
1 INTRODUCTION 

With size effect we mean the dependence of one 
or more material parameters on the size of the 
structure made by that material. It is easy to realize 
the importance of this topic in engineering design. 
Recently, the scientific community dedicated 
significant efforts in order to have a precise 
description of this phenomenon and to highlight the 
physical mechanisms that lie behind it. Dealing 
specifically with concrete structures, it was seen 
that tensile strength decreases with the structural 
size, whereas fracture energy increases. In other 
words, the larger is the structure, the more brittle is 
its structural behaviour. The increase of brittleness 
with the structural size is mainly due to the 
localization of damage in the failure process of 
structures composed by quasi-brittle materials. 
Nowadays, the most used model to describe 
damage localization in materials with disordered 
microstructure (also called quasi-brittle or 
concrete-like materials) is the cohesive crack 
model, introduced by Hillerborg et al. (1976). 

According to Hillerborg's model, the material is 
characterized by a stress-strain relationship (σ−ε), 
valid for the unbroken zones (Fig. 1a), and by a 
stress-crack opening displacement relationship 
(σ−w, the cohesive law), describing how the stress 
decreases from its maximum value σu to zero as the 
distance between the crack lips increases from zero 
to the critical displacement wc (Fig. 1b). The area 
below the cohesive law represents the energy GF 
spent to create the unit crack surface. The cohesive 
crack model is able to simulate tests where high 
stress gradients are present, e.g. tests on pre-
notched specimens. On the other hand, relevant 
scale effects are encountered also in uniaxial 
tensile tests on dog-bone shaped specimens 
(Carpinteri & Ferro 1994, Van Mier & Van Vliet 
1999) (see Fig. 2a), where smaller stress gradients 
are present. Figure 2b clearly shows that the 
cohesive law and its parameters GF and σu are size-
dependent.  For this kind of tests, size effects 
should be ascribed to the material behaviour rather 
than to the stress-intensification. However, they 
cannot be predicted by the cohesive crack model. 

Influence of aggregate grading upon concrete tensile strength: a 
stereological analysis  
 
A. Carpinteri, P. Cornetti & S. Puzzi 
Politecnico di Torino, Department of Structural and Geotechnical Engineering, Corso Duca 
degli Abruzzi 24, 10129 Torino, Italy   
 
 

 

ABSTRACT: The present paper provides a theoretical explanation of the size effect on concrete tensile 
strength based on a statistics of extremes approach to the aggregate size distribution, expressed as 
probability density function of the grains diameter (namely, the Füller truncated distribution). Since the 
weakest link in normal strength concrete is usually represented by the interface between the cementitious 
matrix and the aggregates, if we assume that the strength of the material depends on the largest flaw, we 
compute the probability density function of the strength as a function of the specimen size. In this way, we 
obtain −by a truncated distributions statistical approach− a size effect that substantially agrees with the 
multifractal scaling law (MFSL) for concrete tensile strength. Eventually, particular attention is paid to the 
computation of the power law exponent characterising the strength scaling at the smallest sizes. 
 
Keywords: size-scale effect, multifractal scaling, stereology, truncated distributions, statistics of extremes 



 

σ

ε w

σ

εu

σuσu

wc

E

1

 s
tr

es
s

 s
tr

es
s

crack openingstrain

(a) (b)

 

Figure 1. Hillerborg’s cohesive crack model. 

In order to overcome the original cohesive 
crack model drawbacks, a scale-independent (or 
fractal) cohesive crack model has been proposed 
recently (Carpinteri et al. 2002a). This model is 
based on the assumption of a fractal-like damage 
localization. The hypothesis of damage domains 
showing fractal patterns received previous 
experimental confirmations (Carpinteri et al. 
1997a, 1999, 2001). The fractal nature of the 
damage process allows a consistent explanation of 
the size effect on the cohesive crack model 
parameters. In fact, if the damage zone is fractal, 
all the geometrical quantities (i.e. area of the 
resistant cross section, area of the crack surface and 
thickness of the damaged band) and all the physical 
quantities involved (i.e. tensile strength, fracture 
energy and critical displacement) depend on the 
measure resolution. Considering, for instance, the 
crack surface, it is seen that its area increases more 
and more as a larger number of details can be 
captured; as a consequence, the fracture energy 
decreases at higher resolution. In order to work 
with scale-invariant parameters one has to 
introduce fractal geometrical measures and fractal 
physical quantities. The fractal strength and fractal 
fracture energy were introduced by Carpinteri 
(1994a), while the fractal critical strain has been 
introduced more recently (Carpinteri et al. 2002a, 
2002b). On the other hand, simple power laws 
describe the scale dependency of the fracture 
energy, tensile strength and critical displacement, 
the exponents being related to the fractal dimension 
of damage domains. 

In order to get a better description of the size 
effect on concrete parameters over a broad range of 
scales, the notion of self-affinity was included in 
the previous model, the so-called multifractal 
scaling laws (MFSLs) for tensile strength, fracture 
energy and critical displacement (Carpinteri & 

Chiaia 1997b, Carpinteri et al. 2003). Accordingly, 
the scaling laws are no longer simple power laws 
since they present a horizontal asymptote for the 
larger sizes, the fractal regime being valid only at 
the smaller sizes. 

Aim of the present paper is the evaluation of 
the tensile strength of a concrete structure based on 
the hypothesis that the largest flaw is the cause of 
the specimen failure. Furthermore, since the 
interface between the cementitious matrix and the 
aggregates is the weakest link in concrete, we 
assume that a penny shaped crack with diameter 
equal to the maximum diameter of the grains inside 
the specimen can represent the largest flaw. It is 
evident that, for very large sizes, the diameter of 
the largest flaw coincides with the maximum 
diameter φmax of the aggregate size distribution, i.e., 
the tensile strength shows an asymptote at the 
larger scales. On the other hand, the smaller is the 
specimen, the smaller is the maximum grain and 
the higher is the strength. 

From a statistical point of view, the problem is 
represented by the computation of the probability 
density function (pdf) of the diameter of the largest 
grain inside a specimen containing a given number 
of grains, i.e. a classical extremes statistics 
problem. Regarding this mathematical topic, we 
refer to the milestone book of Gumbel (1958). In 
order to perform the statistical analysis, differently 
from Carpinteri et al. (1997c) where arbitrary 
truncated flaw distributions were used, we use a 
specific truncated distribution (namely the Füller 
distribution) that describes the flaw population 
realistically. We use some formulae from 
Stereology, which encompasses the geometrical 
probability aspects of the problem; for what 
concerns stereology applied to concrete, we refer to 
the work by Stroeven (2000). 

Eventually, the excellent agreement between 
the size effect upon the tensile strength predicted 
by the present analysis and the one predicted by the 
multifractal scaling law (MFSL) proposed by 
Carpinteri (1994b) and Carpinteri & Chiaia (1997b) 
will be shown and discussed. 
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Figure 2. Uniaxial tensile tests over dog-bone shaped 
specimens: cohesive laws for different specimen sizes (a) and 
specimen shape (b). 

2 STEREOLOGICAL ANALYSIS OF THE 
GRAIN SIZE DISTRIBUTION FUNCTION 

 
In this section we will compute the average 

value of the largest flaw inside a given concrete 
volume. 

The basis for the dimensional characterization 
of the concrete aggregate is the sieve analysis. The 
sieve curve describes the weight fraction W(d) of 
the aggregate passing through a sieve with d-wide 
mesh. Due to its good packing properties, the most 
common sieve curve used to prepare concrete is the 
so-called Füller curve: 

( )
maxφ

=
ddW  (1)                                                   

Henceforth we will refer always to the Füller 
aggregate size distribution. Furthermore, we will 
assume the aggregates to be spheres with diameter 
d comprised between φmin and φmax. Common 
values for φmin and φmax are respectively 0.2 mm 
and 20 mm, even if, in large buildings, the largest 
diameter can be proportional to the size of the 
structure (till 120 mm). 

It can be easily shown (Stroeven 2000) that the 
Füller sieve curve (Equation 1) can be expressed in 
terms of grain size distribution function 
(probability density function of the grain diameter, 
hereafter indicated as pdf) as follows: 
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where α = φmax/φmin and fd(d) is a probability 
density function (herein indicated with small f), i.e. 
fd(d) dd is the relative number of grains with 
diameter belonging to the interval [d, d + dd]. 
Obviously, the integral of the pdf fd(d) over the 
whole diameter interval [φmin , φmax] is equal to 1. 

Equation 2 shows clearly that the number of small 
particles is higher than that of the larger ones, since 
the former must fill the gaps between the latter 
ones. Note that the first denominator in the 
previous expression is very close to the unity; 
nevertheless, differently from other approaches 
(Stroeven 2000), we cannot neglect it in the 
following computation since that term will be 
raised to very high exponents. 

Our analysis needs the first three moments of 
the probability density function (Equation 2). The 
first moment represents the average diameter in the 
concrete volume, while the second and third are 
proportional to the average grain area and volume: 
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In order to find the relationship between concrete 
volume and number of grains inside it, we need 
one more parameter, i.e., the volume percentage fa 
of the aggregates. This percentage must be high 
even if not too high, since the aim is a good 
particle packing but also a sufficient fluidity of the 
mixture when the concrete is cast. In normal 
strength concrete the aggregates occupy about three 
fourths of the total volume; hence fa ≅ 0.75. The 
total number of particles inside the cube of side b 
and volume V=b3 is, therefore, on average: 

3

6
d

VfN a

π
=  (6) 

This means that, when the above data are 
considered, the particles inside 1 m3 of concrete are 
about 4 billions! Equation 6 gives a connection 
between structure volume and number of aggregate 
particles and will be widely used in the following, 
being crucial in the asymptotic analysis and in the 
calculus of the ultimate strength scaling law 
exponent.  
To compute the average value of the largest flaw 
inside the specimen, we need to pass from the 
probability density functions f to the cumulative 
distribution functions, which are indicated with 
capital F. The cumulative distribution function of 
the aggregate particle diameter is defined as the 



integral of the probability density function 
(Equation 2): 
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Our aim is now to find the expression of the 
probability density function of the maximum 
diameter of the N aggregate particles contained 
within the structure, defined as: 
dmax=max{d1,d2,…,dN}. Each particle diameter can 
be considered as a statistical variable. A 
fundamental hypothesis is that all these variables 
are i.i.d. (independent and identically distributed); 
this is not innatural, because they come all from the 
same distribution (Equation 2), related to the Füller 
sieve curve. Working on the cumulative 
distribution function, this assumption leads to the 
following equality chain, where P[event] represents 
the probability of that event to occur: 
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where the second equality is justified by the 
independence and the last by the identical 
distribution assumption. By derivation it is now 
possible calculating the probability density function 
of dmax. 
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Based on the hypothesis that the strength 

depends on the largest flaw, i.e. under Weibull’s 
“weakest link” assumption, and assuming that 
defect interactions are negligible, if we represent 
the effect of a spherical aggregate particle as that of 
a penny shaped crack with the same diameter, we 
can write the ultimate tensile strength as: 
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The tensile strength σu is therefore a statistical 
variable as well as dmax. The pdf fσu of σu depends 
on the pdf of dmax according to the relationship: 
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In order to obtain the average value of the 
ultimate tensile strength σu, the following integral 
needs to be evaluated: 
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Through the variable change given by Equation 10 
and using Equation 11, we get: 
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ft being the minimum tensile strength value, which 
is attained for dmax = φmax: 
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Equation 13 can be set in dimensionless form: 
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Integrating by parts, we obtain: 
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Equations 7 and 8 give: 
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Equation 17 can be simplified by setting t = d/φmin:  
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The integral in Equation 18 cannot be solved in 
a closed form. In addition, if N is not small enough 
as in the case of concrete aggregates, its numerical 
evaluation becomes very difficult. In fact, if a 
binomial expansion of the argument is adopted, the 
numerical binomial coefficients become very large, 
leading to overflow errors and to cancellation 
problems due to the opposite signs of subsequent 
terms. For instance, if N is equal to one thousand, 
the binomial coefficients reach values of the order 
of 10299, but N can be even greater! To overcome 
this problem we adopt another variable change. 
Setting x = t−2.5, we obtain: 
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where the lowest integration bound is defined 
as β = α−2.5. The following reduction formula for 



integrals of binomial differentials can be applied to 
the integral in Equation 19: 
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where a, b, p, m and n can be any number for 
which the denominator does not vanish. Note that 
Equation 20 is not the classical integration by parts 
formula, useless in the present case. Applying now 
Equation 20 N times to the integral in Equation 19, 
we obtain the sum of N positive terms, thus 
avoiding numerical cancellation problems, while 
the coefficient of the integral becomes zero. 
Collecting all terms and carefully observing their 
properties, a recursive formula for the integral can 
be derived:  
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where the coefficients bN and aN are defined by 
recursion: 
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We are now able to express Equation 19 as: 
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Figure 3. Ultimate strength as a function of number particles. 
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The nondimensional mean value of the tensile 
strength can be calculated by Equation 23 as a 
function of the particles number N and of the 
parameter α. A first important remark is that only 
the ratio α between maximum and minimum 
aggregate size plays a role, whilst the value of the 
maximum diameter does not affect the function’s 
shape. Results are summarized in Figure 3, where 
the log-log plot evidences that all the curves 
exhibit a similar behaviour, with two distinct 
ranges. In the lowest one the curves decrease with a 
constant slope, approximately equal to 0.2, thus 
following a power law, whilst for larger values of 
N they present an asymptotic trend towards the 
unity. Physically speaking, this means that 
increasing the number of particles considered, or, 
as stated by Equation 6, the corresponding 
structure volume, the probability of finding among 
them one with the maximum size approaches the 
unity, i.e. certainty. From a mechanical point of 
view, this yields an average tensile strength 
approaching ft for sufficiently high N values. 

3 SIZE EFFECT ON TENSILE STRENGTH 

From the results obtained in the previous 
section, the following power law of tensile strength 
versus number of aggregate particles holds at small 
scales, i.e. for small numbers N: 
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Figure 4. Size effect on tensile strength for one- two and three-
dimensional structural scaling. 
 
To highlight the scale effect on this parameter, the 
need emerges for expressing N as a function of a 
characteristic structural size b related to the 



geometry of the specimen. We already know that 
the number of aggregate particles is related to the 
specimen volume V as expressed by Equation 6. 
We now introduce a characteristic structural length 
b, distinguishing three different cases: 

1. One-dimensional scaling:   V ≈ b1, 
2. Two-dimensional scaling:  V ≈ b2, 
3. Three-dimensional scaling:  V ≈ b3. 

The consequent result is a set of different exponent 
values at small scales, whilst the behaviour at large 
scales is independent of the considered scaling type. 
The small-scale scaling are respectively the 
following: 

1. One-dimensional scaling:  σu  ≈ b−0.2, 
2. Two-dimensional scaling:  σu  ≈ b−0.4, 
3. Three-dimensional scaling:  σu  ≈ b−0.6. 

These three types of asymptotic behaviour are 
summarized in Figure 4. As it can be easily argued, 
the higher is the order of scaling, the stronger is the 
size-scale effect. 

4 COMPARISON WITH EXPERIMENTAL 
DATA 

 
In the last few years, a broad experimental research 
programme was carried out at the Politecnico di 
Torino by Carpinteri & Ferro (1994) to assess the 
scale effect on tensile tests of dog-bone shaped 
concrete specimens in a scale range of 1:16. They 
observed a relevant size-dependence of concrete 
tensile strength.  
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Figure 5. Dog-bone shaped specimen uniaxial tensile tests: 
volume where to seek the largest flaw 
 
The scaling adopted was two-dimensional. The 
thickness t was kept constant and equal to 10 cm, 
whereas the ligament width varied from 2.5 to 40 
cm; the specimen length was scaled proportionally 
(Figs 2a, 5). The aggregate grading was 

characterised by an α value equal to 80. In order to 
apply Equation 23, we need to specify the volume 
V where the largest flaw should be sought. Of 
course, this is not the whole specimen volume, 
since only the flaws close to the middle cross 
section can cause failure. In fact, for hour-glass 
specimen, failure is caused by the unstable 
propagation of a main crack that takes place in a 
narrow band at the centre of the specimen, where 
the stress is uniform and higher than in the 
remaining part. The dominant crack starts from the 
largest flaw. Therefore, as shown in Figure 5, the 
volume can be expressed as: 

tbbV )(γ=  (25) 
γ being a coefficient related to the thickness of the 
zone where fracture can grow. Substituting 
Equation 25 into Equation 6 yields the expression 
for the nondimensional structural size b/t: 
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Equation 26 together with Equation 23 describes 
the σu/ft vs. b/t curve as a function of the parameter 
N. The resulting strength-scale relation is reported 
in Figure 6 together with experimental data. A best 
fit is performed varying the two parameters γ and ft 
and the optimal values are approximately γ = 0.06 
and ft = 3.98 MPa. As is evident from the reported 
diagram, a satisfactory agreement has been found 
between the proposed scaling law and the 
experimental trends. According to the two-
dimensional scaling, the slope in the bilogarithmic 
plot for small-scale strength size effect is 0.4. 
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Figure 6. Dog-bone shaped specimen uniaxial tensile tests: 
comparison between the present model and experimental data 
(Carpinteri & Ferro 1994). 



5 CONCLUSIONS 

The experimental data cited in the previous section 
(Carpinteri and Ferro, 1994) and the observed size 
effects were explained by Carpinteri (1994a) 
assuming that the resistant ligament is a lacunar 
fractal (self-similar) set. This hypothesis yielded a 
power scaling law for tensile strength. The 
successive introduction of the self-affinity notion 
allowed a better description of the size effect on 
concrete parameters and led to the so-called 
multifractal scaling law (MFSL) for tensile strength 
(Carpinteri 1994b, Carpinteri & Chiaia 1997b). In 
this case, the scaling law is no longer a simple 
power law, but presents a horizontal asymptote for 
large sizes, while the fractal regime holds only at 
small scales: 
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where b is the characteristic dimension of the 
structure, lch is the internal length of the material 
and ft is the large size asymptotic strength. It is 
interesting to point out that the stereological 
analysis presented in this paper, where we have 
made no use of fractal geometry concepts, yielded 
a scaling law (expressed by the couple of Equations 
23-26) very similar to the MFSL (Equation 27). 
Both the scaling laws present a flat asymptote for 
large sizes (ft) and a negative slope for small sizes 
equal to 0.5 for the MFSL and to 0.4−0.6 for the 
stereological analysis. In other words, we can 
affirm that, according to the stereological analysis, 
the scaling described by the MFSL reproduces 
satisfactorily the size effects of structures whose 
scaling is two- or three-dimensional. 

Another remarkable aspect is that the present 
Weibull statistical approach can provide a much 
more complex scaling than a simple power law, 
thus resulting in the presence of an intrinsic 
characteristic length of the material. This is more 
than reasonable, due to the aggregate content of the 
material, and it overcomes the lack of a 
characteristic material length in the previous 
statistical theories on the ultimate strength 
(Freudentahl 1968, Evans 1978, Kittl & Diaz 1990).  

In conclusion, it is useful to observe that the 
transition length (i.e. the structural dimension at 
which the size effect disappears) is given by lch in 
the MFSL (Equation 27), whereas it is a function of 
the maximum aggregate diameter in the present 
model – see Equation 26. 
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