
1 INTRODUCTION 

In solid mechanics, unlike fluid mechanics, it is 
still not widely recognized that knowledge of the 
size effect, or scaling, is the means to obtain 
analytical predictions of quasibrittle failures in 
general, even if the size effect need not be 
calculated. For the actual size of interest, a direct 
analytical solution is hard, next to impossible. 
However, by scaling the structure down to 
vanishing size, or up to infinite size, one gets a 
ductile, or brittle, response, either of which is much 
easier to solve. Knowing these asymptotic 
solutions, an approximate failure prediction for the 
middle range of practical interest can then be 
obtained by asymptotic matching — ‘interpolation’ 
between the opposite infinities. It is for this reason 
that the size effect is the key problem for all 
quasibrittle failures. 
   The purpose of this paper is to present a brief 
summary of the advances in six problems of size 
effect recently studied at Northwestern University. 
 
2   VARIATION OF COHESIVE SOFTENING 
LAW TAIL IN BOUNDARY LAYER 
 
By now it has been well established that the total 
fracture energy GF of a heterogeneous material 

such as concrete, defined as the area under the 
cohesive softening curve, is not constant but varies 
during crack propagation across the ligament. The 
variation of GF at the beginning of fracture growth, 
which is described by the R-curve, is only an 
apparent phenomenon which is perfectly consistent 
with the cohesive crack model (with a fixed 
softening law) and can be calculated from it. 
However, the variation during propagation through 
the boundary layer at the end of the ligament is not 
consistent with the cohesive crack model and 
implies that the softening curve of this model is not 
an invariant property. The fact that the fracture 
energy representing the area under the softening 
curve should decrease to zero at the end of the 
ligament was pointed out in a paper by Ba ant  
(1996), motivated by the experiments of Hu and 
Wittmann (1991 and 1992a), and was explained by 
a decrease of the fracture process zone (FPZ) size, 
as illustrated on the left of Fig. 1a reproduced from 
Ba ant's (1996) paper. An experimental 
verification and detailed justification of this 
property was provided in the works of Hu (1997, 
1998), Hu and Wittmann (1992b, 2000), Duan, Hu 
and Wittmann (2002, 2003), and Karihaloo, Abdalla, 
and Imjai (2003). As mentioned by Ba ant (1996) 
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as well as Hu and Wittmann, the consequence of 
these experimental observations is that: 
  
                                      (1) 
 
where       = average fracture energy in the ligament 
(Fig. 1b), D = specimen size (Fig. 1a), a0 = notch 
depth, P = load, u = load-point deflection, Γ(x)= 
local fracture energy as a function of coordinate x 
along the ligament (Fig. 1a left), GF =           = Γ(x) 
value at points x remote from the boundary (= area 
under the complete σ(w) diagram, Fig. 1c), σ = 
cohesive (crack-bridging) stress, and w = crack 
opening = separation of crack faces. 
   Is this behavior compatible with the cohesive 
crack model? To check it, consider a decreasing 
FPZ attached to the boundary at the end of 
ligament, Fig. 1a. Extending to this situation Rice's 
(1968) approach, which effectively launched the 
use of the cohesive (or fictitious) crack model, we 
calculate the J-integral along a path touching the 
crack faces as shown in Fig. 2a,b: 
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in which s = path length; x = x1, y = x2 are the 
cartesian coordinates; ui = displacements;  ti = 
tractions acting on the path from the outside; Ū = 

strain energy density; v = w /2; x = D is the end 
point of the ligament; wend is the opening at the end 
of ligament (Fig. 2b). From these equations, we see 
that the instantaneous flux of energy, J, into the 
shrinking FPZ attached to the end of ligament (Fig. 
1a) represents the area below the line σ = σend in the 
softening diagram, cross-hatched in Fig. 2i.  
   It is, however, a matter of choice with which 
coordinate x in the FPZ this flux J should be 
associated. If we associate J with the front, the tail, 
or the middle (Fig. 2b) of the FPZ, we get widely 
different plots of Γ = Jend, Jtail, Jmiddle , as shown in 
Fig, 2c,d,e, respectively (the first one terminating 
with Dirac delta function). This ambiguity means 
that the boundary layer effect experimentally 
documented by Hu and Wittmann cannot be 
represented by the standard cohesive crack model, 
with a fixed stress-separation diagram.  
   Can the cohesive crack model be adapted for this 
purpose? It follows from Eq. (4) and Fig. 2 (h,i) 
(and has been computationally verified) that 
Wittmann et al.'s (1990) and Elices et al.'s (1992) 
data can be matched (Fig. 2j) if the slope of the tail 
segment of the bilinear stress-separation diagram for 
concrete  is assumed to decrease (Fig. 1c) in 
proportion to diminishing distance r = D - x (Fig. 2b) 
from the end of ligament. After such an adaptation, 
the cohesive (or fictitious) crack model has a 
general applicability, including the boundary layer. 
    However, the consequence is that the total 
fracture energy GF (area under the complete stress-
separation curve) is not constant. Noting that the   
larger the structure, the smaller is the length fraction 
of the boundary layer, one must conclude that the 
diminishing tail slope in Fig. 1c automatically 
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Fig. 1: (a) Variation of local fracture energy Γ(x) across the ligament, decreasing in the boundary layer (reproduced from 
Bažant 1996). (b) Average fracture energy GF. (c) Required modification of cohesive (or fictitious) crack model. 
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implies a certain size effect on the apparent GF , as 
given by Eq. (1). 
   It further follows from Fig. 2 (h,i), and has been 
computationally verified, that the initial tangent of 
the stress-separation diagram, the area under which 
represents the initial fracture energy Gf (Ba ant 
2002a,b, Ba ant, Yu and Zi 2002), can be 
considered as fixed — in other words, Gf, unlike 
GF, is a material constant. Aside from the fact that 
the maximum loads of specimens and structures are 
generally controlled by Gf , not GF , this suggests 
that the standard fracture test that should be 
introduced is that which yields not GF but Gf (the 
size effect method, as well as the method of Guinea, 
Planas and Elices, 1994a,b, serve this purpose, 
while the work-of-fracture method does not). This 
conclusion is not surprising in the light of 
abundance of experimental data revealing that GF is 
statistically much more variable than Gf (Ba ant 
and Becq-Giraudon 2002, Ba ant, Yu and Zi 
2002). 
   Jirásek (2003) showed that Hu and Wittmann's 
data can be matched by a nonlocal continuum 
damage model in which the characteristic softening 

curve is kept fixed. Consequently the nonlocal 
model is a more general, and thus more fundamental, 
characterization of fracture than the cohesive (or 
fictitious) crack model. This finding should be taken 
into account in fracture testing. It appears that GF 
would better be defined by the area under the 
softening curve of the nonlocal model, multiplied by 
the characteristic length of material corresponding 
to the effective width of FPZ, which equals the 
minimum possible spacing of parallel cracks (Ba
ant 1985, Bažant and Jirásek 2002), to be 
distinguished from l0 = EGf / f't2. 
 
3   UNIVERSAL SIZE EFFECT LAW 
 
As is now well known, the size effect for crack 
initiation from a smooth surface (a0 = 0) is very 
different from the size effect for large notches or 
large stress-free (fatigued) cracks at maximum load 
(a0 /D not to small). As far as the mean nominal 
strength of structure, σN , is concerned, the former is 
always energetic (i.e. purely deterministic), while 
the latter is purely energetic only for small enough 
sizes and becomes statistical for large enough sizes. It 

Fig. 2: (a,b) J-integral path. (c,d,e) Ambiguity in J-integral variation. (f,g,h,i) Fracture energies corresponding to J-
integral. (j) Test data fitted by modified cohesive crack model with variable tail.  
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is of interest to find a universal size effect law that 
includes both of these size effects and spans the 

transition between them. A formula for this purpose 
was proposed in Bažant and Li (1996) (also Bažant 
and Chen 1997, Bažant 2002b). However, that 
formula was not smooth and did not include the 
statistical (Weibull) part for crack initiation failures.  
   A better formula has now been obtained; see 
Figs. 3, the left (Fig.3a) without, and the right (Fig. 
3b) with, the statistical (Weibull) part, in which E' 
= effective Young's modulus, f't = local tensile 
strength of material; g0, g'0, g''0 are values of 
dimensionless energy release function g(α) and its 
derivatives at α0 = a0 /D; l0 = E'Gf / f't2 = Irwin's 
characteristic length (corresponding to the initial 
fracture energy); g(α) = k2(α), k(α) is the 
dimensionless stress intensity factor; m = Weibull 
modulus of concrete (about 24), n = number of 
dimensions for scaling; r, k = empirical positive 
constants; and cf  = constant (the ratio cf / l0 

depends on the softening curve shape, and  cf ≈ 
l0 /2 for triangular softening). The formulas in Figs. 

3a,b  were derived by asymptotic matching of 6 
cases: the small-size and large-size asymptotic 
behaviors (first two terms of expansion for each), of 
the large-notch and vanishing-notch behaviors, and 
of the energetic and statistical parts of size effect. 
 
4   CAN FRACTURE ENERGY BE MEASURED 
ON ONE-SIZE SPECIMENS WITH DIFFERENT 
NOTCH LENGTHS? 
 
The fact that specimens of different sizes are needed 
for the size effect method of measuring Gf is 
considered by some as a disadvantage. For this 
reason, Bažant and Kazemi (1990), Bažant and Li 
(1996) and Tang et al. (1996) generalized the size 
effect method to dissimilar specimens, the 
dissimilarity being caused by the use of different 
notch lengths a0 in specimens of one size. If the 
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Fig. 3: (a,b) Improved universal size effect law USEL (left–without, right –with Weibull statistics), and (c,d,e)  profiles 
obtained from USEL, compared to Duan and Hu's (2003) approximation.  



random scatter of test data were small (coefficient 
of variation CoV < 4%), this approach would work. 
However, for the typical scatter of maximum loads 
of concrete specimens (CoV = 8%), the range of 
brittleness numbers attainable by variation of notch 
length in a specimen of any geometry (about 1:3, 
Bažant and Li 1996) does not suffice to get a sharp 
trend in size effect regression of test data, and thus 
prevents determining Gf accurately. 
   Recently, this problem was considered 
independently by Duan and Hu (2003).  They 
proposed the semi-empirical formula:  
                                     
                                                                              (6)                    
   
where σ0 = f't for small 3PB specimens; a*

∞ is a 
certain constant; and σn represents the maximum 
tensile stress in the ligament based on a linear 
stress distribution over the ligament, σn = σN /A(α0). 
This alternative formula, intended for specimens of 
the same size when the notch length a0 is varied, in 
effect attempts to replace the profile of the 
universal size effect law (Fig. 3) at constant size D, 
scaled by the ratio σn /σN = 1/A(α0), where A(α0) 
depends on specimen geometry; A(α0) = (1 – α0)2 
for notched three-point bend beams. However, the 
curve of the proposed formula has, for a0 → 0, a 
size independent limit approached, in log a0 scale, 
with a horizontal asymptote, while the correct 
curve, amply justified by tests of modulus of 
rupture (flexural strength) of unnotched beams 
(Bažant  and Li 1995, Bažant 1998, 2001, 2002b, 
Bažant and Novák 2000a,b,c), terminates with a 
steep slope for a0 → 0 and has a size dependent 
limit, as seen in the aforementioned profiles in Fig. 
3a,b, and better in Fig. 3c. Fig. 3d,e shows the 
profiles in D and in α, and it is seen that they 
cannot be matched well by Duan and Hu’s 
approximation converted from σn to σN. The test 
data on the dependence of σn on a0, which Duan 
and Hu fitted by their formula, should better be 
fitted with the size effect law (Bažant and Kazemi 
1990, Bažant and Planas 1998, and Bažant 1997, 
2002b): 
 
 
                                                                              (7) 
 
 
in which D is constant and α0 = a0 /D is varied (and 
function g(α0) is available from handbooks). 
However, very short or zero notches (a0 < 0.15 D) 
must be excluded, which means that the value of 
strength f't cannot be used with Duan and Hu's 
approach. To use it, it is necessary to adopt either 

the approach of Guinea et al (1994a,b) or the zero 
brittleness method (Bažant,  Yu and Zi 2002).  
5 SIZE EFFECT OF FINITE-ANGLE NOTCHES 

 
In elastic bodies, a sharp notch of a finite angle 

(Fig. 4) causes stress singularity σ ∝  rλ-1 that is 
weaker than the crack singularity (λ > 0.5) and is 
given by Williams' (1952) formulas (a) - (e) shown 
in Fig.  4, in which r, φ = polar coordinates, σrr, σφφ, 
σrφ = near-tip stresses. If the structure has a positive 
geometry, it will fail as soon as a FPZ of a certain 
characteristic length 2cf is fully formed at the notch 
tip. In the limit of D → ∞, the structure will fail as 
soon as a crack can start propagating from the notch 
tip, which requires a certain critical energy release 
rate equal to Gf . Experiments show that the load (or 
nominal stress σN) at which this occurs increases 
with angle γ. In previous studies (e.g., Carpinteri 
1987, Dunn et al. 1997a,b), some arguments in 
terms of a non-standard ‘stress intensity factor’ Kγ 
corresponding to singularity exponent 1-λ <0.5 were 
used to propose that the nominal stress σN ∝ D λ-1.  
   A notch of finite angle cannot propagate. So, a 
realistic approach requires considering that a 
cohesive crack must propagate from the notch tip 
(Fig. 4 left). Circular bodies with notches of various 
angles 2γ (and ligament dimension D, Fig. 4a) were 
simulated by finite elements with a mesh 
progressively refined as r→ 0 (the first and second 
rings of elements were bounded by r = D /6000 and 
D /3000). The circular boundary was loaded by 
normal and tangential surface tractions equal to 
stresses σrr and σrφ taken from Williams symmetric 
(Mode I) solution; P = load parameter representing 
the resultant of these tractions; and σN = P /bD = 
nominal stress (b = 1). 

First, ligament D was considered to be so large 
that the length of the FPZ, lc, was less than 0.01 D. 
In that case, the angular distribution of stresses 
along each circle with r ≥ 0.1D ought to match  
Williams functions frr, frφ, fφφ. Indeed, the numerical 
results could not be visually distinguished from 
these functions. The logarithmic plots of the 
calculated stress versus r for any fixed φ (and any γ) 
were straight lines, and their slopes agreed with the 
exponent λ – 1 required by Williams solution; see 
Fig, 4 (right).  Thus the correctness of the cohesive 
finite element simulation was confirmed. 

 
From Eqs. (b), (f) and (g) of  Williams' LEFM 
solution in Fig. 4,  
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According to the equivalent LEFM approximation 
of cohesive fracture, σφφ for r = cf (the middle of 
FPZ), should be approximately equal to material 
tensile strength f't . This condition yields, 

 
                                                                               (9) 
 
                                                                             (10)        
 

valid for D ≥ 250 l0;  λ(γ) is the λ value for angle γ. 
To check this equation, geometrically similar scaled 
circular bodies of different ligament dimensions D 
(Fig. 4) were analyzed by finite elements for various 
angles γ using the same linear softening stress-
separation diagram of cohesive crack. The 
numerically obtained values of log σN for various 
fixed D /cf are plotted in Fig. 4c as a function of 
angle γ. We see that this size effect curve matches 
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perfectly the curve of Eq. (9) and (10) for D/cf >500, 
confirming that the equivalent LEFM 
approximation obtained for r = cf is good enough.  
   A general approximate formula for the size effect 
of notches of any angle, applicable to any size D, 
may be written, as proposed by Ba ant (2003), as 
follows: 
 
 
                                                                             (11) 
 
    
where H0 = hγ value for γ = 0, and D0 is given in 
terms of g(α) and is same as for a crack (γ = 0). Eq. 
(11), which is of course valid only for large enough 
notches penetrating through the boundary layer of 
concrete, has been derived by asymptotic matching 
of the following asymptotic conditions:  

1) for γ → 0, the classical size effect law  
    σN = σ0 (1+D /D0)-1/2 must be recovered;  

   2) for D / l0 →  0, there must be no size effect;  
   3) for D / l0 → ∞ , Eqs. (11) and (9) must coincide;  
   4) for γ = π /2 (flat surface), the formula must 
       give no size effect when D→ ∞ .  
   In reality, there is of course a size effect in the 
last case, but it requires a further generalization of 
Eq. (11) (which will be presented separately). 
Therefore, Eqs. (11) and (9) can be applied only 
when the notch is deeper than the boundary layer, 
which is at least one aggregate size.  Complete 
generality will require amalgamating Eq. (11) with 
the universal size effect law in Fig. 3. 
   The plot of log σN versus log D for γ = π /3 
according to Eq. (11) is compared to the finite 
element results for notched circular bodies with 
cohesive cracks in Fig. 4d. The agreement is seen 
to be excellent. 
 
6   NEW DERIVATION OF SIZE EFFECT LAW 
FROM ASYMPTOTIC DIMENSIONAL 
ANALYSIS 
 
From Buckingham's (1914) П-theorem of 
dimensional analysis, two size effects can be easily 
proven: (1) if the failure depends only on material 
strength f't (dimension N/m2), then there is no size 
effect, i.e., the nominal strength of geometrically 
similar specimens does not depend on their size, 
and (2) if the failure depends only on material 
facture energy Gf (dimension N/m), then of course 
the size effect is σN ∝ D -1/2 (e.g. Ba ant 1993). 
Nothing more can be deduced.  
   Knowing that Irwin’s characteristic length l0 = 
EGf / f't2 has the physical meaning of fracture 
process zone length, one can deduce more. When 

D / l0 → 0, the body is much smaller than the 
fracture process zone, and so Gf cannot matter. It 
follows that case (1) corresponds to the small-size 
asymptotic limit, i.e., a horizontal asymptote in the 
plot of log σN versus log D. When D / l0 → ∞, the 
fracture process zone is a point compared D, and so 
there is a stress singularity, which means that the 
local material strength cannot matter. It follows that 
case (2) corresponds to the large-size asymptotic 
limit, i.e. an inclined asymptote of slope –1/2 in the 
same plot. Hence, for the intermediate sizes, the size 
effect must be a gradual transition from the 
horizontal to the inclined asymptote. To deduce the 
form of this transition, one needs to further take into 
account the known asymptotic properties of the 
cohesive crack model (Ba ant 2001, 2002b). They 
may be satisfied as follows (Ba ant 2003). 
    From the governing parameters of the failure 
problem, σN, D, f't, Gf and E, we may form, 
according to Buckingham's П-theorem, two and 
only two independent dimensionless parameters, 
which we choose as  
 
                                                                              (12)          
           
(note that, for size effect, the ratios of the structural 
dimensions characterizing the geometry may be 
ignored because they remain constant when the 
structure is scaled up or down). The equation 
governing failure may, therefore, be assumed in the 
form: F(П1, П2) = 0. If function F is assumed to be 
smooth, we can approximate it by Taylor series 
centered about some state (D*, σN

*) in the middle of 
the size range, and so  
 
                                                                              (13) 
 
where: 
Fi = ∂F /∂Пi (i=1,2), ∆П1 = (σN

2D - σN
*2D*) /EGf and 

∆П2 = (σN
2- σN

*2) / f't2 (Bažant 2003).   
Substituting these values into Eq. (13) and solving 
for σN, one gets an equation of the form of Bažant's 
classical size effect law (1984):  
 
                                                                              (14) 
 
For a cohesive crack with its FPZ attached to either 
a notch or a stress-free (fatigued) crack, the first two 
terms of the small-size asymptotic series expansion 
in terms of powers of D, as well as the first two 
terms of the large-size asymptotic series expansion 
in terms of powers of 1/D  (Ba ant 2001), were 
previously shown to be matched by the asymptotic 
expansions of this law. 
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    If different dimensionless variables П1 and П2 
were chosen, different size effect laws would result 
by using the same logical procedure. However, 
these laws either would not match the asymptotic 
properties of the cohesive crack model, or would 
lead to more complex size effect formulas differing 

from (14) only by third- and higher-order terms of 
the asymptotic expansions (Ba ant 2003).  Thus, if 
the dimensional analysis is combined with the 
known asymptotic requirements, the resulting size 
effect law is unique (except for complex formulas 
with higher than second-order deviations). 
    It may be noted that a size effect formula recently 
promulgated by Karihaloo (1999), and Karihaloo et 
al. (2003), σN ∝ (1 – D/D0) 1/2, is not an asymptotic 
matching formula because it matches only the first 
two terms of the large-size asymptotic expansion in 
terms of powers of 1/D, but not the terms of the 
small-size expansion in powers of D. 
   The foregoing argument is not valid for failure at 
crack initiation because the energy release rate at 
crack initiation vanishes. The size effect is here 
governed by the derivatives of the energy release 
rate, for which Gf is immaterial. 
 
7 DESIGN FORMULA WITH SIZE EFFECT 
FOR SHEAR CAPACITY OF R.C. BEAMS 
 
The time is now ripe for adding size effect to all the 
design specifications dealing with brittle failures of 
concrete structures (shear and torsion of R.C. 
beams with or without stirrups, slab punching, 
column failure, bar embedment length, splices, 
bearing strength, plain concrete flexure, etc.). In 

ACI Standard 318, only the new formula for anchor 
pullout includes the size effect (of LEFM type). By 
analysis of the latest ACI 445 database with 398 
data (Reineck et al. 2003), representing an update of 
1984 and 1986 Northwestern University databases 
(with 296 data), two improved formulas for shear 

failure of reinforced concrete beams without stirrups, 
having the simplicity desired in ACI, have recently 
been developed by asymptotic matching of first or 
second order (Ba ant and Yu 2003); see Fig. 5 (vc 
= σN = mean shear stress in the cross sections at 
failure, d = beam depth up to reinforcement centroid, 
f'c = standard compression strength of concrete).  
The formula in Fig. 5a is more accurate (2nd order 
match), the other is simpler (1st order match). They 
are shown in Fig. 5, where they are also compared 
to the database (the solid line is the mean formula, 
the dashed is a formula scaled down to achieve 
additional safety, as practiced in ACI). The 
coefficients of variation of the vertical deviations 
from data points, ω, are shown in the Fig. 5. 
    In the derivation of these formulas, the following 
three principles were adhered to:  
    1) Only theoretically justified formulas must be 
used in data fitting because the size effect (which is 
of main interest for d ranging from 1 m to 10 m) 
requires enormous extrapolation of the ACI 445 
database (in which 86% of data pertain to d < 0.6 m, 
99% to d < 1.1 m and 100% to d < 1.89 m).  
    2) The validity of the formula must be assessed 
by comparing it only to (nearly) geometrically 
scaled beams of broad enough size range (only 11 
such test series exist).  

Fig. 5: Improved formulas for shear failure of reinforced concrete beams without stirrups. (a) 2nd order match; (b) 1st 
order match (circle area represents the assigned weights in fitting). 
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    3) The entire database must be used only for the 
final calibration of the chosen formula (and not for 
choosing the best formula, because data for many 
different concretes and geometries are mixed in the 
database, and only 2% of the data have a non-
negligible size range). 

8 CLOSING REMARKS 

Although the size effect in fracture of concrete 
structures has been studied for over quarter a 
century, there are still significant issues to be 
resolved. Among them, the introduction of size 
effect into the specifications in concrete design 
codes is of the greatest practical importance. 
    The present paper is a mere summary of six 
recent investigations at Northwestern University 
which will be fully presented in forthcoming papers.  
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