A Fracture Mechanics approach to over-reinforced concrete beams
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ABSTRACT: Linear elastic fracture mechanics concepts are used to determine the equilibrium and compat-
ibility equations of a beam segment subjected to bending in presence of a mode | edge crack. Recently, the
model has been extended to include the presence of closing stresses as functions of the crack opening in
addition to the steel reinforcement closing tractions. This aspect is particularly noteworthy and it has been
proficiently used in the simulation and mechanical characterisation of high-performance and fibre-reinforced
concrete members.

The problem of determining a limit to the compressive stresses in the concrete is introduced in this paper.
In fact, when the beams are over-reinforced, collapse in compression occurs. This is formulated as an upper
bound to the value of the brittleness number characterizing the bridged crack model. The upper bound to
the reinforcement steel percentage inducing concrete crushing is consequently evaluated. When this bound is
established by limit state analysis, it is restricted to absence of cohesive stresses. In the paper a general fracture
mechanics model is presented for concrete crushing including the cohesive stresses contribution. The results
are compared to the limit state analysis and to experimental results.
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1 INTRODUCTION fects, instability phenomena and brittle-ductile tran-

) sitions of the structural element.
There are several questions related to the use Of | ye naner the theoretical model is briefly re-
the new-generation concretes. Among them, the high 164 and the problem of introducing a limit to the
mechanical performances permit to consider IargeE:ompressive stresses in the concrete is addressed.

and larger percentages of reinforcement. Fracturgic'is accomplished by introducing the concept of

mechan.|c]§, has be?r; used for dfter{nmmgt t.hebm'g'hondimensional maximum compressive stress and
mum reinforcement 1or a concrete element in ben ‘determining influence functions based on LEFM.

ing (Carpinteri 1981a; Carpinteri 1984), by consid- c,nqequently, an upper bound to the value of the
ering the failure at the lower edge. The question iyeness number characterizing the bridged crack
arises V\{hether it is possible to cons_lder a Fracture, e is determined. The upper bound to the brit-
Mechanics approach even for analyzing the collaps§eness number can be immediately translated into a

in compression. The complexity of the problem in- yoyinum percentage of reinforcement. Some exper-
creases if the mechanical interaction of fibers adde ental results are simulated and commented.

to the concrete matrix has to be accounted for. The

bridged crack model has been originally proposed i

(Carpinteri 1981a; Carpinteri 1984) and in (Bosconz THE BRIDGED CRACK MODEL
and Carpinteri 1995) for RC beams, reformulatedThe bridged crack model can be applied for evaluat-
in (Carpinteri and Mass#@b1996; Carpinteri and ing the monotonic bending of a cracked reinforced
Massal 1997) for unreinforced concrete membersconcrete beam assuming as control parameter the
with cohesive closing stresses and extended to therack depth at a given cross section. The model ac-
simultaneous presence of both steel and fibers reircounts for both the main reinforcement (steel bars)
forcements in (Carpinteri, Ferro, and Ventura 2003).and a secondary reinforcement. The latter can be
The ability of dealing at the same time with steel re-physically interpreted as the nonlinear tensile behav-
inforcements and closing stresses in the matrix reior of concrete due to the presence of reinforcement
sults in a very flexible model, capable of modelling fibers.

a wide range of quasi-brittle materials. Moreover, Linear Elastic Fracture Mechanics is assumed
while limit state analysis yields only the ultimate for the matrix with a crack propagation condition
load, the bridged crack model reveals also scale efruled by the comparison of the stress-intensity fac-
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Figure 1: Model scheme of a cracked beam cross section.

tor K7 to the matrix fracture toughneds;-. The (Carpinteri, Ferro, and Ventura 2003; Ferro 2002):
stress-intensity factor is computed from the solu-

tions reported in the stress-intensity factors hand- m

books (Okamura, Watanabe, and Takano 1975; Tadd<s = K — Y K1i — Ko 1)
Paris, and Irwin 1963). i=1

The adopted model scheme is reported in Fig. 1\[/;/]2efroe”t;1.e stress-intensity factors can be expressed in
along with the used symbols: the section width '

and heighth, the crack deptla, the positions of the Mp

steel bars and the relevant tractioR;. The geomet- Kinm = WYM(@% (2)

ric dimensions are converted into nondimensional

quantities, after dividing by the height The nondi- P

mensional crack depth is denoted §y= a/h and Kpi= WYP(§7<1'); 3)

¢ = x/h represents the generic nondimensional ab- . .

scissa from the bottom of the cross section. Ky, = Z h‘“/ o0 (w(O) Yr (6,0 di; (4)
=1 14

The distributions of the discrete forcé% and of
the continuous ones applied to the crack surfaces and the functiond’,; andYp, are reported in (Oka-
represent the bridging mechanisms of the steel bargura, Watanabe, and Takano 1975; Tada, Paris, and
and of the cohesive stresses, respectively. The nonditwin 1963; Carpinteri and Massahl996). In Eq.
mensional position of théth steel reinforcement is (4) n. is the number of cohesive zones, where
denoted by,; = ¢;/h, while o (w) represents the con- oo(w) # 0. These zones are defined over the inter-
stitutive relation for the cohesive and/or fibers trac-vals(Ci,,¢2,], i=1...n..
tions, w being the crack opening at a generic posi- Let p be the bar reinforcement percentage and de-
tion along the crack. Function(w) is assumed to fine the brittleness numberg’, N and the criti-
be zero forw greater than a critical value.. Its ac-  cal crack opening for the cohesive stresgesis:
tual expression can be derived from experimental re-

sults or model codes. The constitutive relation forthe oyh0s ) 0, h05
reinforcement bars is assumed as rigid-plastic withVp ' = P Np' = T (6)
no upper limit to deformation. The maxima of the re 1e

bridging actions are defined by the ultimate traction _ Ew,

Pp, = Aa, in the bars and by the ultimate stress e = 7755 (6)

o9 = ~yo,, for the fibers (or matrix)A; being thei- o . _ _
th bar areay the volumetric percentage of fibers, ~ Substituting Egs. (2,3,4) in (1), the following nondi-
and o, the minimum between yielding and sliding mensional equilibrium equation is obtained:

stress for the bars and fibers, respectively.

-1 1) LR
With reference to Fig. 1, lef; be the stress- Mp = Yar () <1+NP ZpiPiYP(f’Zi)JF
intensity factor at the crack tip. By the superposition i=1

principle, it is given by the sum of the stress-intensity

factorsK,, due to the bending moment;; due to @ Te G
them reinforcement bar traction8 and K7, due to + Np Z o (W) Yp (€,¢) d¢ (7)
the distributed closing stresseéw) along the crack i=17C1i



where: {We }i = Wy (2i)- (15)

-~ Mp B 8 Equation (12), withA/ given by (7), is a non-
F Kicbhld 7 v Pp, (®) linear integral equation in the unknowns, n.,
[C1,,¢2,], i=1...n..Itssolution for a given crack
o ~ oo (w (¢)) depth¢ allows for the determination of the opening
pi = o » 00= T (®)  function, the crack propagation bending moméh

through (7) and the relative rotation of the cross sec-
The eqUIllbrIum equatIOI’l (7) g|Ves the propagauont'on g|Ven |n nond|mens|ona| form by
bending moment as a function of the bar traction

and of the closing stresses. These quantities depend ERO5

on the crack opening profile through the constitutivep = ¢ = — Zqﬁ, — Gy =
equations. im1
The crack opening at a general nondimensional ab-

scissal can be determined by summing the three

contributions of the bending moment, bars traction= 2MF/ Vi (Qd¢+

and closing stresses. The nondimensional opening,

evaluated at the crack propagation bendlng moment

M = Mfp, presents the following expression: —2N) Z 2 / Yp(C,2)Yar (O)dC +

W=Wp —Wp — We =
5 (2) hQ(ZL’

201 [ YVirla)Vi(e,O) dot 2 Z // Poe(ha(e).y) db(z)dr (10
¢

—QNI(D Z Yp (2, 20) Y (,C) dat with hs(z) given by Eqg. (11).

i=1 max(¢.C:)

3 CONCRETE CRUSHING AND MAXIMUM
REINFORCEMENT

9
/ UoYp ha(z),y) dyYp(z,()dz  (10) 3.1 Problem statement by limit state analysis
In the limit state analysis, concrete crushing in bend-
1(0) ing is attained when the deformation reaches the crit-
where: ical valuee., = 0.0035. The nonlinear stress behav-
ior in concrete is simplified assuming a rectangular
hi(¢) = max((,¢1,);  ha(x) = min(z,(,). (11)  stress block in compression, whose heightt. &, x
being the distance of the neutral axis from the up-
By introducing the rigid-plastic constitutive equa- per edge of the rectangular section. The maximum
tion for the bars, the displacement evaluated atompressive stress in concrete is given in this model
¢(=¢, i=1...m, equals zero ifPp, — P; < by 0.850¢, Whereo, is the compressive strength of
0, i.e. if 1 — P < 0. Let H be the Heavi- concrete. Thisisillustrated in Figure 2, where all the
side step-function. The diagonal matrptl p] = quantiltlies used in the present derivation are defined
as well.
The following equations hold:

HM‘

diag(H(l - 157)) , i =1...m, allows for ex-
pressing the vector of the openings at the reinforce-

ment bars as: e linear deformation field
- 5 ~ o - d—z
(@} = [Hp) (A} = [A1{P} — {@5,}); (12) eo= e (17)
where the elements of the above vectors and matrices o . .
are ¢, j=1...m): e equilibrium (rotation and translation)
R ¢ M =00.820.850., (d—0.4x)+
—onAs(d—2") (18)
B 3
(A =2NWp; [Yp(,2)Yp(,2)de  (14) s Ay = b0.8500n 0.8 + 7sn A, (19)

max(z;,2;)
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Figure 2: CEB-FIB model for a rectangular section in 2
bending. ]
wheren = 25 . The steel bars are assumed to be linear 17
elastic up to the yielding stress,. Then, perfectly .
plastic behavior up to the rupture straip, (usually 0
esu = 0.01) is assumed. ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500

The problem (17,18,19) has a solution only for
a tension reinforcement area greater than a mini-
mum valueA,. to be determined. Moreover, for any Figur(_e 3: Maximum brittlenes_s number for si_ngle and dou-
A, > A,., a different value of the bending moment bl_e r_elnforced beams. The reinforcement ratis reported
M at crushing is obtainedy being a monotonically Within parentheses.
increasing function of the neutral axis coordinate

As a consequence, because of the equilibrium, the . . . L
bending moment at concrete crushing is a monotonf@lio psc is obtained and, upon substitution into the
ically increasing function of the tension reinforce- Prittleness number definition, it follows:
ment aread,. The minimum bending moment pro- 05
ducing the crushing collapse of concrete is thereforeyy () _ 1761 — G oeh”™ n<l (23)
obtained when the maximum allowable straif in PH= """ 1—n Kie '
the tension reinforcement is present. This condition
is assumed here, being both a safe and optimal dan Figure 3 a plot of N\, is reported, assuming

sign condition at the same time. —2 —3/2
. _ the datar.,, =48.2Nmm™ =, K;c = 63.4Nmm ,
It will be therefore assumed, = A,.. The value G =01,17=0, 02 0.4 by varying the cross

of A,. can be computed by the condition that the de . .

formation and stress in the tension steel are the rups—ec'[IOn height betwedi and500mm.
ture ones, i.es; = ey, 05 = 0,. From Eq. (17), the
neutral axis coordinate is determined as:

Cross section height (mm)

3.2 Problem statement by fracture mechanics
By the superposition principle, the stress state at the

€C7J,

r=——7"+—h, (20)  upper edge of the cracked section can be written as
Esu ~ Eeu the sum of the contribution due to the bending mo-

and, upon substitution of the usual values for thement and the one of the forces acting on the crack

maximum deformations, edges

z=0.259h (21)

m
M P; o
A final consideration holds for the stresses in the?c = % T Z(’c +oc. (24)
=1

compression reinforcement steel. It is observed that
for usual beam geometries’ (<« h) and steel type,
the compression reinforcement yields significantly
before concrete crushing, so thet= o, can be as-
sumed. o

The minimum reinforcement area inducing con- M — ——_y M ¢) (25)
crete crushing failure is obtained after substitution of ©  bh? 7
Eqg. (21) into Eqg. (19)

By introducing two new nondimensional functions
Y M andY,”, the contributions can be written as:

P:
. P 2ty Pie ¢ 26
Ay = 200y q%en 1, 22 % Tl &%) (26)
1-n oy
From this equation, observing that=d + z; and o _ e /CQ’ oo(w(y))Y.L (€,y)dy. (27)
dividing by bh both terms, the critical reinforcement ©  bh </, 7
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To rewrite EqQs. (25, 26, 27) in nondimensional form,
the definition of brittleness numbers and of nondi-
mensional bending momedtl = M K;cbh!'-® and

tractionP; = I:’ibhay p; are introduced:

Np=7.0

&
3

Np=6.0

A
o

A
S

Np=5.0

R
o

K ~ 3
ol = s Y (OM (28) g =
h § 20 Np=4.0
- Ko, aypi - s
057 = W }(3 ) ;YO'P (57 CI)PZ (29) E 25 Np=3.0
s

@

o K C i E2i
T=NPREY [awwy ena @ 7.
i=1 1;

°

Consequently, the following nondimensional stresses
&. are defined:

&

0.5 - ° \ \ \ \ \ \ \
5?4 = gg]Z = YUIW &M (31) 01 02 03 0.4 05 056 07 0.8
e Crack depth &
0.5 ~ Figure 4: nondimensional maximum compressive stress in
b =oh e Nz(Dl)YaP(fa G)piP; (32) éheep?&per part of the cross section as a function of the crack
) The above development allows for evaluating the
Te = e Ko maximum compressive stress in concrete, consider-

ing the effect of closing stresses distributed on the
ne o, crack faces. In the following, it will be shown how
- N®@ / s yP d 33 this allows to define an upper bound to the brittleness
P Z Oo(w(y)) o (gay) Y, ( ) numbers.
On the other hand, the model allows also the de-
and Eqg. (24) can be expressed in nondimensionakermination of the minimum reinforcement so that

i=1" 514

form: the rupture is ductile. This has been determined un-
m der the hypothesis of absence of cohesive stresses

Go=aM +ngi +69. (34) (Nl(f) = 0) in (Bosco and Carpinteri 1992), where
P the Authors obtained the following relation between

o o P the minimum brittleness numbéfl(}g and the com-
The determination of the functionis;” andY;" is  pressive strength of concrete:

carried out by finite elements analysis and applying a
nonlinear regression to the numerical data. A crackedy (1) _ 1 1 (.0023 37
beam segment is considered, subjected to a bend-"¢ +0.00250cu (37)

ing moment at the ends or to two opposite forcesgcu being expressed in Nnmz. A beam having a

the shress: 1 valuated discreting half f the beam PT1ENess number lower than the limit expressed by
and using Cadaptive meshing Eq. (37) exhibits a brlttle.fallure because of insuffi-

The two evaluated functions are: cient reinforcement. In this case, when the crack de-

: velops at the lower edge and crosses the reinforce-

5.400¢ ment, the latter is immediately yielded and strained

Y M(€) = —5.997+3.269¢ — WJF to rupture, so that the peak load is higher than the
yielding branch.
Consequently, a region of brittleness number val-
—16.3116% - 3.721¢3 (35) ues where a beam presents ductile behavior is easily
defined:
_ 1 1 1
YP(¢,2) = (1552 (—10.286 + 10.959 &+ Npl < N < NG, (38)

A plot of the nondimensional stresses, Eq. (34), ver-
5 5 sus the crack depthis shown in Fig. 4. For the sake
—6.1126" — 9.5742 +13.509¢ z — 3.8352%)  (36)  of comparison to experimental results presented in
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Figure 5: Geometry of the beams tested by Carpinteri et al. (1999).

the next section, the figure refers to the case where neinforced beams by varying the cross section and the

distributed closing stresses are presentN.E.) =0,

Np = NI(}) = 0. The curves present a slope discon-
tinuity when yielding of the reinforcing bars occurs.
In the following section it will be shown how the up-
per limit Npgy, Eqg. (38), can be derived from Fig.
4 with reference to experimental results. The valu
Npg represents the upper bound of applicability for
the bridged crack model for beams with single or

double reinforcement. Beams having,’ > NG,
will exhibit crushing failure.

30— . M
Np 0 c200
20— A200A
1.0
/ 0 B050 LI coso
| 7 A0s0
y 2 B025 O co25
)/ A025 8012 Nec 5 con
A0127
0.0 — T T T \
0 100 200 300 400 500

Cross section height (mm)

Figure 6: Brittleness numbers for the tested beams an
limit curve of concrete crushing/p .

4 EXPERIMENTAL RESULTS

(s

reinforcement area. The tests were performed on 35
beams of classes A, B and C, with cross-sectional
area equal tol00 x 100, 100 x 200 and 200 x

400 mm, respectively (Fig. 5), and concrete prop-
erties oo, = 48.2Nmm~2, K;c = 63.4Nmm3/2,

The examined reinforcement percentagedar2%,
0.25%, 0.50%, 1.00%, 2.00%. The beams are la-
belled with the letter of the series, the reinforce-
ment percentage and, occasionally, with the slender-
ness ratiol./h, e.g. A025-6 means a series A beam
with 0.25% reinforcement and./h = 6. In Fig. 6

the brittleness numbers computed for the experimen-
tal tests are plotted together with the valueNgt,

Eq. (37), and the curves éfp; computed by a limit
state analysisNpy(LS), and by the bridged crack
model, Npy (BC). The latter curveNpy(BC), has
been derived from Figure 4. In fact, in the present
case, the maximum nondimensional stress in con-
crete as a function of the cross section height is given

by:

G = (39)

In Fig. 7 the nondimensional maximum stress value,
computed with the above material data and cross sec-
tion heightsh = 50,100, 200, 300,400, 500 mm, in-
tersects thé vs. . curves. Thes, curves are drawn
for several values of\f](,l), and each one presents
@ slope discontinuity when the steel reinforcement
yields. Then, for a given height, the limit condition
occurs when at the same time the maximum value of
& is attained and the reinforcement yields. The brit-
tleness number in this situationp z and has been
determined graphically from the family of curves ob-

The behavior predicted by inequality (38) has beertained varyingNI(Dl) (Fig. 7). These values are plotted
confirmed by the experimental results provided byin Fig. 6 as the solid curv&/p g (BC). The compar-
Bosco and Carpinteri (Carpinteri, Ferro, Bosco, andson to the limit analysis approach (dashed line) evi-
Elkatieb 1999). The Authors examine three series oflences a similar trend, but the Bridged Crack model
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Figure 7: Determination of the brittleness numBbé&s ;. ) )
midspan are given by:

is able to account for the presence of fibers or cohe- 47,

sion of the matrix and its different dimensional effect, P = ——, (41)
Egs. (33). This topic is currently under development.

The experimental results confirm that all the L? oL
beams above th& 5 curve failed because of con- 0 =0er +0y = Mp ASE*] T (42)

crete crushing, while the beams witlip < Nec  \where the inertia is related to the total cross sec-
failed for insufficient reinforcement. All the above o 7, is the span length, an* = £/2.2, E be-

concepts about minimum and maximum brittlenesspg the conventionals days static modulus. This as-
numberN}(}) can be immediately translated into min- sumption is already present in the literature (Carpin-
imum and maximum reinforcement area. Considerteri 1981b; Jenq and Shah 1986) and takes into ac-
ing the data from Fig. 7 and Eq. (37), two curves arecount the nonlinear material behavior in the zone
determined enclosing the reinforcement percentageshead of the crack tip. The experimental and compu-
for a given section height so that the mechanical betational load vs. deflection diagrams are reported in
havior is ductile. This is shown in Fig. 8 for both the Figs. 9 and 10. The numerical simulation was carried
limit state analysis (LS, dashed curve) and bridgedbut assuming the data reported in (Carpinteri, Ferro,
crack (BC, solid curve) approaches. The small oscil-Bosco, and Elkatieb 1999). The model is of course
lations observed in the figure are due to the graphicahot able to reproduce the progressive decrease in the
procedure used to extract tiépy values from the tangent modulus due to concrete damage and to the
parametric curves in Fig. 7. formation of further additional cracks along the span.
Finally, for some beams of the series B and CThis effect is particularly marked in these experi-
the load-displacement curves have been simulateshental tests, while much closer results for the load—
by the bridged crack model. The model provides thedisplacement curves were obtained in the simulation
values of the nondimensional bending moment andaf other results, e.g. (Swamy and Al-Ta’an 1981) as
rotation as functions of the crack depth. For com-reported in (Carpinteri, Ferro, and Ventura 2003). Al-
parison with the experimental results, these valueshough the deflection is not closely reproduced due
have been converted into displacement versus loatb diffuse cracking, the model is able to simulate the
diagrams. The displacement at midspan of the bearmechanical behavior of the beams, and noticeably the
is supposed given by the elastic part plus a rigid partnitially unstable behavior of the ones with the low-
due to the localised rotation of the cracked sectionest reinforcement percentage (B025, C025), the steel
From the definition of nondimensional bending mo-yielding collapse of the beams B100 and C100, and

ment and rotation, we can write: the concrete crushing collapse of the beams B200
3 and C200.
Y 1.5 o ¢KIC
Mp = MEicbh'™®, ¢ = =75 (40) 5 CONCLUSIONS

The bridged crack model has been recently extended
Consequently, the vertical load and displacement ato the simultaneous presence of embedded conven-
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Figure 9: Experimental and computational load vs. deflec-
tion diagrams for the series B12 beams.
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tional steel bar reinforcements and fibers mixed into
the cementitious matrix. The two reinforcements act
at different scales and influence each other in the
global structural response. Compared to classical
limit state analysis, the introduction of Fracture Me-
chanics concepts into the modelling of reinforced
concrete members allows for determining ductile-
brittle transitions, scale effects and the contribution
of fibers and, in general, nonlinear matrix tensile
behavior. Crushing of concrete is introduced in the
model by determining an upper bound to the brittle-
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