally affected by their mechanical
behaviour under seismic excitation. Such a load is far from being harmonic and is characterized
by intermittent spikes. Therefore the sequence effect is analysed. Two widely accepted non-linear
methods were used: the Cohesive Crack Model to analyse the evolution of the process zone and the
Continuous Function Model (CFM) to analyse the local hysteresis loop. In its original formulation,
CFM predicts that a higher preloading arrests the fatigue crack growth at a subsequent lower load
level. This unrealistic and unconservative behaviour is due to the fact that the above mentioned
model neglects the damage occurring during the so-called inner-loops. In other words the CFM
assumes that inner loops are mere loading loops and not fatigue loops. This assumption causes an
incorrect prediction of the sequence effect. For the same reason the CFM predicts an endurance
limit which is higher than attested by experimental evidence. In order to obtain more realistic
results, in the present paper the CFM was enhanced, introducing a damage mechanism for the inner
loops too. In the new model proposed, as well as in the original CFM, the endurance limit is seen
to be almost constant relative to structural size.
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1 INTRODUCTION

The safety of cracked concrete dams is funda-
mentally affected by their mechanical behaviour
under seismic excitation. It is well known that
concrete presents a diffused damage zone within
which micro-cracking increases and stresses de-
crease as the overall deformation increases. This
results in the softening of the material in the so-
called fracture process zone (FPZ), whose size
can be compared with a characteristic dimen-
sion of the structure. This dimension is not con-
stant and may vary during the evolutionary pro-
cess. In this context, a numerical method has to
be used together with the cohesive or fictitious
crack model as shown by Hillerborg et al. The
interaction between strain-softening and fatigue
behaviour is analysed by modeling the hysteresis
loop under unloading-reloading conditions.

2 DESCRIPTION OF THE MICROME-
CHANICAL MODEL FOR THE PROCESS
ZONE

In each point of the fictitious process zone a mi-
cromechanical approach to tension softening is
used according to a strategy proposed in Huang
& Li (1989) and Karihaloo (1995). Tension soft-
ening behaviour appears when the damage in
the material has localized along possible frac-
ture planes. This behaviour has been success-
fully modelled using two- and three-dimensional
micromechanical models.

All models provide a relationship between
residual tensile stress carrying capacity and
crack opening displacement (COD) as a func-
tion of known concrete microstructural param-
eters (included in factor β), e.g. aggregate vol-
ume fraction Vf , Young’s modulus Ec, ultimate
tensile strength ft and fracture toughness of the



homogenized material Khom
Ic (see Figure 1). Ac-

cording to these models, the function is assumed
to be:
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Figure 1 shows the unloading and reload-
ing loop, according to the so-called Continu-
ous Function Model proposed by Hordijk. This
model is based on uniaxial tension test results
and has been used successfully in the interpreta-
tion of four-point bending tests through the so-
called multilayer beam model (Hordijk (1991)).
Unloading and reloading loops are magnified in
Figure 2.
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Figure 1. Cohesive stress-COD law.
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Figure 2. Hysteretic unloading and reloading loops ac-
cording to the Continuous Function Model.

3 FINITE ELEMENT ANALYSIS
In this work, the continuum surrounding the
process zone is taken to be linear elastic. All
non-linear phenomena are assumed to occur in
the process zone. When the fictitious crack tip
advances by a pre-determined length, each point
located along the crack trajectory is split into
two points. The virtual mechanical entity, act-
ing on these two points only, is called cohesive
element : the local behaviour of such an element
follows the rules described in the previous sec-
tion. Each cohesive element interacts with the
others only through the undamaged continuum,
external to the process zone.

According to the finite element method, by
taking the unknowns to be the n nodal displace-
ment increments, ∆u, and assuming that com-
patibility and equilibrium conditions are satis-
fied at all points in the solid, we get the follow-
ing system of n equations with n + 1 unknowns
(∆u, ∆λ):

(KT + CT )∆u = ∆λ P (2)

where:

• KT : positive definite tangential stiffness
matrix, containing contributions from lin-
ear elastic (undamaged) elements and pos-
sible contributions from cohesive elements
having (σ,w) below the curve of Figure 1;

• CT : negative definite tangential stiffness
matrix, containing contributions from co-
hesive elements with (σ,w) on the curve of
Figure 1;

• P : external load vector;

• ∆λ: load multiplier increment. During the
numerical analysis the stresses follow a
piece-wise linear path. To obtain a good ap-
proximation of the non linear curves shown
in Figure 1, ∆λ increments have to be small
enough.

The above mentioned model was also suc-
cesfully used in the numerical simulation of
mixed-mode crack propagation, see Barpi & Va-
lente (1998), Barpi & Valente (2000) as well
as in crack propagation under constant load,
see Barpi & Valente (2002) and Barpi & Valente
(2003).



0 0.25 0.5 0.75 1
Non dimensional CMOD (-)

0

0.2

0.4

0.6

0.8

1

N
on

 d
im

en
si

on
al

 lo
ad

 (
-)

Figure 3. Non dimensional load vs. non dimensional
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During the loading phase the stress paths of
the cohesive elements are forced to stay on curve
B − A1 of Figure 1, whereas during the cyclic
loading phase they are forced to stay on the
curves shown in Figure 2. The A1 − L1 − A2
stress path is called external loop and the A2−
L2 and A3 − L3 paths inner loops (Hordijk
(1991)).

Fatigue rupture is reached when the small-
est eigenvalue of the tangential stiffness ma-
trix becomes negative: this condition means that
the external load cannot reach the upper value
Pupper any longer.

4 PRE-PEAK LOADING PROCEDURE

The loading procedure analysed is based on two
phases. In the first, the external load grows from
zero to the fatigue upper level (Pupper), a frac-
tion of the peak load (Ppeak). In the second, a
cyclic loading condition is applied, from Pupper

to Plower and vice versa. In the case of three-
point bending test, the global response in the
nondimensional load-CMOD plane, is shown in
Figure 3.

As the fictitious crack grows, the undamaged
ligament reduces and structural compliance in-
creases. The previously described fatigue rup-
ture condition is achieved approximately when
the global load path reaches the post-peak
branch of the static curve. The results shown
in Figure 3 has been obtained for the dimen-

Table 1. Geometrical and material parameters.

L/H a0/H ∆H/H ν H/lch β εu

- - - - - - -
8 1/3 1/160 0.1 1.193 0.055 7.8 10−5

sionless parameters presented in Table 1 where
L/H represents the span to depth ratio, a0/H
the notch to depth ratio, ∆H/H the mesh size
ratio, ν Poisson’s ratio, lch = E GF

σ2
u

Hillerborg’s
characteristic length, H/lch the depth to char-
acteristic length ratio, β the Huang-Li tension-
softening constant and εu the ultimate tensile
strain. The upper loading level is Pupper

Ppeak
= 0.92

and the lower loading level is Plower

Ppeak
= 0.0.

5 VARIABLE AMPLITUDE FATIGUE
LOADING INDUCED BY A SEISMIC
EXCITATION

According to the original formulation (Hordijk
(1991)) of the Continuous Function Model
(CFM), at the beginning of the unloading step,
point D in Figure 2 plays a crucial role:

• if the stress path is on the right of point
D, point A1 moves in such a way that
the related unloading path passes through
the current point (dotted line in Figure 2).
Therefore point L1 and M move too, the
damage grows, and the current cycle can
be locally considered as a fatigue cycle;

• if the stress path is on the left of point D,
points A1, L1, M do not move, and an inner
loop without damage occurs. The current
cycle can be locally considered as a mere
loading cycle and not as a fatigue cycle.

The above mentioned condition may vary
from point to point along the FPZ. It is com-
monly accepted that under seismic excitation
the frequency of the induced stresses in a con-
crete gravity dam ranges from 3 to 10 Hz. This
load is far from being harmonic and is char-
acterized by intermittent spikes. Therefore it is
worthwhile analysing the behaviour of the above
mentioned model during and after a load spike.
At the peak value of a spike all stress paths in
the FPZ are on the right of point D, or even
on the right of point M . The next two steps



will be characterized by a large unloading step
(second part of the spike cycle) followed by a
small reloading step (first part of an ordinary
cycle). As a consequence, all stress paths are
on the left of point D and all ordinary cycles
will be inner loops without damage until a new
spike occurs. At this point it is possible to con-
clude that, according to the CFM, a spike de-
celerates crack growth at a subsequent lower
load level. After a series of experimental tests,
Slowik, Plizzari, & Saouma (1996) observed the
opposite phenomenon: a spike accelerates crack
growth at a subsequent lower load level. It is
therefore possible to conclude that the use of the
CFM in a finite element analysis entails results
which are unrealistic and unconservative. This is
a first reason to enhance the CFM by including
the damage occurring during the so-called inner
loops.

6 ENDURANCE LIMIT
In case of harmonic excitation, a load level ex-
ists below which no crack growth occurs. This
load level is called endurance limit. For the di-
mensionless parameters listed in Table 1, Fig-
ure 4 shows the endurance limit as a function of
size, obtained through the numerical simulation
of three-point bending tests. After a series of
experimental tests, Slowik, Plizzari, & Saouma
(1996) observed lower values of the endurance
limit. This is a second reason to enhance the
CFM by including the damage occurring during
the so-called inner loops.

7 A DAMAGE LAW FOR THE INNER
LOOPS

Up to this point, the fatigue induced damage is
related to the distance between points A1 and
M in Figure 2. These points do not move during
the so-called inner loops. In order to overcome
the above mentioned problems, in this paper the
CFM is enhanced by assuming a damage law for
the inner loops too. More precisely, with refer-
ence to Figure 2, when the stress path is at point
L2 or L3 (lower level of an inner loop), point
M moves along the static envelope of 0.001 in
a dimensionless plane. From a physical point of
view, this fact represents a damage which oc-
curs independently of the position of point A2.
In other words it occurs during an inner loop
as well as during an external loop. In order to
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Figure 4. Size effects on endurance limit.

introduce an upper limit to this second type of
damage, the damage process is stopped when
point M moves to twice its original distance
from point A1. This simple assumption modifies
the numerical response in the direction indicated
by the experimental evidence: the evolution of
damage is no longer stopped by a loading spike.
On the contrary, the ligament reduction induced
by a spike accelerates crack growth after a subse-
quent lower load level. Considering a harmonic
loading law, the endurance limit reduces from
0.875 to 0.832 in the case of a large sized struc-
ture (H/lch = 1.193), and from 0.872 to 0.830
in the case of a small sized one (H/lch = 0.596),
as shown in Figure 4.

Finally, Figures 5 and 6 show the stress at the
midspan section of the beam

(
Pupper

Ppeak
= 0.92

)
for

P = Plower and P = Pupper, while Figure 7 show
the stress paths (in the (σ,w) plane) relating to
a cohesive element near the notch.

8 CONCLUSIONS

• In its original formulation, the Continu-
ous Function Model (CFM) predicts that a
higher preloading arrests the fatigue crack
growth at a subsequent lower load level.
This unrealistic and unconservative be-
haviour is due to the fact that the above
mentioned model neglects the damage oc-
curring during the so-called inner loops. In
other words the CFM assumes that inner
loops are mere loading loops and not fatigue



loops. This assumption causes an incorrect
prediction of the sequence effect.

• For the same reason the CFM predicts an
endurance limit which is higher than at-
tested by experimental evidence.

• In order to obtain more realistic results, in
the present paper, the CFM is enhanced,
introducing a damage mechanism for the
inner loops too.

• In the new model proposed, as well as in
the original CFM, the endurance limit is
seen to be an almost constant function of
structural size.
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Figure 5. Non dimensional stress vs. z/H (P = Plower) for H/lch = 0.596 (left) and 1.193 (right) at the midspan
section of the beam.
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Figure 6. Non dimensional stress vs. z/H (P = Pupper) for H/lch = 0.596 (left) and 1.193 (right) at midspan section
of the beam.
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Figure 7. Stress paths at real crack tip
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for H/lch = 0.596 (left) and 1.193 (right).


