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ABSTRACT: rupture of reinforced concrete structures is often due to strain localisation in particular
areas where microcracks nucleate to a macrocrack that propagates until complete failure. By taking into
account material heterogeneity, a discrete model gives a fine description of the crack properties (path,
roughness...). We present in this work a particular discrete model that manages the large displacements
encountered near the crack tip. Different examples illustrate the model performance.

1 INTRODUCTION

Describing the failure of concrete structures re-
quires a clear representation of the mechanical re-
sponse (force vs. displacement for instance) as well
as a good description of crack properties. This last
goal can be achieved by taking into account the
heterogeneity of the material, which is a typical
feature of discrete models.

Our development is based on such a discrete
model, where material is described as an assembly
of particles (see [2], [8], [1] for instance). Between
each neighboring particles, brittle elastic links are
used to model initial cohesion forces. During the
elastic range, the model is strictly equivalent to
lattice models ([7], [9], [10]). During the nonlin-
ear behavior, contact forces are introduced if un-
linked particles overlap each other. Note that if all
beams are broken, a non-cohesive material behav-
ior is obtained. These kind of models are known to
be relevant to describe crack propagation during
the failure of a structure. The proposed discrete
model is enriched in order to take into account
large displacement, by using a particular nonlinear
beam model of Reissner, which allowing a repre-
sentation of all the fracture mechanisms. Because a
large number of particles is used for each computa-
tion, we focus on the numerical implementation of
the beam, where the computational time has been
optimized by obtaining the tangent operator.

The extension to dynamic loading is proposed,
with a particular attention to physical results in
terms of dissipation: nonlinear behavior is known
to give non physical generation of energy with
some time integration schemes. After a compari-
son of classical schemes (explicit scheme, Newmark

family schemes, HHT), we propose the use of a
particular scheme that ensures energy dissipation
even with non linear behavior.

2 DISCRETE MODEL
The proposed approach is based on a description
of material heterogeneity by an assembly of rigid
voronoi cells (Figure 1). These cells are connected
initially by flexible links which ensure the elastic
behavior. The majority of discrete models use ei-
ther springs or linear beams (Euler-Bernoulli or
Timochenko) for these links. This choice is valid
for a wide range of problems, but we would like to
emphasize different cases where large displacement
occurs and such beams can not represent the right
behavior: near a crack tip, large rotations can oc-
cur particularly for reinforced concrete structure
where steel bars allow plastic deformation. Beam
scabbing is an other example where linked cells
can fall out the main structure, and be subject to
large displacement. We propose here to use beams
which can account for such large displacements.
The main properties of the beams are presented in
the next part.

Large displacement beams The initial config-
uration of the beam is placed along the axis of the
reference frame (e1, e2). A point at the typical sec-
tion of the beam initially placed at (x, y) in the
deformed configuration can be represented by its
position vector φ :

φ = (x+ u)e1 + ve2 + yt2 (1)

where u and v are the displacement components
and t2 is a unit vector indicating the new direc-
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Figure 1: Cells assembly describing a square. Thin
lines represent links.

tion of the cross section (not necessarily perpen-
dicular to the beam neutral axis). According to
Reissner’s kinematic hypothesis the cross-section
remains non-deformable, so that vector t2 can be
obtained simply by a rotation of the base vector
e2.

t2 = Λe2; Λ =
[

cosψ − sinψ
sinψ cosψ

]

(2)

where ψ is the rotation angle. The corresponding
deformation measure of Biot can the be provided
for the beam as

H11(x, y) = Σ(x)− yK(x)

H21(x, y) = Γ(x) (3)

where
Σ(x) = t1 · φ

′ − e1 · e1

K(x) = t2
′ · t1

Γ(x) = t2 · φ
′ − e2 · e1

Discretisation of the last equations gives the fol-
lowing relations for two nodes 1 and 2 if we as-
sume that each strain component remains constant
along the beam:

Σ = cos

(

ψ1 + ψ2
2

)

(

1 +
u2 − u1

l

)

+sin

(

ψ1 + ψ2
2

)

(

v2 − v1
l

)

− 1

Γ = − sin

(

ψ1 + ψ2
2

)

(

1 +
u2 − u1

l

)

(4)

+ cos

(

ψ1 + ψ2
2

)

(

v2 − v1
l

)

K =
ψ2 − ψ1

2

In the elastic domain one can easily obtain the
associated Biot stress through Hook’s law by

T11(x, y) = E(x, y)H11(x, y)

T21(x, y) = G(x, y)H21(x, y) (5)

where E and G are, respectively, Young’s and
shear moduli. The elastic constitutive model in
(5) above applies only before reaching the fracture
limit. Finally, we can obtain (see [5]) the relative
axial/shear deformation between two neighboring
cells i and j with

εij =

(

∆s

lij

)

=
(

(1 + Σ)2 + Γ2
)1/2

(6)

and, in the same manner, we can obtain the rela-
tive rotation

K =
ψ2 − ψ1
lij

(7)

Inelastic behavior The nonlinear behavior of
model is obtained by introducing a breaking
threshold for each beam. It leads to a perfectly
brittle-elastic behavior at microscale, according to
the local behavior of a heterogeneous brittle mate-
rial. The fracture criterion [3] for any pair of neigh-
boring particles i and j is:

Pij =

(

εij

εcr
ij

)2

+

(

|ψi − ψj|

ψcr
ij

)

≥ 1 (8)

where the fracture limit values εcr
ij and ψcr

ij are con-
sidered to be random variables with Gaussian dis-
tribution. εcr

ij corresponds to rupture of the beam
in tension mode, ψcr

ij corresponds to rupture of the
beam in bending mode. When the failure criterion
is reached, the beam ij is broken and both parti-
cles i and j are no more linked. The heterogeneous
microstructure can thus be represented in a simple
way by varying the fracture limit values of partic-
ular beam links.

Numerical Example We present here the clas-
sical example of the beam scabbing. The beam is
loaded by an impulse-type loading at the upper
face, with three-point bending test boundary con-
ditions (Figure 2).
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Figure 2: Boundary conditions of the beam scab-
bing test.

As mentioned before, this test is discriminant
for the model because large deformations occur
for cells falling out at the bottom face of the beam.
Crack patterns are shown at different times on Fig-
ure 3. Large displacements are clearly visible in the
two last shots.

Figure 3: Crack patterns at t = 350µs, t = 500µs
and t = 1000µs.

3 TIME INTEGRATION SCHEME

One of the main difficulty encountered with such
a model is the effect of brittle failure of the bonds
in a dynamic analysis. It leads to high frequency
vibrations without physical meaning (Figure 4).

We propose in this part to compare different
schemes and analyze their performance (see [11]
for an overview of time stepping schemes). We use
the same boundary conditions as shown on Fig-
ure 4, but the load is chosen such to keep an elas-
tic behavior. High frequencies will be introduced
through an impulse loading (Figure 5).

The impulse created by the instantaneous relax-
ation of loading is equivalent to the impulse cre-
ated by the failure of one link. For t > 2 ms, the
specimen oscillates vertically at low frequencies in
free vibration phase. These low frequencies have a
physical interpretation and should not be damped.
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Figure 4: Response of dynamic tension test on a
square (0,1 m×0,1 m) without numerical damping.
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Figure 5: Elastic load for dynamic test.

On the other hand, high frequencies created by the
force impulse have to be damped. This goal should
be reached by the time integration scheme.

For a typical time step ∆t, we have to compute
displacement dt+∆t, velocity vt+∆t and accelera-
tion vector da+∆t, containing the motion compo-
nents for particle centers, which satisfy the equa-
tions of motion at time t+∆t

Mat+∆t +Cvt+∆t + F
int(dt+∆t) = F

ext
t+∆t (9)

Explicit scheme For high-rate loading, the
most employed scheme is an explicit one based on
the central different scheme. The main advantage
of this scheme is that for a diagonal form of the
mass matrix and a constant damping, the compu-
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tational cost is very low. The main draw-back is its
conditional stability. However, this scheme is em-
ployed for fast load like beam scabbing test, where
high or low frequencies do not need to be damped.

Implicit scheme The unconditional stability is
obtained through an implicit scheme. The most
employed one is time integration by trapezoidal
rule (or Newmark implicit scheme). In that case,
the displacement and velocity approximation are

dt+∆t = dt +∆tvt + (∆t)2
(

(
1

2
− β)at + βat+∆t

)

vt+∆t = vt +∆t ((1− γ)at + γat+∆t) (10)

where β = 1/4 and γ = 1/2 are the most appropri-
ate values of the Newmark parameters correspond-
ing to trapezoidal rule. Linearized form of this sys-
tem to be used in the Newton iterative procedure
is written as:

(

1

β(∆t)2
M+

γ

β∆t
C+K(dt)

)

∆d =

Fext
t+∆t −K(dt)dt

+C

(

(
γ

β
− 1)vt +∆t(

γ

2β
− 1)at

)

+M

(

1

β∆t
vt + (

1

2β
− 1)at

)

(11)

No damping is introduced with this scheme. One
can introduce numerical dissipation by choosing
higher values of the Newmark parameter, but the
scheme is no longer of second accuracy.

HHT scheme A derived scheme of the New-
mark one is the HHT-α scheme, which has been
developed in order to damp high frequencies [4].
The idea is to change equation of motion to

Mat+∆t + (1 + α)Cvt+∆t − αCvt

+(1 + α)K(dt+∆t)dt+∆t − αK(dt)dt =

(1 + α)Fext
t+∆t − αFext

t (12)

where α is a parameter chosen as α ∈ [−1/3, 0]
whereas the other parameters are β = 1

4
(1 − α)2

and γ = 1
2
− α.

Linearized form of this system to be used in the
Newton iterative procedure is written as:
(

1

β(∆t)2
M+ (1 + α)

(

γ

β∆t
C+K(dt)

))

∆d =

(1 + α)Fext
t+∆t − αFext

t −K(dt)dt + αCvt

+(1 + α)C

(

(
γ

β
− 1)vt +∆t(

γ

2β
− 1)at

)

+M

(

1

β∆t
vt + (

1

2β
− 1)at

)

(13)

This scheme is probably the best one for our kind
of model with linear beams. But when nonlinear
beams are used, this scheme can lead to numerical
problem like generation of energy rather its dissi-
pation. The last proposed scheme avoid this kind
of non physical behavior.

Time integration with energy decaying
scheme This last scheme keeps dissipation of
high frequencies, and ensure the energy decay for a
non-linear behavior (see [6] for application to non-
linear beams). The equation of motion are written
at time t+∆t/2:

Mat+∆t

2

+Cvt+∆t

2

+K(dt+∆t

2

)dt+∆t

2

=

Fext
t+∆t

2

(14)

Energy decaying is obtained by introducing the
dissipation when computing the internal forces and
the inertia terms, as

K(dt+∆t

2

)dt+∆t

2

= 1
2
(K(dt+∆t)dt+∆t +K(dt)dt) +

α1(K(dt+∆t)dt+∆t −K(dt)dt)

and the inertia terms and velocity are changed to :

dt+∆t = dt +
∆t

2
(vt+∆t + vt)

+α2∆t(vt+∆t − vt)

where α1 and α2 are the two parameters that con-
trol the dissipation. Linearized form of the system
is:

(

2

(1 + 2α2)(∆t)2
M+

1

(1 + 2α2)∆t
C

+(
1

2
+ α1)K(dt)

)

∆d =

1

2
Fext

t+∆t +
1

2
Fext

t −K(dt)dt

−
2α2

1 + 2α2
Cvt +M

(

2

(1 + 2α2)∆t
vt

)

(15)
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At α1 = α2 = 0, no dissipation is introduced.
Large values (α1 = α2 > 0.5) give undesirable
dissipation of low frequencies. For our numerical
computations, α1 = α2 = 0.05 give good results
with dissipation of high frequencies in less than
ten low-frequency oscillations (∆t = 10−6 s).

Numerical results obtained with this scheme are
shown on Figures 6 and 7. Figure 6 shows the ver-
tical and horizontal displacement of a particle lo-
cated at the top of the specimen. The vertical dis-
placement (dashed line) show low frequencies cor-
responding to free oscillations of the specimen. On
the other hand, horizontal displacement (continu-
ous line) is the juxtaposition of high and low fre-
quencies. As expected, after few oscillations, just
high frequencies are damped. Figure 7 shows the
evolution and the dissipation of energy during the
loading.

0 1 2 3 4
t (ms)

−10

−5

0

5

10

d 
(x

10
−

6  m
)

30dh

dv

Figure 6: Horizontal and vertical displacements of
a particle at the top of the specimen.
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Figure 7: Energy evolution during the loading.

4 CONCLUSIONS
A discrete model based on a voronoi cell descrip-
tion of the material is proposed. Cohesive forces
are represented by nonlinear beams, allowing to

take into account large displacements of the cells.
Static and dynamic analysis are proposed and a
particular attention is given to time integration
schemes. We have tested explicit schemes for high
rate loading, as well as implicit schemes for low
rate loading. The chosen dynamic scheme has to
damp non physical high frequencies due to link
ruptures, and we proposed the use of a particular
scheme which damps these frequencies and guar-
antees the dissipation of energy, either in nonlinear
case.
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