
1 INTRODUCTION 

Quasibrittle materials such as concrete, fiber 
composites, rocks, tough ceramics, sea ice, dry 
snow slabs, wood and some biomaterials, fail at 
different nominal strengths with respect to their 
structure size.  Smaller structures fail in a ductile 
manner which usually involves distributed cracking 
with strain-softening.  The stress redistribution that 
is caused by fracture and distributed cracking 
engenders an energetic size effect, i.e., decrease of 
the nominal strength of structures with increasing 
structure size.  A structure far larger than the 
fracture process zone (FPZ) fails in an almost 
perfectly brittle manner and, if the failure occurs 
right at the crack initiation, the failure load is 
governed by the statistically weakest point in the 
structure, which gives size to the statistical size 
effect.    

A simple strategy for capturing the statistical size 
effect using the stochastic finite element method in 
the sense of extreme value statistics is presented.  It 
combines a feasible type of Monte Carlo simulation 
based on nonlinear fracture mechanics. This is 
exemplified by the case of size effect of bending 
span in four-point bending tests of plain concrete 
specimens.  

The interdisciplinary field of stochastic fracture 
mechanics is accessed by utilizing new advanced 

software developments which progress beyond the 
traditional approach and attempt to treat in a 
combined manner the reliability theory with fracture 
nonlinearity. This approach automatically yields not 
only the statistical part of size effect at crack 
initiation, but also the energetic part of size effect.  
Examples of statistical simulations of size effect 
with nonlinear fracture mechanics software ATENA, 
combined with probabilistic software FREET, are 
presented.  Capturing the statistical size effect is 
made possible by (1) incorporating the analytical 
results of extreme value statistics into the stochastic  
finite element calculations, (2) implementing an 
efficient random field generation, and (3) exploiting 
small-sample Monte-Carlo type simulation called 
Latin hypercube sampling. 

2 GENERAL SIZE EFFECT THEORY 

2.1 Energetic Size Effect 

There are two basic types of energetic size effect 
which are distinguishable (Bažant 1997, 2001a, 
2002, Bažant and Chen 1997).  Structures of 
positive geometry having no notches or preexisting 
cracks are classified as Type 1 size effect (Bažant 
and Li 1995, 1996, Bažant 1998, 2001a). For 
positive structure geometries, the maximum load 
occur as soon as the FPZ gets fully developed.  
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Positive geometry is one of the requirements for 
the applicability of Weibull-type weakest link 
model. 

Type 2 size effect (Bažant 1984, 2002, Bažant 
and Kazemi 1990) occurs also for positive 
geometry structures but with notches, as in fracture 
specimens, or with large stress-free (fatigued) 
cracks that have grown in a stable manner prior to 
the maximum load.  The mean nominal strength for 
this type of size effect is not significantly affected 
by material randomness (Bažant and Xi 1991, 
Bažant 2002), but the variance of course is. There 
exists also a Type 3 size effect (Bažant 2001a), 
occurring in structures with initially negative 
geometry. However, this type is so similar to Type 
2 that it is barely distinguishable experimentally. 

2.2 Probabilistic Size Effect 

Traditionally, the probabilistic size effect has been 
explained by Weibull-type statistical weakest link 
model (Fisher and Tippett 1928; Weibull 1939, 
1949, 1951, 1956; Epstein 1948; Freudenthal 1956, 
1968, Freudenthal and Gumbel 1953; Gumbel 
1958; Saibel 1969).  Its basic hypothesis is that the 
structure fails as soon as the material strength is 
exhausted at one point of the structure.  This is true 
for quasibrittle materials only if the size of the 
structure is much larger than the FPZ. 

For quasibrittle failures of smaller sizes, there are 
other avenues of research which could explain the 
stress redistribution before failure.  Daniel's (1945) 
fiber bundle model is one of the earliest 
generalizations of the extreme value statistics of the 
weakest link model, in which a hypothesis of load-
sharing among fibers is invoked.  This avenue of 
approach has been thoroughly investigated by S. 
Leigh Phoenix and co-workers (Harlow and 
Phoenix 1978a,b; Smith and Phoenix 1981; Smith 
1982; Phoenix and Smith 1983; McCartney and 
Smith 1983; Phoenix 1983; Phoenix et al. 1997, 

200; Mahesh et al. 2002).  
The other, more recent, avenue of approach 

attempts to amalgamate the statistical and 
deterministic theories by means of a nonlocal 
generalization of Weibull theory (Bažant and Xi 
1991, Bažant and Novák 200a,b, Bažant 2001b). 
This allows stochastic numerical simulations of the 
mean as well as variance of the deterministic-
statistical size effect in structures of arbitrary 
geometry. In particular, this approach automatically 
captures the dependence of stress redistribution and 
energy release rate on the structure size D. 

3 ASYMPTOTICS OF SIZE EFFECT 

3.1 Small-size asymptotes 

The small-size mean asymptotic properties should 
agree with the theoretical small-size asymptotic 
properties of the underlying continuum model, 
which can be the cohesive crack model, the crack 
band model, or the nonlocal damage model. Each of 
these models implies that the value of the nominal 
strength σ N  for D → 0 should be finite and should 
be approached linearly in D (Bažant 2001a,b, 
Bažant 2002), as shown in Fig. 1. Agreement with 
these small-size asymptotic properties can be 
achieved by modeling the failure mechanism for the  
small-size limit with a fiber bundle. For a vanishing 
size, the failure tends to follow the theory of 
plasticity, and it is well known (e.g., Jirásek and 
Bažant, 2002) that in plasticity the failure proceeds 
according to a single-degree-of-freedom mechanism, 
i.e., is simultaneous, non-propagating. It follows 
that the failure probability distribution for D → 0 
ought to obey Daniel's (1945) `fiber bundle’, model 
rather than the Weibull-type weakest link model for 
a chain. 

 For D → 0, a body with a cohesive crack (or 
crack band) approaches the case of an elastic body 
containing a perfectly plastic cohesive crack.  Fig. 2 

Figure 1: The curve of mean size effect for structures failing at macroscopic fracture initiation, and its probability distributions for
various sizes 
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shows the fits of the energetic size effect to 
extensive experimental data on the modulus of 
rupture (or flexural strength) of unreinforced 
concrete beams (Bažant and Novák 2000a,b) and of 
fiber-polymer composite laminates (Bažant et al., 
2003), which reveal that the small-size asymptote 
is closely approached only for extrapolation to 
specimen sizes much smaller than a representative 
volume of the concrete, considered here to be about 
three aggregates in size. This volume fractures 
simultaneously, which is why its statistics should 
be adequately described by the fiber bundle model, 
in which the breakages of fibers correspond to the 
breaks of microscopic bonds along the failure 
surface. 

By formulating and solving a recursive relation 
for the failure probability distribution, Daniels 
(1945) showed that the failure probability Gn(x) 
follows the standard normal distribution 
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F(x) is the probability distribution of failure of the 
fibers, are assumed to be identical and statistically 
independent.  

3.2 Large-size asymptotes 

On the other extreme, the failure for a very large 
structure of positive geometry occurs as soon as the 
FPZ becomes fully developed.  Structures of 
positive geometry are those in which the stress 
intensity factor, or the energy release rate, increases 
if the crack extends at constant load.  The failure of 
such a structure could be modeled with a single 
chain of elements, each representing a FPZ and the 
failure probability of such a structure follows the 
weakest link model. 

( ) ( )[ ]N
N PP σσ 111 −−=  (4) 

where P1(σ) is the cumulative probability 
distribution of the element, which represents the 
FPZ in this case and PN (σ) is the cumulative 
distribution function of the chain. 

  Although there are no substantial amount of 
experimental data that test on very large structures 
to verify the correctness of the weakest link model, 
numerical simulation on such large scale such as 
dams (to be presented in another paper) and the 
theoretical argument that very large positive definite 
structures fail at crack initiation, provides strong 
argument for the weakest link model. 

Fisher and Tippet (1928) has proved that there 
exist three and only three asymptotic forms of the 
extreme value distribution:  

1. Weibull distribution 
2. Fisher-Tippett-Gumbel distribution 
3. Fréchet distribution 

In this paper, we focus on generic Weibull 
distribution with zero threshold for each FPZ; the 

Figure 2: Dimensionless size effect curve for modulus of rupture fr (flexural strength) obtained after the values Db and fr0=s0f0,
different for each data set, have been identified by separate fitting. Left: Concretes. Right: Fiber-composite laminates. 
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cumulative probability distribution can be 
expressed as follows: 

 ( ) ( )meP 01 1 σσσ −−=  (5) 

where m and s0 are the Weibull shape and scale 
parameters respectively (m = Weibull modulus).   

The asymptotic probability distribution for the 
weakest link model will remain Weibull at varying 
D but the mean and standard deviation will shift as 
follows: 
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According to the expressions in Eq. (6) & (7), it 
is clear that the coefficient of variation of σN  
depends only on the shape parameter and can be 
expressed as follows: 
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Note that the coefficient of variation of σN is 
independent of the structure size D.  This implies 
that, if the size effect is purely statistical, the 
Weibull modulus, m, which is completely 
determined by the experimentally observed scatter 
of the results of tests of identical specimens of one 
size, must be the same as the m identified from the 
size effect tests. This is a check on the validity of 
the statistical theory which has been omitted in 
many studies. For small and intermediate size 
structures, the Weibull statistical theory does not 
apply and this is most easily recognized by the fact 
that moduli m obtained according to (8) from tests 
at very different sizes do not match each other. 

4 TRANSITION BETWEEN SMALL AND 
LARGE SIZE ASYMPTOTES 

4.1 Chain of Bundle Model 

For intermediate size structures, the size of FPZ 
is large as compared to the size of the structure.  
Stress redistribution and energy release are 
significant for these structures, which suggests that 
the deterministic effect should not be neglected.  
The size effect curve could be determined by 
numerous simulations of intermediate size 
structures using a nonlinear stochastic finite 
element program. This is reviewed later in the 

paper. Now an alternative approach with a transition 
based on the chain of bundles model (Fig. 3) 
proposed in Bažant (2003a,b) will be studied. 

    Visible macro-cracks are assumed to appear at 
a minimum crack spacing equal to characteristic 
length which is approximately three maximum 
aggregate sizes.  For hypothetical specimens smaller 
than this characteristic length, the failure should 
follow the fiber bundle model in which each fiber in 
the bundle of the lowest hierarchy represents a 
micro-bond.  The failure probability distribution of 
the fiber bundle (Fig. 3 left) consisting of a large 
number of fibers can be described well by Daniels's 
approximation in Eq. (1). 

For typical test specimen sizes (larger than the 
aforementioned characteristic length), the failure 
mechanism is modeled with a hybrid of series and 
parallel coupling as shown in Fig. 3 (middle).  The 
statistical effect of the stress redistribution causing 
energy release can be modeled by the parallel 
coupling of elements, each of a characteristic 
volume.  The number of characteristic volumes in a 
normal structure would be small and the probability 
distribution could not be approximated accurately 
by Eq. (1).  The failure probability could be 
computed exactly by a recursive formula (Smith and 
Phoenix 1981, Smith 1982) expressed as follows: 
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where n is the number of elements of characteristic 
volumes in a bundle and F(x) is the probability 
distribution of each element. 

On the other hand, the possibility of cracks 
appearing along the span of a flexed beam or along 
the length a tensioned bar can be accounted for by 
coupling the bundles in a chain-like manner. In this 
way, the deterministic and statistical size effect can 
be fused in a single approximate model which also 
provides an asymptotically correct transition from 

… ⇒ 

Figure 3: Chain of bundles as a model for probability distribution
describing a continuous transition between Weibull and
Gaussian distributions



small to large size asymptotes.  In one extreme, in 
which the specimens are very small, the chain-of-
bundles model would collapse into a bundle of 
micro-bonds. In the other extreme for large 
structures, the size of the bundles is fixed since the 
FPZ has been fully developed while the number of 
bundles in the chain scales according to the size of 
the structure and the model behaves as a weakest 
link. 

The size effect curves for the coefficient of 
variation (COV) have also been computed and are 
found to match the small and large size asymptotic 
properties (Fig. 4). This demonstrates that the 
chain-of-bundles model is able to capture the first 

and second moments. 
The mean size effect curve can be fitted to 

different types of loading which is shown in Fig. 5. 
The mean size effect curve (MSEC) resembles the 
size effect curve that is derived theoretically 
(Bažant 2003a,b) by asymptotic matching in Fig. 1.  
A different MSEC is obtained for each type of 
loading because the failure mechanism is different 
and the critical regions also differ. 

The chain of bundles model offers flexibility in 
the choice of the generic probability distribution for 

the micro-bonds, resulting in different size effect 
curves.  Existing literature on limited tensile test 
data suggested different probability distributions, 
namely Weibull, Normal and Log-normal 
distribution and the chain of bundles model can be 
used to gain insight into the probability distribution 
for the generic probability distribution by using the 
computed size effect curve with different 
probability distribution (Fig. 6) to match to 
experimental data. 

4.2 Stochastic Finite Element 

A simple but primitive approach to stochastic finite 
element analysis is to subdivide a structure into 
elements of the size of the characteristic volume.  
Such an approach is feasible for small structures but 
would be hardly possible to implement in very large 
structures.  As proposed by Bažant et al. (2003), this 
difficulty could be overcome by using stochastic 
macro-elements where each macro-element has 
stochastic properties that are scaled according to 
Fisher & Tippett's (1928) fundamental stability 
postulate of extreme value distributions. The 
advantage is that the number of macro-elements can 
be kept fixed but while their size is increased in 
proportion to structure size D. This allows efficient 
stochastic computations for very large structures. 

The treatment of the macro-element and the 
selection of the extreme value for each macro-
element is described in detail in Bažant et al.(2003).  
The scaling of the mean strength and variance of the 
macro-element are given by Eqs. (6) and (7). 

The scaling formula is applicable only if the 
probability distribution of each micro-element of 
characteristic length could be described by Weibull 
distribution of Weibull modulus m and scale 
parameter σ0.  An additional condition of validity is 
that the structure must reach the peak load at crack 
initiation. 

log (Nominal Strength σN) or CoV 

Figure 4: Mean and CoV size effect curve using Weibull 
elements and its probability distributions for various sizes 
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Figure 5: Effect of different types of loading on MSEC
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The macro-element approach is checked against 
Koide et al. (1998, 2000) tests of plain concrete 
beams under four-point bending with different 
bending spans (200, 400 and 600mm) but  identical 
cross sections (100 by 100mm) (which eliminates 
the energetic part of size effect).  Nonlinear 
fracture mechanics software ATENA (Červenka 
and Pukl 2002) is integrated with probabilistic 
software FREET (Novák et al. 2002) to perform 
statistical simulation of Koide's beam. With the 
meshing of  Koide's beam into 6 macro-elements 
for each of 3 sizes (Fig. 7), 16 simulations of Latin  

Figure 7: Koide’s beams of bending spans 200, 400 and 
600mm 

 
Hypercube Sampling (LHS) are performed for 6 
random strengths (and random fracture energies Gf). 
These independent (or correlated) variables are 
sampled according to the optimization techniques 
of Vořechovský and Novák (2002). Three 
alternatives are tested (Fig. 8): Alt. I with random 
tensile strength, Alt. II with statistical correlation 
between tensile strength and fracture energy, and 
Alt. III with a change in material parameters from 
Alt. II needed to shift the size effect curve in order 
to fit the experimental data. 

The comparison of these three alternatives 
reveals the influence of the basic parameters:  A 
decrease of modulus m or the characteristic length 
causes a stronger size effect, reflected in a larger 
slope in the MSEC. An increase of tensile strength 
shifts the entire MSEC upwards. A decrease of the 
fracture energy, or the correlation factor between 
strength and fracture energy, leads to a stronger 
size effect (slope of MSEC) and at the same time 
shifts the MSEC downwards, which represents 
better the behavior of a chain. 

Alt. III is able to fit the size effect curve by 
changing the mean tensile strength and fracture 
energy of the finite elements, which is admissible 
because Koide's tests did not include measurement 
of these parameters.  Despite the good fit of 

Koide's test data, the Weibull modulus, found to be 
m = 8, is surprisingly low compared to Weibull 
modulus m = 24 obtained by fitting many data with 
a nonlocal generalization of Weibull theory (Bažant 
2000b). 

The low Weibull modulus obtained for Koide's 
beam could be explained by the mechanism of 
failure and the applicability of stability postulate for 
small or intermediate size structures.  The stress 
redistribution that occurs before failure magnifies 
the deterministic size effect which gets coupled with 
the statistical size effect, resulting in a stronger size 
effect.   

Figure 8: Comparison of means of Koide’s data with 
deterministic and statistical simulations by ATENA 

 
The Weibull modulus found for Koide's beams 

could reflect the slope near the intermediate 
asymptote, which however decreases when the 
deterministic size effect wears out as the size D → 
∞.  Although Koide's results could not be extended 
or directly applied to very large structures, they 
reveal strong Weibull-type stochastic behavior 
when a slender structure is scaled longitudinally. 

Koide's beam has been simulated in ATENA with 
a macro-element, the parameters of which are scaled 
in one dimension (1D). This represents the weakest-
link chain model which can be imagined to describe  
the bottom layer of finite elements in the beam.  
Despite the good match with 1D treatment, the 
material parameters used in these computations 
could not be reproduced on a different set of 
experiment. The deterministic size effect is not 
properly treated with the 1D model as this model 
does not fail at crack initiation (Fig. 9).  The scaling 
of Koide's beams for the strength should better be 
done in two dimensions (2D) because it involves 
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considerable stress redistribution across the beam 
depth.  

Figure 9: Random load-deflection diagrams for one size of 
Koide’s beams (note the curvatures indicating appreciable 
stress redistributions before peak) 

 

The difficulty with the 2D treatment is that the 
stability postulate could not be directly applied to 
the macro-elements.  The coupling of the macro-
elements in a load-sharing manner violates the 
assumption of the weakest-link chain model. The 
probability distribution of the macro-element could 
be derived by other methods, e.g. a bundle model 
capturing the coupling effect of the macro-element, 
and the shift in mean and variance could be 
computed accordingly using the fiber bundle model.  
Such an approach is currently being pursued at 
Northwestern by S.D. Pang and M. Vořechovský. 

5 CONCLUDING REMARKS 

The paper shows how the statistical size effect at 
fracture initiation can be captured by a stochastic 
finite element code based on extreme value 
statistics, simulation of the random field of material 
properties, and chain of bundles transition. The 
computer simulations of the statistical size effect in 
1D based on stability postulate of extreme value 
distributions match the test data. However, the 
correct behavior cannot be achieved for other tests 
using a 1D treatment.  A proper way of treating the 
stress redistribution is by the recently proposed 
macro-elements in 2D (or 3D), the scaling of which 
is based on the fiber bundle model capturing  
partial load-sharing and ductility in the finite 
element system.  
 
Acknowledgement:   
Financial supports under U.S. National Foundation 
Grant CMS-0301145 to Northwestern University 
and Czech Ministry of Education Project CEZ 
J22/98:261100007 are gratefully acknowledged.  

Fullbright Foundation is thanked for supporting 
Vořechovský’s research at Northwestern University. 

REFERENCES 
Bažant, Z.P. (1997). “Scaling of quasibrittle 

fracture: Asymptotic Analysis.” Int. J. of 
fracture 83(1) 19-40. 

Bažant, Z.P. (2001a). “Size effects in quasibrittle 
fracture: Apercu of recent results.” Fracture  
Mechanics of Concrete Structures (Proc., 
FraMCoS-4 Int. Conf., Paris), R. de Borst et al., 
Netherlands, 651-658, eds, A.A Balkema 
Publishers, Lisse. 

Bažant, Z.P. (2001b). “Probabilistic modeling of 
quasibrittle fracture and size effect.” Proc., 8th 
Int.Conf,. on Structural Safety and Reliability 
(ICOSSAR), held at Newport Beach, Cal., 2001, 
R.B. Corotis,ed., Swets& Zeitinger (Balkema), 
1-23. 

Bažant, Z.P. (2003a). “Energetic and statistical size 
effects in fiber composites and sandwich 
structures. A precis of recent progress." Proc., 
10th Int. Conf. on Composites/Nano Engineering  
(ICCE-10, July), D. Hui, ed., University of New 
Orleans, 869-872. 

Bažant, Z.P. (2003b). “Probability Distribution of 
Energetic-Statistical Size Effect in Quasibrittle 
Fracture, Probabilistic Engineering Mechanics, 
in press. 

Bažant, Z.P., and Chen, E.-P. (1997). “Scaling of 
structure failure.” Applied Mechanics Reviews 
ASME 50 (10), 593-627. 

Bažant, Z.P., and Novák, D. (2000a). “Probabilistic 
nonlocal theory for quasibrittle fracture initiation 
and size effect. I. Theory, and II. Application.” 
J. of Engrg. Mechanics ASCE 126 (2), 166-174 
and 175-185. 

Bažant, Z.P., and Novák, D. (2000b). “Energetic- 
statistical size effect in quasibrittle failure at 
crack initiation.” ACI Materials Journal 97 (3), 
381-392. 

Bažant, Z.P., and Novák, D. (2001). “Proposal for 
standard test of modulus of rupture of concrete 
with its size dependence.” ACI Materials 
Journal 98 (1) 79-87. 

Bažant, Z.P., Zhou, Y., Novák, D., and Daniel, I.M. 
(2003). “Size effect on flexural strength of fiber-
composite laminate”, ASME J. of Materials and 
Technology, in press. 

Bažant, Z.P., Novák, D. & Vořechovský M. (2003). 
Statistical size effect prediction in quasibrittle 
materials, Proc., 9th Int. Conf. on Application of 
Statistics and Probability in Civil Engrg. 
(ICASP-9), held in San Francisco, A.D. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.02 0.04 0.06 0.08 0.1 0.12

Fo
rc

e 
pe

r o
ne

 ja
ck

 (k
N

)

Midspan deflection (mm)



Kiureghian et al., eds., U. of Cal. Berkeley, 
Millpress, Rotterdam, 621-628. 

Červenka, V. & Pukl, R. (2002) “ATENA - 
Computer Program for Nonlinear Finite 
Element Analysis of Reinforced Concrete 
Structures”. Program documentation. Prague, 
Czech Republic: Červenka Consulting. 

Daniels, H.E. (1945). “The statistical theory of the 
strength of bundles and threads.” Proc. Royal 
Soc. A183, London, 405-435. 

Fisher, R.A. and Tippett, L.H.C. (1928). “Limiting 
forms of the frequency distribution of  the 
largest and smallest member of a sample.” 
Proc., Cambridge Philosophical Society 24, 
180-190. 

Freudenthal, A.M. (1956). “Physical and statistical 
aspects of fatigue.” in Advance in Applied 
Mechanics, Vol. 4, Academic Press, 117-157. 

Freudenthal, A.M. (1968). “Statistical approach to 
brittle fracture.” Chpt 6 in Fracture, Vol. 2, H. 
Liebowitz, eds., Academic Press, 591-619. 

Freudenthal, A.M., and Gumbel, E.J. (1953). “On 
the statistical interpretation of fatigue tests.” 
Proc. of the Royal Society (London) A, Vol.21, 
309-332. 

Gumbel, E.J. (1958). Statistics of Extremes. 
Columbia University Press, New York. 

Harlow, D.G., and Phoenix, S.L. (1978a). “The 
chain-of bundles probability model for the 
strength of fibrous materials. I. Analysis and 
conjectures.” J. of Composite Materials 12, 
195-214. 

Harlow, D.G., and Phoenix, S.L. (1978). “The 
chain-of bundles probability model for the 
strength of fibrous materials ii: a numerical 
study of convergence.” Journal of Composite 
Materials 12,314-334. 

Jirásek, M., and Bažant, Z.P. (2002). Inelastic 
analysis of structures. J. Wiley, Chichester, 
U.K. 

Koide, H., Akita, H., Tomon, M. (1998). “Size 
effect on Flexural Resistance due to Bending 
Span of Concrete Beams”, Fracture Mechanics 
of Concrete Structures (Proc., 3rd Int. Conf., 
FraMCoS-3 held in Gifu, Japan), H. Mihashi 
and K. Rokugp, eds., Aedificatio Publishers, 
Freiburg, Germany, 2121-2130. 

Koide, H., Akita, H., Tomon, M. (2000). 
“Probability Model of Flexural Resistance on 
Different Lengths of Concrete Beams” , 
Application of Statistic and Probability (Proc., 
8th Int. Conf., ICASP-8, held in Sydney, 
Australia 1999), R. E. Melchers and M.G. 
Stewart, eds., Balkema, Rotterdam, Vol.2, 
1053-1057. 

Mahesh, S., Phoenix, S.L., and Beyerlein, I.J. 
(2002). “Strength distributions and size effects 
for 2D abd 3D composites with Weibull fibers in 
an elastic matrix.” Int. J. of Fracture 115, 41-85. 

Novák, D., Vořechovský, M. &  Rusina, R. (2003) 
“Small-sample probabilistic assessment - 
FREET software”. Proc. of ICASP 9 conference, 
San Francisco, USA. 

McCartney, L.N., and Smith, R.L. (1983). 
“Statistical theory of the Strength of fiber 
bundles”, J. of Applied Mech. 50, 601-608. 

Phoenix, S.L. (1983). “The stochastic strength and 
fatigue of fiber bundles.” Int. J. of Fracture 14, 
327-344. 

Phoenix, S.L., and I.J. Beyerlein (2000). 
“Distribution and size scalings for strength in a 
one-dimensional random lattice with load 
redistribution to nearest and next nearest 
neighbors.” Physical Review E62 (2), 1622-
1645. 

Phoenix, S.L., Ibnabdeljalil, M., Hui, C.-Y. (1997). 
“Size effects in the distribution for strength of 
bittle matrix fibrous composites.” Int. J. of 
Solids and Structures 34 (5), 545-568. 

Phoenix, S.L., and Smith, R.L. (1983), “A 
comparison of probabilistic techniques for the 
strength of fibrous materials under local load-
sharing among fibers”, Int. J. of Structure 196, 
479-496. 

Saibel, E.(1969). “Size effect in structural safety.” 
Proc., Int. Conf. on Structure, Solid Mechanics 
and Engrg Materials, Southanpton, Part I, 125-
130. 

Smith R.L. (1982). “The asymptotic distribution of 
the strength of a series-parallel system with 
equal load sharing”, J. of Applied Mech. ASME 
48, 75-81. 

Vořechovský M. & Novák D. (2002) “Correlated 
Random Variables in Probabilistic Simulation” 
4th International Ph.D. Symposium in Civil 
Engrg, Munich, Germany, September 19-21.   

Weibull, W. (1939). “The phenomenon of rupture in 
solids.” Proc., Royal Swedish Institute of 
Engineering Research (Ingenioersvetenskaps 
Akad. Handl.) 153, Stockholm, 1-55. 

Weibull, W. (1949). “A statistical representation of 
fatigue failures in solids.” Proc., Roy. Inst. Of 
Techn. No. 27. 

Weibull, W. (1951). “A statistical distribution 
function of wide applicability.” J. of Applied 
Mechanics ASME, Vol. 18, 292-297. 

Weibull, W. (1956). “Basic aspects of fatigue.” 
Proc., Colloquium on Fatigue, Stockholm, 
Springer-Verlag, Berlin, 289-298. 


