
1 IMPROVEMENTS OF MICROPLANE 
MODEL M4 

The microplane model evolved from the slip theory 
of plasticity, which was developed by Batdorf & 
Budianski (1949) on the basis of the original idea 
of G.I. Taylor (1938). This theory has been 
extensively applied to plasticity of metals and its 
improvements continue until today (e.g., Brocca & 
Bažant 2000, Bronkhorst et al. 1992, Butler & 
McDowell 1998). In the early 1980s, this idea was 
modified and extended at Northwestern University 
to quasi-brittle materials with strain-softening. To 
achieve a stable and unique solution for a softening 
material, the static constraint of the slip theory of 
plasticity has been replaced (Bažant 1984) by the 
kinematic constraint, in which the microplane 
strain components are calculated as the projections 
of the macroscopic strain tensor. The microplane 
model trades extensive computations (which are no 
longer an obstacle) for conceptual simplicity of a 
three-dimensional formulation and versatile data 
fitting capability (Bažant & Prat 1988, Bažant & 
Ožbolt 1990, Bažant et al. 1996, Bažant et al. 2000, 
Caner & Bažant 2000). To control the value of 
Poisson's ratio and model compressive failures, a 
split of normal microplane components into their 

volumetric and deviatoric parts was introduced (in 
model M2; Bažant & Prat 1988). However, the 
volumetric-deviatoric split was made thermo-
dynamically consistent only in model M4. 

The volumetric-deviatoric split introduced in 
model M2 caused deficient simulation of the 
tensile behavior. To mitigate this deficiency, model 
M3 introduced softening strain-dependent yield 
limits called stress-strain boundaries imposed 
separately on the volumetric and deviatoric stress 
components on each microplane. In model M4, the 
deficient tensile behavior was almost cured by 
adding a tensile boundary for the total normal 
stress, which ensured the tensile stress to reduce to 
zero at sufficiently large tensile strain.  But the 
cure was incomplete—the lateral strains at very 
large uniaxial tensile strains were unrealistic and 
hard to control, and the lateral strains did not 
reduce exactly to zero (Fig. 1b). 

To eliminate the problem with lateral strains in 
tension, Di Luzio et al. (2003) proposed an 
alternative approach in which the tensile 
volumetric boundary is removed (the boundary on 
total tensile strain being retained) and a smooth 
transition function ϕ depending on the maximum 
principal strain σI and the volumetric strain εv is 
introduced in order to gradually remove the 

Fracturing Material Models Based on Micromechanical Concepts: 
Recent Advances 

Z.P. Bažant 
McCormick School of Engineering and Applied Science, 2145 Sheridan Road, Northwestern 
University, Evanston, Illinois 60201, U.S.A. 

F.C. Caner 
Department of Geotechnical Engineering, Technical University of Catalunya, Barcelona, Spain 

L. Cedolin, G. Cusatis & G. Di Luzio 
Department of Structural Engineering, Politecnico di Milano, Milano, Italy 

ABSTRACT: The paper summarizes three recent advances in the modeling of inelastic behavior and 
fracturing of concrete, achieved at Northwestern University and Politecnico di Milano. First, improvements 
of microplane model M4 which allow a more realistic simulation of frictional shear and of lateral strains in 
tensile fracturing are presented. Second, development of microplane model M5 which can capture the 
transition from distributed cracking damage to complete cohesive fracture is described and its novel 
concept—a combination of kinematic and static constraints— is discussed. Third, a new lattice type model 
for concrete, which can simulate (with the same material parameters) tensile fracturing, complete cohesive 
fracture, compression-shear behavior with softening at zero or mild confinement, and response at confined 
compression at which there is only hardening (i.e., no peal and no postpeak softening), is outlined. 

Keywords: microplane model, lattice models, damage, fracture, concrete, microstructure simulation. 



volumetric-deviatoric split on approach to very 
large tensile strains. Thus, the normal stress on the 
microplanes is, according to di Luzio et al. (2003), 
calculated through the following formula:  
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The transition function ϕ is 0 unless the tensile 
postpeak regime is reached. After that, ϕ gradually 
increases to 1, thus effecting a transition to the 
formulation with no split of the normal components  
for all the microplanes (various definitions of ϕ for 
arbitrary loading paths are still being explored but a 
linear variation of ϕ as a function of εN from the 
strain at the peak of εN to a double or triple of that 
strain appears to work). 

Figure 1. Stress-strain curves for uniaxial tension: a) using the 
transition function; b) original M4 formulation. 
 

Calculating the normal stress as indicated in 
Equation 1, one obtains for uniaxial tension the 
macroscopic stress-strain curves plotted in Figure 
1a, which show that the deficient (non-zero) far-out 
tail of the tensile response has been cured. 

Another improvement has been made in the 
frictional boundary on the microplanes. model M4 
first calculates the shear stress at the boundary as 
σb

T=FT(σN) and the elastic shear stresses as 
σe

L= σpre
L + ET∆εL and σe

M= σpre
M + ET∆εM. For 

calculating the shear stress, there are two 
alternatives: Alt. I — (used originally in M4): 
Calculate the shear stresses in l and m directions 
imposing independently the shear boundary on the 
two components as σL =sign(σe

L) min (|σb
T|, |σe

L|) 
and σM =sign(σe

M) min (|σb
T|, |σe

M|).  

Figure 2. Stress-strain curves for uniaxial compression with 
different direction of applied displacement: a) using Alt-I; b) 
using Alt-II. 
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Alt. II — Calculate the resultant of the elastic shear 
stresses as σeR

T=[(σe
L)2+(σe

M)2]1/2; determine the 
unit vector in the resultant direction, R= (σe

L,σe
M)/ 

σeR
T; impose the shear boundary on the resultant of 

the elastic shear stresses, σR
T = min(σb

T, σeR
T); and 

compute the shear stresses as (σL,σM)=σR
T R. 

Although both alternatives were considered in M4 
from the outset, Di Luzio et al. (2003) was first to 
demonstrate that Alt. I leads to appreciably 
different responses for normal strains imposed in 
different directions. Figure 2a shows the stress-
strain curves for uniaxial compression simulations 
for strains imposed in three different directions; 
note that the model prediction varies significantly 
with the direction of the applied strain. Alt. II 
removes this drawback; see Figure 2b, where the 
response curves for the same applied strains as in 
Figure 2a become essentially coincident. 

2 MICROPLANE MODEL M5 WITH 
TRANSITION TO COHESIVE FRACTURE 

A generalization of microplane mode M4, labeled 
M5 (Bažant & Caner 2002), has recently been 
developed to simulate transition to complete 
fracture in the sense of the cohesive crack model 
(introduced to conrete under the name fictitious 
crack model by Hillerborg et al. 1976). This new 
model achieves a more realistic representation of 
progressive tensile cracking or cohesive fracture. It 
avoid stress locking which, in M4, prevented the 
stress from being reduced all the way to zero at 
very large tensile strains. Furthermore, like the 
improvement discussed in the preceding section, 
model M5 eliminates the spurious excessive lateral 
contraction or expansion which was exhibited by 
the original model M4 at very large postpeak 
tensile strains. 

The improvement is achieved by a series 
coupling of two microplane systems, one 
constrained kinematically (model M4) and the 
other statically (Fig. 3). The latter simulates 
exclusively tensile cracking and fracture, while the 
former simulates all the nonlinear triaxial behavior 
in pure compression and compression with shear. It 
may be noted that the coupling bears some analogy 
with the finite element model of Camacho & Ortiz 
(1996), in which a cohesive crack model is inserted 
into each interface between two adjacent finite 
elements characterized by elastic or hardening 
elasto-plastic constitutive relations. 

The coupling of two microplane systems is made 
possible by developing a new iterative algorithm 
which avoids solving the implicit nonlinear 
equations that relate the two microplane systems. A 

special characteristic of this algorithm is that, in 
each loading step, the softening cohesive fracture 
properties of the statically constrained microplanes 
are used as the predictor and the hardening or 
unloading properties of the kinematically 
constrained microplanes are used as the corrector 
that returns the current state point to the stress-
strain boundaries (softening yield limits). The roles 
of predictor and corrector are interchanged 
compared to the classical iterative return mapping 
algorithms for hardening elasto-plastic behavior. 

Figure 3: Microplane model M5, characterized by coupling of 
kinematically and statically constrained microplane systems for 
hardening and softening responses 
 

It has been proven that the new iterative 
algorithm converges in the form of a geometric 
progression, and the conditions of convergence 
have been derived (Bažant & Caner 2002). 

Except for a few minor differences, the 
constitutive properties on the kinematically 
constrained microplanes are the same as in the 
previous model M4. The far post-peak tensile 
softening excepted, the response is the same. 

The softening cohesive fracture properties are 
related to the fracture energy and effective crack 
spacing. The post-peak softening slope on the 
microplanes can be adjusted in the sense of the 
crack band model, to ensure the correct energy 
dissipation of localized fracture when the finite 
element size is varied. The constitutive properties 
that differ from the original model M4 are shown 
to allow good representation of test data for tensile 
softening of concrete and of the shear-compression 
failure envelope of concrete.  



A thermodynamic potential for the coupling of 
statically and kinematically constrained microplane 
systems has also been formulated. In the case of 
isothermal conditions, it represents a combination 
of the Helmholtz and Gibbs free energy densities 
(Bažant & Caner 2002). 

3 CONFINEMENT-SHEAR LATTICE MODEL  

3.1 Brief review of the model 

The Confinement-Shear Lattice model (CSL model) 
is a model in which the concrete mesostructure is 
simulated by a lattice connecting particles that 
represent the aggregate pieces. The particle center 
coordinates (lattice nodes) are generated randomly 
but such a way that the given granulometric 
distribution of the aggregate sizes is followed. Only 
aggregate sizes larger than a certain limit are 
considered in order to avoid excessive 
computational time. The inter-particle links (struts) 
simulate the contact layers of mortar between two 
aggregate pieces. These links are defined according 
to a Delaunay triangulation of the center points of 
the aggregates. 

 The contact layer can transmit both the normal 
and shear stresses, which are assumed to be 
functions of normal and shear strains which, in turn, 
are defined, incrementally, as dεN=(du2-du1)/l, 
dεM=(dv2-dv1-l2dθ2-l1dθ1)/l, dεL=(dw2-dw1+l2dφ2-
l1dφ1)/l. Here u1, u2 are the displacements of the 
two connected aggregate in the direction of the line 
connecting their centers, v1, v2, w1 and w2 are the 
transversal displacements and θ1, θ2, φ1 and φ2 are 
the spatial rotations of the aggregates. The lengths 
l1 and l2 define the position of the contact point. All 
the strain components are assumed uniformly 
smeared over length l of the connection. The stress-
strain relations are given as  

LLMMNN ε
ε
σασε

ε
σασε

ε
σσ === ;;  (3) 

in which σ (effective stress) is assumed to be a 
function of ε=(εN

2+αεT
2)1/2 (effective strain) and 

ω=arctan[εN/(α1/2εT)] (coupling strain) where 
εT=(εM

2+ εL
2)1/2 is the total shear strain; and α is a 

constant material parameter which represents the 
ratio between shear and normal stiffnesses of the 
connecting strut.  

The elastic behavior is modeled by the 
incremental relation dσ=Edε. The nonlinear 
behavior is simulated by using the concept of 
stress-strain boundary (strain-dependent yield limit) 
which is imposed by the inequality 0≤ σ ≤σb where  
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Here σ0(ω) is the effective strength, ε0(ω)=σ0(ω)/E 
is the elastic strain limit, and K(ω) governs the 
stress evolution in the non linear range. K(ω) is 
negative (softening behavior) for tension, shear 
with tension, and shear with low compression, but 
it is positive (hardening behavior) for compression 
and shear with high compression. For tension 
dominated stress states, the post-peak behavior at 
the meso-level is also assumed to be sensitive to 
the confining stress transversal to the connecting 
strut between particles. This feature endows the 
present model with the capability of simulating not 
only the tensile softening and failure but also (in 
contrast to previous models) the compression 
softening and failure in unconfined tests as well as 
the lack of softening and of peak stress under 
confined compression and under pure hydrostatic 
pressure. The confinement effect on the connecting 
lattice struts reflects the effect of mortar whose tiny 
aggregate particles are too numerous for being 
included as lattice nodes. A detailed description 
and validation of the CSL model can be found in 
Cusatis et al. (2003a, b). 

3.2 New improvements 

Delaunay triangulation in three dimensions 
yields a system of tetrahedral whose edges are the 
lattice struts. A cross-sectional area needs to be 
assigned to each connecting strut such that the 
volume of all struts be equal to the volume of the 
solid filled by all the tetrahedra. In the original 
version of the model (Cusatis et al. 2003a, b), this 
goal was achieved as follows: 1) the volume of 
each tetrahedron was subdivided on its edges (each 
representing a connection between two adjacent 
aggregates) proportionally to their lengths, 2) the 
total volume of each strut was obtained by 
summing up the contributions of all adjacent 
tetrahedral, and 3) the effective cross-sectional area 
of the strut was determined by dividing the total 
volume of the strut by its length. The cross-section 
area and volume thus assigned to each connection 
is, of course, only approximate and its shape is 
implicitly considered as a cylinder. In recent 
computations, it has been noticed that the cross-
section area, simulating the mesolevel crack 
surface area, tended to be underestimated, which, 
in turn, caused that the constitutive law assigned to 
each contact area at the mesolevel was not quite 
realistic.  

A more realistic estimate of the potential crack 
surface areas, better respecting the topology of the  



Figure 4. Example of two-dimensional tessellation of concrete 
mesostructure 

 
random mesostructure, can in theory be obtained 
by using the dual complex (in the terminology of 
algebraic topology) of the Delaunay triangulation.  
   A straightforward dual is the well known 
Voronoi tessellation. However, for certain reasons 
(which for lack of space cannot be presented here), 
a modification of the Voronoi tessellation is needed 
(Cusatis 2003), as illustrated in Figure 4 for two 
dimensions. Consider the Delaunay triangles 123 
and 124 which share the connecting strut 1-2 of the 
aggregates 1 and 2. The definition of the length of 
the contact line of the interacting aggregates (or 
area in three dimensions) may be obtained by 
connecting the points a, b and c in Figure 4. Point a 
is located at the middle way of the connection 
counterpart belonging to the matrix (lm=l-R1-R2). 
Point b is the centre of mass of the area obtained by 
subtracting from the area of the 123-triangle the 
counterparts of the aggregate areas associated with 
that triangle; point c is similar to point b but related 
to the 124-triangle. Upon connecting points b and c 
to the aggregate centers, it is also possible to define 
more realistically the area (volume in three 
dimensions) associated to the connection 1-2 and 
represented by the dashed area in Figure 4.  

This procedure can be applied to any of the 
connections emanating from a aggregate particle. 
In this way, one obtains a complete tessellation of 
the domain in which each cell contains one 
aggregate. The extension to the three-dimensional 
case is quite straightforward. The contact area of 
each connecting strut emanating from an aggregate 
is, in general, not planar and not orthogonal to the 
connection. For sake of simplicity, the constitutive 
law is imposed on the projection of this area on a 
plane orthogonal to the connection. The contact 
point, considered as the center of mass of the 
projected area, is no longer located along the 
connection. The eccentricity of this point requires 
small modifications in the definitions of the relative 

displacements at the contact point, and thus in the 
definitions of the strain components. 

The formulation of the confinement effect has 
also been improved. The constitutive law is made 
to depend on the confinement strain transversal to 
the connection, instead of the confinement stress. 
In this way, the model becomes fully explicit 
(allowing explicit calculation of stresses from 
strains), and the numerical implementation more 
robust. The confinement strain, λ, in each 
connection is obtained by projecting orthogonally 
to the connection the average of the strain tensors 
of the adjacent tetrahedra. The strain tensor in each 
tetrahedron is computed assuming a linear 
distribution of displacements and neglecting the 
effect of particle rotations. The confinement effect 
is introduced by computing the initial post peak 
slope Kt of an assumed exponential softening for 
pure tensile behavior as follows (Cusatis 2003) 

0/1
1)();(

1/
2

λλ
λλ

−+
=

−
= ff

ll
E

K
cr

N
t  (5) 

where lcr=2ENGt/σt
2; EN is the normal stiffness of 

the connection, σt is the tensile mesostrength. The 
characteristic strain parameter λ0 governs the 
sensitivity to confining strain. 

3.3 Simulation of Unconfined Compressive Test  

Let us now examine the response sensitivity in the 
unconfined compressive test to the minimum 
aggregate size included in the lattice. The 
simulated specimens are prisms with a constant 
cross section of 75×75 mm2 and height of 150 mm. 
Three series of six specimens are generated 
randomly, considering the following three 
granulometric distributions: 1) 5.4 % and 17.4 % 
(mass fractions) of aggregates with characteristic 
sizes of 16 mm and 12.5 mm, respectively; 2) 16.7 
% and 8.4 % mass fractions of aggregates with 
sizes 9.5 mm and 8 mm are added to first series; 3) 
the combined granulometric distribution is further 
enhanced with 7 % and 4 % of aggregates with 
sizes 6.3 mm and 4.0 mm. The load is applied 
under displacement control considering loading 
platens with low friction (having the friction 
coefficient of 0.03). 

The reference material properties are: cement 
content c=300 kg/m3, water-cement ratio w/c=0.6, 
aggregate-cement ratio a/c=6.4. The assumed 
parameters of the constitutive law are the following: 
α=0.25, normal elastic modulus of cement 
Ec=11250 MPa, normal elastic modulus of 
aggregate Ea=6 Ec, tensile meso-strength (strength  



Figure 5. Stress-strain curves for a) Dmin=12.5 mm, b) Dmin=8.0 
mm and c) Dmin=4.0 mm. 

 
at the meso-level of microstructure) σt=2.4 MPa; 
fracture energy at meso-level (without confining 
effect) Gt=0.03 N/mm; meso-cohesion σs=3σt, 
compressive meso-strength σc=16σt; hardening 
parameter at meso-level Kc=0.26Ec; shape 
parameter of compression cap β=1; asymptotic 
slope of the frictional hyperbola µ=0.2, nt=nc=2 
(see Cusatis et al. 2003); and characteristic strain 

Figure 6. Damage localization at end of the test for a specimen 
with Dmin=4.0 mm. 
 
defining the confinement effect λ0=1×10-3. 

Figures 5a, b, c show the averaged nominal 
stress-strain curves of the three series of tests. The 
error bars represent the mean plus-minus standard 
deviation of six tests in each series. For the three 
series of tests the mean values of macroscopic 
Young's elastic modulus are 19,331 MPa, 21,376 
MPa and 21,696 MPa, with the coefficients of 
variation 7.96%, 0.75% and 0.41%, respectively. 
The compressive strength values are obtained as 
22.76 MPa, 24.50 MPa and 25.06 MPa with 
coefficient of variation equal to 6.52%, 2.49% and 
1.76%, respectively, for the three test series. The 
results show that both macroscopic elastic modulus 
and compressive strength tend to converge to a 
certain fixed value as the simulation of the entire 
granulometric curve, from the largest aggregate 
size to the smallest one, is improved. Also, the 
coefficient of variation tends to decrease, 
confirming the isotropic character of the 
macroscopic concrete behavior up to the peak 
(before any damage localization). It may thus be 
concluded that the model can indeed realistically 
simulate the mesolevel interaction between the 
aggregates and the cement paste. The minimum 
aggregate sizes introduced into the simulation may 
be considered as a parameter which governs the 
accuracy of the simulations; they play a similar 
role as the characteristic finite element size in a 
finite element mesh. 
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Let us now examine the postpeak response. In 
the softening branch of the stress-strain curve, the 
damage localizes, as seen clearly in Figure 6 for 
one of the specimens of the third series (minimum 
aggregate size 4.0 mm) at the end of the test. 
Because of localization, the macroscopic response 
is no longer isotropic, and this explains why the 
standard deviation increases significantly in the 
postpeak. Note also that, in the softening regime, 
the reduction of the standard deviation due to the 
minimum aggregate size introduced into the 
analysis is not as pronounced as for the behavior up 
to the peak. The explanation is that damage 
localization is mostly influenced by the maximum 
aggregate size which is the same in all series of 
tests. 
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