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ABSTRACT: In the conventional bound theory for transport properties, including heat conductivity, the 
effect of a heat source has previously not been considered.  However, heat sources play an important role in 
the thermal analysis of any, especially massive engineering structures.  Wojnar [1998] defined artificial 
thermal and heat flux energy expressions, which are shown to be very useful in thermal analyses. Using 
these energy terms for composite materials with internal heat source, the bounds of the thermal 
conductivity tensor of two-phase or multi-phase non-homogeneous anisotropic materials are obtained. As a 
numerical example, the effect of a heat source described in terms of a polynomial in a spherical two-phase 
composite is studied in detail.  
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1. INTRODUCTION 
The effective properties of a heterogeneous 
material are often considered as properties of an 
equivalent homogeneous solid, and there are 
several methods to describe the effective 
properties. Among them are the self-consistent 
method [Hershey; 1954, Hashin-Shtrikman, 1962a; 
Hill, 1965; Budiansky, 1965; Christensen, 1979; 
Christensen-Lo, 1979], differential scheme 
[McLaughlin, 1977; Abudi, 1991], and Mori-
Tanaka’s method [Mori-Tanaka, 1973; Benveniste, 
1986 and 1987 and Abudi, 1991]. In these 
approaches the effective properties should lie 
between the bounds of the properties, which can be 
found by defining appropriate functions and 
considering special limiting cases related to the 
problem. 
In linear elasticity theory, bounds on the moduli 
can be obtained by variational methods. To use this 
approach to obtain the bounds of effective property 
an appropriate function has to be defined. Also, one 
set of the appropriate functions is the expressions 
for potential and complementary energies. Using 
these energy expressions in the principles of 
minimum potential energy and minimum 
complementary energy, one can find the bounds for 
the strain energy and then the bounds for the 
elasticity tensor [Hashin, 1962]. 

Similarly, in the transport problems such as heat 
transfer, transfer of electricity, magnetic field 
transfer, and fluid flow processes, defining 
appropriate functions are useful for finding the 
bounds for heat and fluid flow conductivities, 
diffusivity, electric conductivity, dielectric 
constant, and magnetic permeability. Hashin and 
Shtrikman [1962a] extended a variational theorem 
formulated by Brown to find the bounds for 
magnetic permeability. 
Following Gurtin [1972], Wojnar [1998] defined 
artificial thermal and heat flux energy measures. 
Then, by finding the bounds for the thermal and 
heat flux energy measures, he was able to validate 
the bounds for the effective conductivity of a 
heterogeneous material. 
By generalizing Hashin-Shtrikman variational 
principle to the coupled problems of 
piezoelectricity, Hori and Nemat-Nasser [1998] 
found the upper and lower bounds for the effective 
moduli.     
Recently, Eskandari-Ghadi, Xi and Sture [2003a] 
found a new bound on the elasticity tensor for the 
composite material, by modifying the bounds for 
strain energy for the case when a body force exists 
in the heterogeneous material.  
To the best authors’ knowledge, none of the above-
mentioned work has considered the effect of heat 
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source on the effective conductivity of composite 
materials. The effect of heat source on heat 
conduction is important in practical applications.  
For many engineering materials, such as concrete, 
the heat generated by the chemical reactions plays 
an important role in the performance of concrete 
structures. The heat of hydration due to the reaction 
between cement and water can increase the 
temperature within a concrete structure 
significantly, which could result in high 
concentration of thermal stress and severe fracture 
damage in the structure.   
Similar to heat conduction, in the processes of 
mass transfer and ion penetration, such as moisture 
diffusion and chloride penetration in concrete, the 
moisture and chloride react with chemical 
components of cement and form non-soluble salts.  
The consumption of moisture and chloride in the 
reactions can be considered as a sink (a negative 
source).  Therefore, it is also important to consider 
the effect of source on mass transfer and ion 
penetration, which are similar mathematically to 
the effect of heat source on conductivity.   
It is the purpose of this paper to evaluate the effect 
of heat source on the effective heat conductivity. 
To achieve this goal, following Wojnar [1998], we 
modify the bounds for the artificial thermal energy 
and artificial thermal flux energy to consider the 
effect of heat source on the heterogeneous material. 
Using these modified artificial energies, the bounds 
for the effective conductivity are modified in order 
to consider the effect of heat source.  

2. PROBLEM STATEMENT  
We define the region (of a composite material) in 
Euclidian space E and denote it by B and its 
boundary by B∂ . The entire region and its 
boundary are denoted by B . So, BB ∂, and ⊂B  
E. The vector space associated with E is again 
described by E.  So, the points and vectors are in E.  
In this paper, the vectors and second order tensors 
are shown by lower case bold letters and capital 
letters in bold, respectively.  The scalar terms are  
described by either lower or capital italic letters.   
We denote the temperature variation from a 
reference temperature as θ  and its gradient, θ∇ , 
as η : 

θ∇=η      (1) 

Thus, η  is a vector.  Using (1) Fourier’s law takes 
the following form: 

Kηq −=     (2) 

Where q is the heat flux and K  is the thermal 
conductivity tensor. K  is symmetric and positive 

definite tensor. Since K  is positive definite, its 
eigenvalues are positive, and thus it is invertible. 
We denote its inverse tensor by R , which is the 
thermal resistivity tensor, and which clearly is a 
symmetric and positive definite tensor. If the heat 
source is described by θr , then the stationary heat 
conduction equation (equilibrium heat equation, 
takes the form: 

0div =+ θrq     (3) 

We divide the boundary of B into two parts in such 
a way BBB 21 ∂∂=∂ U  and BB 21 ∂∂= Iφ , where 
φ  is the empty set. Here B1∂  and B2∂  are 
respectively the parts of B∂ , where the 
temperature and heat flux are known: 

θθ ˆ=    on B1∂   (4) 

nq̂n.q =   on B2∂   (5) 

Here θ̂  and nq̂  are prescribed functions. n is the 
unit vector normal to B∂ . The ordered pair 

)ˆ,( nqrθ  is describes by the external thermal load. 
If B2∂  is empty, then the boundary value problem 
(1) to (4) is the 1st type or temperature boundary 
value problem (TBVP). If B1∂  is empty, then the 
boundary value problem (1), (2), (3) and (5) is the 
2nd type or flux boundary value problem (FBVP). If 
neither B1∂  nor B2∂  is empty, then the boundary 
value problem (1) to (5) is a mixed boundary value 
problem (MBVP). 

Definitions:  

The scalar field θ  is said to be an admissible 
temperature field within B  provided θ  is of class 

2C  on B and θ  and θ∇  are continuous within B .  
Similarly, the vector field q is an admissible flux 
field in B  if q is of class 1C  within B, and q and 
div q are continuous within B . η  is an admissible 
temperature gradient, if it is continuous within B . 
The ordered triple q)η,,(θ=s  is named by 
admissible thermal state provided η,θ  and q are 
admissible functions. So, in an admissible thermal 
state there is not a necessary relationship between 

η,θ  and q. The admissible thermal state is related 
to the system )ˆ,( nqrθ  provided equations (1), (2) 
and (3) are satisfied. In this case, we say 

q)η,,(θ=s  is an admissible thermal state 
corresponding to )ˆ,( nqrθ  or simply thermal state. 
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An admissible thermal state is a kinematically 
admissible thermal state, if equations (1) and (2) 
are satisfied and θ  satisfies the thermal boundary 
condition (4). We say q is a stationary admissible 
heat flux, if it satisfies the stationary heat 
conduction equation and the flux boundary 
condition (5). An admissible thermal state, 

q)η,,(θ=s  is a stationary admissible thermal 
state, if q  is a stationary admissible heat flux. It is 
clear that if a state is both kinematically and 
stationary admissible thermal state then it is the 
solution of MBVP. We state that two states 

q)η,,(θ=s  and )q,η,( ′′′=′ θs  are equal 
modulo a constant temperature, if 

)q,η,(q)η,,( ′′+′= 0θθθ    (6) 
Where 0θ  is constant. 
After Wojnar1, we say )(ηkU  is an artificial 
thermal energy corresponding to an admissible 
temperature gradient field η  on B if: 

∫=
B

dVU Kη.η)(ηK 2
1    (7) 

The artificial heat flux energy is defined as: 

∫=
B

dVU qR.q(q)R 2
1    (8) 

Where .  denotes the usual inner product of vectors. 

3. BOUNDS FOR ENERGIES 
By the above mentioned definitions and the 
theorems appeared in Wojnar [1998], the following  
theorem is readily proved [Eskandari-Ghadi, Xi & 
Sture, 2003b]: 
 
Theorem (Upper and Lower bounds for the 
artificial thermal energy): Let 1U  be the artificial 
thermal energy corresponding to TBVP. Then 
 

∫

∫∫
−+≤≤

′−−′−
∂

B

B
n

B

dVrUU

dAqdVrU

)~()η~(

ˆ)q(

K

R

θθ

θθ

θ

θ

1

     (9) 
Where θ~  is a thermally admissible temperature 
and η~  is the related field. q′  is a stationary 
admissible heat flux field and n.q′=′nq  is the 
corresponding heat flux in the n direction. 

                                                 
1 Wojnar denoted )(ηKU  as the thermal energy 
and he, showed the unit of this function is WK 
rather than J.  

4. BOUNDS FOR EFFECTIVE CONDUCTIVITY  
In this section, the previous bounds for 
conductivity are modified to consider the effect of 
a heat source. To do this, we start by defining the 
mean values of flux and the gradient of temperature 
as 

∫=
B

dV
V

qq 1     (10) 

∫=
B

dV
V

ηη 1     (11) 

The effective conductivity for these two terms is 
defined by 

ηK.ηηK.η )(e

B

dV
V

=∫
1    (12) 

We show the effective resistivity by )(R e : 

 qR.qqR.q )(e

B

dV
V

=∫
1   (13) 

Using (12) and (13), one can write 

ηK.ηηK.η )(
K

e

B

VdVU
2
1

2
1

== ∫  (14) 

qR.qqR.q )(
R

e

B

VdVU
2
1

2
1

== ∫  (15) 

On the other hand, by using the above-mentioned 
theorem and theorems in [Eskandari-Ghadi, Xi & 
Sture, 2003b], we can develop the inequalities 

∫ −+≤
B

k dVrUU )~()η~( θθθ1   (16) 

)q( ′≤ RUU 2     (17) 

where θ~  is an admissible temperature and η~  is its 
gradient. q′  is a stationary admissible heat flux. 
So, if we identify η~  with η  and q′  with q , then 
(16) and (17) imply 

∫∫ −+









≤

BB

e

dVrdV

V

)(ηK.η

ηK.η )(

θθθ2
1

2
1

 (18) 

qR.qqR.q )(











= ∫

B

e dVV   (19) 

Of course, in inequality (18), θ  is the average of 
θ . Equation (18) shows that the upper bound for 
the effective conductivity tensor, )(K e , which may 
be anisotropic, depends on the conductivity at each 
point of the material and heat source.    
Assuming that the material is non-homogeneous 
but isotropic, we reach 
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IKI,K )()( ee KK ==  (20) 

IRI,R )()( ee RR ==   (21) 
Then, by defining η.η=2η , from (18) 

∫∫ −+









≤

BB

e dVr
V

dVK
V

K )()( θθ
η θ2

21  (22) 

And from (19) 











≤ ∫

B

e dV
V

R R1    (23) 

Considering K  as the inverse of R , inequalities 
(22) and (23) are combined as 

∫∫

∫

−+









≤

≤









−

BB

e

B

dVr
V

dVK
V

KdV
KV

)(

)(

θθ
η θ2

1

21

11

 (24) 

These derivations provide general theories for 
upper and lower bounds of effective conductivity 
of composite materials.   

5. ANALYSIS 
In this section, we provide an example to examine 
the effects of heat source on the bounds of effective 
conductivity of a composite comprising of to 
isotropic phases. This example shows useful results 
on basic trends of the bounds when heat source 
varies in the composite materials.  

We consider B as a spherical domain containing 
two different phases (Fig. 1).  Phase 1 is a sphere 
of inner radius a and outer radius b, and Phase 2 is 
a sphere of radius a, which is inside Phase 1.  The 
conductivities of Phase 1 and Phase 2 are )(1K  and 

)(2K , respectively. The heat sources are assumed 
as narr )()()( 11 δθ =  and narr )()()( 22 δθ =  in each 

phase, where n is a non-negative real number; )(1δ  
and )(2δ  are constants representing the magnitudes 
of the heat source of Phase 1 and Phase 2; and r is 
the spherical radial coordinate. In these 
circumstances, the stationary heat conduction 
equation takes the form 

),(,)()(

)(
)( 212 =−=∇ iar

K
n

i

i
i δθ   (25) 

Considering spherical symmetry, the total solution 
of this equation is 

),(

,
))((

)(
)(

)(
)(

)(
)(

21
32

2

=
++

++=

i
nn

r
a
r

K
B

r
Ar

n

n

i

i
i

i
i δθ

     (26) 
Where )(iA  and )(iB  are constants. Regarding the 
limiting value for temperature at r = 0, )(2A  
vanishes. The remaining constants are determined 
by satisfying the continuity conditions at r = a and 
the boundary condition at r = b. We consider the 
following boundary condition: 

 
         z  
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Fig. 1  A spherical composite element contains an 
inclusion of radios a and thermal conductivity )(1K , 
and a matrix of inner radios a and outer radios b 
with conductivity )(2K  

br == at01)(θ  ` (27) 
In this way, we obtain 
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Substituting )()( , 11 BA  and )(2B  from (28) to (30) 
into (26) gives the temperature in each phase.  
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Then, the mean value of the temperature 
(volumetric average) is  




−
+

+++
+−+



 +−=

++

][

)
))()((

)(

)(

)(

)(

)(

)(

)(

)()()(

n

nn

a
ab

K
a

K

nnn
abA

bBaBB
b

55

1

1
5

2

2

221

31312
3

532
1

2
1

3
1

3
13

δδ

θ

 (31)  

Substituting the heat sources, temperatures from 
(26), θ  from (31), the upper bound of the effective 
conductivity is 









−+−

++=

∫∫
b

a

a

e
u

drrrdrrr

KbK
Kcc

K
K
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0

222

1231

2

211

6

)()( )()()()(

)()(
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θθθθ

η

θθ

     (32) 
where 



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+
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+−−=
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)(

)(

)(

)(
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1

1
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2

2

1
3 43

13

δδ

η
 (33) 

Based on equation (32), a numerical evaluation of  
)()( 1KK e

u  is obtained. Table (1) shows a 
comparison between the Voigt model and the 
present study, when 1021 =)()( KK , n = 0, 

011 .)( =δ  and 012 .)( =δ . It is observed that within 
the selected accuracy both bounds coincide, which 
means that based on this example, for a constant 
heat source the bound obtained in this study is 
exactly the same as the Voigt bound.  
 
 
Table 1 Comparison of the upper bound for 
effective conductivity based on Voigt model and 
the present study when n = 0, 011 .)( =δ  and 

012 .)( =δ  

2c  
Upper bound for 
conductivity due to 
present study when n 
= 0, 011 .)( =δ  and 

012 .)( =δ  

Upper bound for 
conductivity based 
on Voigt (parallel) 
model 

0.00000 1.00000 1.00000 
0.00241 0.99783 0.99783 
0.01680 0.98489 0.98488 
0.05403 0.95138 0.95137 
0.12500 0.88750 0.88750 
0.24059 0.78347 0.78347 
0.41167 0.62950 0.62950 
0.64913 0.41578 0.41578 
0.96386 0.13253 0.13253 
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Fig. 2 Bounds for effective conductivity with the 

effect of heat source for 0=n  and 
different values )(1δ  and )(2δ , when 

.)()( 1021 =KK  
 
Fig. (2) shows the upper bounds of effective 
conductivity for different values of )(1δ  and )(2δ  
with n = 0. In these cases, the heat sources are 
constants (n = 0), but different constants within 
Phase 1 and Phase 2. One can see that, at a fixed 
volume fraction of Phase 2, the upper bound of 
effective conductivity decreases with increasing 

)(2δ , if )(1δ  is held constant, and the upper bound 

increases with increasing )(1δ , if )(2δ  is held 
constant.  In another words, the upper bound of the 
effective conductivity is a function of the ratio of 
the heat sources, )()( 21 δδ  in constituent phases. It 
increases if this ratio increases and it decreases if 
the ratio )()( 21 δδ  decreases. 
Fig. (3) shows the upper bounds of the effective 
conductivity for different values of n with 

)()( 21 δδ = . One can see that the upper bound 
increases when n increases. 

6. CONCLUSIONS 
1. Using the principle of minimum artificial 
potential energy and complementary energy 
defined by Wojnar [1998], the bounds for effective 
conductivity were modified to consider the effect 
of a heat source. 

2. Within the framework of this article, the heat 
source does not have any effect on the lower bound 
for effective thermal conductivity.  The heat source 
affects only the upper bound. 
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Fig. 3 Bounds for effective conductivity with the 

effect of heat source for different values 
of n , when 121 == )()( δδ  and 

.)()( 1021 =KK  

 
3. A polynomial-described heat source was used as 
a numerical example.  The upper bound of the 
effective conductivity with heat source is usually 
above the Voigt bound, if the coefficients of the 
heat source in the inclusion (phase 2) and matrix 
(phase 1) are the same; while its lower bound does 
not change.  But, when the heat source in the 
inclusion (phase 2) is higher than the heat source in 
the matrix, the upper bound could be significantly 
below the Voigt bound. 
4. The results for the effect of heat source on 
conductivity of composites can also be used for 
evaluating the effect of source (and sink) on 
effective permeability and diffusivity of 
composites.   
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