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ABSTRACT: A numerical model within the framework of the nonsymmetric formulation of the strong
discontinuity approach (SDA) for fracture simulations is investigated. Shortcomings of the basic formulations
are analyzed and potential methods to overcome them are discussed. A new tracking algorithm intending to
enforce continuity of the crack is proposed. The proposed model is applied to simulations of academic and
large-scale problems.
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1 INTRODUCTION

The strong discontinuity approach (SDA) has gained
wide popularity in FEM-based simulations of con-
crete fracture over the last years. In the SDA macro-
scopic cracking of quasi-brittle materials is repre-
sented by embedding a discontinuous displacement
field in finite elements (Oliver 1996a). Thus, in con-
trast to the classical smeared crack approach it allows
for a proper kinematic resolution of a macroscopic
crack without the need for any regularization. On the
other hand extensive remeshing – typically neces-
sary for discrete crack-models – is avoided as cracks
may cross FE-meshes in arbitrary ways. In its basic
formulation the method exhibits a strictly local char-
acter. Despite of its conceptual simplicity it turned
out that the SDA found in the original formulations
implies some shortcomings which render it not fully
objective. The major drawback can be found in its
sensitivity with respect to the mesh-layout (Jirásek
& Zimmermann 2001).

This paper addresses some computational aspects
of a particular implementation within the SDA
framework. It starts with the basic local formu-
lation and shows its shortcomings. The necessary
ingredients to overcome the deficiencies are applied
step-by-step leading to an objective formulation.

The main features of the particular SDA-model
presented in this work are effective algorithms for
determining the direction of a propagating crack and

for enforcing a continuous crack-path across finite
elements.

It is shown that enforcing a continuous crack-
path is a necessary ingredient for the particular
formulation. It alleviates the pathology of mesh-
sensitivity and resulting locking-effects, although the
local character of the model is lost. Enforcement
of continuous crack-paths is established by track-
ing algorithms (Oliver et al. 2003). Established
algorithms are briefly outlined and a new strategy is
proposed.

In classical models the determination of the crack-
propagation direction relies on information derived
from a suitable constitutive model. For instance,
when applying the SDA to concrete fracture simu-
lations the maximum principal stress direction may
be chosen corresponding to a Rankine criterion for
mode-I fracture. However, principal stress directions
derived from the local stress field more or less differ
from realistic macroscopic crack directions. By em-
ploying a nonlocal averaging procedure macroscopic
cracks are recovered objectively.

The capabilities of the model are demonstrated by
its application to simulations of both laboratory tests
and a large-scale dam analysis. The presented work
is done in the framework of the thematic network
Integrity Assessment of Large Concrete Dams
(NW-IALAD) (Ialad 2003). The aim of the network
is to conduct a state of the art review on integrity and
safety assessment tools for concrete dams.



2 BASIC SDA MODEL

2.1 The strong discontinuity kinematics

Consider a two-dimensional domain Ω crossed by
a fixed material (localization) line Γ, which is de-
fined by its unit normal vector n. It represents, for
instance, a macroscopic crack in concrete. The lo-
calization line splits Ω into two portions Ω+ (pointed
by n) and Ω− such that Ω+∪ Ω− = Ω\Γ (Oliver at
al. 2003). Assuming the displacement field u(x) to
exhibit a jump across the localization line an additive
decomposition of the displacement field into a regu-
lar part ū and a term û related to the displacement
jump – i.e. the crack-opening – can be postulated:

u(x) = ū(x) + û(x), ∀x ∈ Ω

û = [[u]]MΓ(x) (1)

[[u]] = u |
x∈ ∂Ω+∩Γ −u |

x∈ ∂Ω−∩Γ .

The function MΓ(x) consists of the Heaviside-
function HΓ(x) placed on the discontinuity line Γ
(HΓ(x) = 1 ∀x ∈ Ω+ and HΓ(x) = 0 ∀x ∈ Ω−)
and a smooth function ϕ(x)

MΓ(x) = HΓ(x) − ϕ(x), ∀x ∈ Ω (2)

restricting the effect of the displacement jump to the
vicinity of the localization line.

2.2 The strong discontinuity approach

Using the kinematics defined by (1) a two-field BVP
may be formulated with the regular displacement
field and displacement jumps as primary unknowns.
Different approaches to this BVP have been adopted
in the literature (cf. (Samaniego 2003) for a system-
atic overview): among them the Strong Disconti-
nuity Approach (SDA) gained wide popularity.

According to the classification of possible mod-
els within the SDA by (Jirásek 2000) the Stati-
cally and Kinematically Optimal Nonsymmetric
(SKON)-approach is used within the present for-
mulation. A simple Rankine-criterion – suitable
for mode-I fracture – is employed for triggering and
controlling cracking and the concept of fixed cracks
has been adopted. An exponential softening rela-
tionship is used. The model accounts for normal and
tangential crack opening. The unknown displace-
ment jumps are condensed at element level (Feist &
Hofstetter 2003) by a multi-surface return-mapping
algorithm (Simo & Hughes 1998). To this end the
traction-continuity condition is enforced along the
localization line (Oliver 1996b) at element level.

Instead of describing the particular model in detail
the problem of placing and aligning the discontinuity
segments at element level will be dealt with.

3 REPRESENTATION OF DISCONTINUITIES

In the model briefly outlined in the previous sec-
tion some discontinuity-line Γ is approximated by
line-segments placed in the elements crossed by the
respective discontinuity. Thus, for each of those
elements information both on the direction of the
line-segment and its position is required.

As far as the direction is concerned the information
obtained from the (local) constitutive model may be
exploited. Thus, in case of the employed Rankine-
model the direction is given by the principal stress
exceeding the tensile strength. Since the concept
of fixed cracks is used the normal vector n remains
fixed throughout further loading.

The position of the discontinuity within a particu-
lar element may be determined individually for each
element as an initial attempt. As the present model
is based on a simple linear triangular element with
a constant strain-field and constitutive response, the
discontinuity-segment could be placed at an arbi-
trary point of the element. A suitable choice would
be to select the centroid of an element. However,
in this case discontinuity-segments of neighboring
elements will be discontinuous across their com-
mon edges. Consequently, the actually continuous
discontinuity-line is only poorly captured: A partic-
ular node shared by several elements may be found at
the same time in Ω+ and Ω− for different elements.
However, an advantage of this strategy is its local
character (with respect to the element level).

The problem of placing discontinuities is empir-
ically investigated by means of numerical simula-
tions of the wedge-splitting-test conducted by (Trunk
2000). The square-shaped specimen has a vertical
notch with a length of about half of the specimen
height. It is supported below the center of gravity
of each half of the specimen (Fig. 1a). The hor-
izontal test load is applied by a vertically pushed
wedge on the upper lateral faces of the notch. The
load-displacement diagram can be found in Fig. 1c
(curve a). Numerical simulations are carried out em-
ploying an unstructured triangular mesh (Fig. 1b),
which is intentionally not aligned with the vertical
macroscopic crack of the real specimen.

By applying the SDA-model with placing the dis-
continuities individually within each element, the
load-displacement curve denoted by (b) in Fig. 1c
is obtained, which strongly deviates from the ex-
perimental one. The reason for this is revealed by
Fig. 2a showing the elements enriched by a displace-
ment jump at the end of the analysis: A large number
of elements covering an ample area of the specimen
is found to be affected. This behavior originates in
a poor resolution of the macroscopic crack direction
by using the local direction of the maximum princi-



pal stress. This becomes obvious when scrutinizing
the situation during the very first load-steps of the
analysis in a close-up of the center of the specimen
(Fig. 2d): The crack emerges from the center element
in a perfect vertical direction. However, the crack-
directions in the two neighboring elements, which
start to crack in the next two load-steps, deviate con-
siderably from the vertical direction. As cracks re-
main fixed upon further loading severe stress-locking
occurs. This leads to spurious cracking in neighbor-
ing elements shown by the subsequent load-steps in
Fig. 2d.

Next, the same model is employed, however, with
the direction of the crack-segments in the individ-
ual elements not determined from the local principal
stress tensor but artificially prescribed in vertical di-
rection. In this case a load-displacement curve ex-
hibiting at least some peak-load and softening branch
is obtained (Fig. 1c, curve c), although the load-
carrying capacity of the specimen is largely overes-
timated. Obviously, stress locking phenomena are
present also in this formulation. A closer look at the
elements enriched by a displacement jump in Fig. 2b
shows that the cracked elements are located in a nar-
rower band slightly offset to the right of the vertical
axis of symmetry. However, even worse than in the
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Figure 1. Numerical investigation of a wedge-splitting-test:
(a) geometry, loading and material parameters of specimen, (b) fi-
nite element mesh and (c) load displacement curves

former case, the crack also reaches the top of the
specimen. The three initial stages of cracking in
Fig. 2e offer a rather optimistic situation. However,
as the fourth element starts cracking, the crack is
offset to the left. Thus, the crack in element 4 does
not intersect the common edge with element 3 but
induces further cracking to its upper-left neighbor-
element. This obviously leads again to spurious
cracking and an unrealistic behavior.

Instead of placing discontinuities individually in
each element yielding a discontinuous approxima-
tion of the crack-path, the crack (still prescribed to
be exactly vertical) is now forced to be continuous
across element-edges. The load-displacement curve
is resolved very realistically by this manipulation
(Fig. 1c, curve d). The cracks are restricted to a
vertical band of elements shown in Fig. 2c. As the
close-up of the initial load-steps in Fig. 2f shows, the
continuous crack-path ensures that common edges
of adjacent elements are correctly intersected by the
crack-segments avoiding spurious cracking and load-
transfer.

Summarizing the observations it appears to be nec-
essary to enforce continuity of cracks across element-
edges. This appears to be more realistic in the phys-
ical sense when dealing with macroscopic cracks. A
more formal explanation can be found in (Samaniego
2003). On the other hand the determination of the
crack-direction seems to need some improvement in
order to make the artificial prescription of the crack
direction, chosen in this test, dispensable. These
observations are in full accordance to similar con-
siderations by (Jirásek & Zimmermann 2001).
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Figure 2. Elements exhibiting a displacement jump (shaded grey)
and close-ups of the initial load-steps for: (a), (d) discontin-
uous crack-path based on local principal stress direction, (b),
(e) discontinuous crack-path with prescribed crack direction, (c),
(f) continuous crack-path with prescribed crack direction.



4 CRACK-PATH CONTINUITY

In the following the enforcement of a continuous
crack-path will be addressed. In general, this re-
quires the exchange of information of adjacent ele-
ments concerning the crack position. Consequently,
the local character of the SDA-model is lost. Al-
gorithms dedicated to the identification of material
points along which the discontinuity proceeds can be
termed as tracking algorithms (Oliver et al. 2002).

4.1 Tracking algorithms

A traditional way of tracking discontinuities is a lo-
cal tracking strategy (Oliver et al. 2002): The
propagation of a discontinuity is traced by geomet-
ric calculations starting from its root element, i.e.
the element from which the discontinuity emanated.
If within an element cracking is indicated either an
already existing crack is propagating through the
respective element or a new crack emerges in the
respective element. In the former case the posi-
tion of the discontinuity-segment is obtained from
the geometric information of the discontinuity-path.
In the latter case the element becomes a new root-
element for which it is a suitable choice to place
the discontinuity-line at the centroid of the element.
This algorithm requires information on the element-
connectivity and nodal coordinates.

In contrast to this intuitive algorithm (Oliver et
al. 2002) proposed a global tracking algorithm:
Its basic idea is to trace at once all possible dis-
continuity paths at some time tn: Consider a vector
field Nn(x) describing the potential discontinuity-
normals at any point x in the domain Ω. For 2D-
problems the vector field T n(x) fulfilling the con-
dition T n(x) · Nn(x) = 0 represents the tangents
to the potential discontinuity-lines and thus provides
information on the potential direction of its propaga-
tion. Constructing a scalar field θn(x) with isolines
representing envelopes to the vector field T n(x) im-
plicitly supplies all possible discontinuity-lines. The
scalar field θn(x) can be obtained as the solution
of a BVP in the domain Ω which resembles a sta-
tionary heat conduction problem with an orthotropic
heat conductivity matrix (Oliver et al. 2002). The
axes of orthotropy are thereby defined by the vec-
tor fields Nn(x) and T n(x). Thus, each existing
discontinuity-line Γi can be characterized by a con-
stant scalar value θΓi

. For elements indicating in-
cipient cracking it has to be checked, if one of the
isolines of the scalar field θΓi

– each corresponding
to a specific discontinuity-line Γi – crosses the ele-
ment domain. If so, the position of the discontinuity
Γi is defined by the locus of the respective isoline θΓi

within the element. Otherwise, the element is viewed

as a new root element defining a discontinuity-line
Γj . The scalar value θΓj

corresponding to this new
discontinuity is obtained by interpolating the scalar
value at the root-element centroid from the nodal
values. According to the fixed crack concept the
axes of orthotropy remain fixed once the element is
cracked, whereas these axes in general rotate upon
further loading in uncracked elements.

In a finite element setting the global tracking algo-
rithm may be formulated as an uncoupled two-field
BVP consisting of the mechanical and the pseudo-
heat conductivity problem. In contrast to the local
tracking algorithm no information on the mesh-data
is required for crack-tracking, although on the other
hand the number of total degrees of freedom is in-
creased by the pseudo heat conductivity problem.

A detailed investigation of the approach proposed
by (Oliver et al. 2002) reveals, that the isolines
of the scalar field θn(x) obtained by the proposed
algorithm in general only provide approximations
to the envelopes for the vector field T n(x). The
approximative nature of the computed envelopes is a
consequence of the finite number of sampling points.
Spurious rotations of the isolines of the scalar field
emerge from this fact leading to slightly changing
representations of the discontinuity line. The topic
is covered in more detail in (Feist & Hofstetter 2003).

4.2 Partial domain tracking algorithm

Certain drawbacks of the described tracking algo-
rithms can be circumvented by the proposed partial
domain tracking algorithm: The basic idea of in-
terpolating the position of discontinuities by means
of the isolines of some scalar field is maintained from
the global tracking algorithm. However, the spuri-
ous rotations of the isolines in elements with existing
cracks is avoided by constructing the scalar field only
for a set of those elements which are already crossed
or potentially will be crossed by discontinuity-lines.

Consider the following situation at time tn with
an already existing root-element ri and a set of ele-
ments crossed by the discontinuity line Γi. At time
tn the potential continuation of the discontinuity line
Γi for time-step ∆tn+1 shall be predicted. The dis-
continuity line Γi will be represented by the isoline
θΓi

of a scalar field θ(x) passing through the center
of the root element. At first, the scalar field in a
given root element ri is determined. As the isolines
of the scalar field have to be parallel to the direction-
vector of crack-propagation t

(e), for the gradient of
the scalar field to be constructed in element e it must
hold

∂θ(e)

∂x
= c · n(e), c ∈ R. (3)



As long as c 6= 0 is fulfilled, an arbitrary number
may be assigned to c, as it does not influence the
orientation of the isolines. As an additional infor-
mation for constructing the scalar field an arbitrary
scalar value at some point (e.g. centroid) within the
element domain is prescribed. The scalar field may
now be determined at the element nodes. Providing
the information of a particular scalar value and the
gradient of the field resembles the idea of prescrib-
ing fictitious nodal scalar values within the global
tracking algorithm (Oliver et al. 2002).

The discontinuity path is then traced over elements
connected to the root-element and sharing the same
scalar value θΓi

by extending the scalar field to the
domains of such elements. To this end n

(e) provides
the information on the gradient of the scalar field.
The procedure is repeated until the boundary of the
mesh is reached.

Once the scalar field is constructed for all subdo-
mains of the mesh (each corresponding to a particu-
lar discontinuity-line), it can be exploited for crack-
prediction purposes in the following time-step. The
algorithm then exactly follows the ideas of the one
proposed by (Oliver et al. 2002). For a compre-
hensive description of the algorithm see (Feist &
Hofstetter 2003) and (Feist 2004).

The proposed algorithm requires storage of nodal
coordinates and the element connectivity (essentially
equal to the local tracking algorithm). However, it
does not require to solve a BVP in order to deter-
mine the scalar field θ (as for the global tracking
algorithm). The scalar field is rather calculated af-
ter each time-step only for those nodes connected
to elements crossed by the (potential) discontinuity.
As the algorithm proceeds from element to element
there is no need to solve a large system of equations.
Thus, the algorithm combines the advantages of the
local and the global tracking algorithm.

5 COMPUTATION OF CRACK DIRECTION

The second important ingredient for a realistic rep-
resentation of crack-paths is the determination of the
direction the cracks will proceed. Instead of ob-
taining this information from the local constitutive
model it is proposed to use the principal direction of
the (smooth) nonlocal strain tensor (Feist & Hofstet-
ter 2003). To this end a nonlocal averaging operator
based on a bell-shaped weighting function is em-
ployed.

6 NUMERICAL EXAMPLES

The model constructed step-by-step in the preceding
sections is investigated in its full format on the ba-
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Figure 3. Results of numerical investigation of the wedge-
splitting-test: (a) deformed specimen and (b) crack-pattern.

sis of numerical simulations of benchmark problems.
The latter are documented in the web-based platform
of the thematic network NW-IALAD (Ialad 2003)
dedicated to the Integrity Assessment of Large
Concrete Dams and funded by the EU. The core
of the network is an internet platform (Ialad 2003)
serving as a forum for present members and open
to new participants. Corresponding to the different
work-packages and task-groups it offers databases,
reviews of dam performance, dam maintenance, re-
pair and rehabilitation, safety assessment and dam
calculations. In the context of the latter system-
atic comparisons of classic and enhanced numerical
models for the simulation of the structural behavior
of concrete dams will be provided. To this end doc-
umentations of benchmark problems are offered for
participants willing to provide numerical simulations
based on particular models for evaluation purposes.

6.1 Wedge-splitting test

The numerical simulation of the wedge-splitting-test
(Trunk 2000) (Fig. 1a) already presented in the con-
text of the outline of evolution of the present SDA-
model is described first. The interaction-radius R
required for the nonlocal averaging of the strains is
taken as 2.5-times the maximum aggregate size of
dmax = 125 mm. Fig. 3a presents the deformed
specimen with displacements magnified by a factor
of 50. The computed crack-path shown in Fig. 3b
representing an astonishingly straight image of the
real crack-path shows the insensitivity of the model
with respect to mesh-bias effects. Finer discretiza-
tions of the model yield exactly the same results
proving objectivity (not shown in this work, refer to
(Ialad 2003)).

6.2 Mixed-mode fracture test

The second example investigated with the proposed
model is a mixed mode fracture test taken from the
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Figure 4. Numerical investigation of a mixed-mode-fracture test:
(a) geometry, dimensions, loading and material parameters of
test-specimen, (b) employed finite-element mesh.

thesis of (Nooru-Mohamed 1992). The specimen
(Fig. 4a) consists of a quadratic panel with hori-
zontal notches located at mid-length of the vertical
faces. The specimens were subjected to a combi-
nation of shear and tension forces for various load-
paths. During load-path 4(c) first a pure shear load
was applied up to the maximum sustainable shear-
force Ps = 27.5 kN followed by tensile loading
with the shear-force kept constant. The experimen-
tally observed crack-pattern consists of two strongly
curved cracks propagating from the notches. Hence,
these tests offer an excellent opportunity to exam-
ine the capabilities of the proposed model to tackle
multiple cracks and curved crack-paths.

The mesh used for the numerical simulations is
depicted in Fig. 4b. As can be seen from the de-
formed mesh in Fig. 5a the elements with a displace-
ment jump are found on two separate curved paths
through the entire mesh. Fig. 5b depicts the discrete
crack-paths each enclosing an angle of app. 90˚be-
tween the tangents at the beginning and at the end of
the cracks. When compared to the plots of the exper-
imentally obtained crack-paths perfect resolution of
the macroscopic cracks by the numerical simulation
is revealed. Results of simulations of other load-
paths are documented in (Ialad 2003) also showing
good agreement with the experiments.

6.3 Koyna dam

As an example for a large-scale analysis a numerical
simulation of the well known Koyna dam is pre-
sented. The dam was struck by a short duration
earthquake in 1967, which caused severe damage to
the dam. The dam is a 850 m long concrete gravity

dam with a crest height of 103 m (Fig. 6a). At a
level of 66.5 m (all levels related to base level) the
downstream face has a characteristic bend. The up-
stream face is slightly inclined by 24:1. At the time
of the earthquake the reservoir level was at 91.75 m.
In (Chopra & Chakrabarti 1973) horizontal cracks at
the upstream face of some blocks at levels ranging
between 60 and 66 m are reported. On the down-
stream face cracks were also found in the vicinity of
the bend at levels around 66 m.

The damage of the dam had been thoroughly in-
vestigated by many researchers using very different
constitutive approaches. Although the dam is rather
heterogeneous with respect to the used concrete mix
design, quite similar and homogeneous material pa-
rameters were used (Lee & Fenves 1998). The pa-
rameters employed in the present study are summa-
rized in Fig. 6.

The FE-discretization is based on the geometry
and the dimensions given in Fig. 6a. The slightly
inclined upstream face is considered vertical. The
used FE-mesh is depicted in Fig. 6b. It consists of
8097 SDA-enriched CST elements based on a plane
strain formulation and 4180 nodes (8360 dofs). A
rather fine and regular discretization is used for the
bottom part up to 10 m above ground and for the
region between 46.5 and 66.5 m elevation. The re-
mainder of the domain is discretized with an un-
structured, coarse mesh. As in many other reported
analyses neither the supporting rock nor the interface
between rock and concrete, i.e. the contact joint, are
discretized. The monolith is considered to stand on a
rigid surface. However, to account for the effects of
the contact joint cracks may propagate horizontally
in the bottom row of elements.

Element sizes in the presumptive fracture areas
vary between 0.5 – 0.6 m providing uniqueness of
the results in general. However, for certain unfavor-
able crack directions with respect to the mesh layout
stability may be lost anyhow. Therefore, in order
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Figure 5. Results of numerical investigation of a mixed-mode-
fracture test: (a) deformed specimen (elements enriched by
displacement-jump are shaded grey), (b) calculated crack-pattern.



to increase robustness of the numerical procedure
some artificial viscous damping is added (Samaniego
2003).

The dam is initially subjected to dead load fol-
lowed by the application of hydrostatic water pres-
sure to the upstream face according to a reservoir fill
of hn = 91.75 m (Fig. 6c). In the next load step
the reservoir level is successively increased up to the
height of the dam crest hf = 103 m (Fig. 6d). In
the fourth load step the reservoir level is fictitiously
raised up to the level that leads to collapse of the dam
(Fig. 6e). This level is often termed as the level of
imminent failure flood hiff . It is noteworthy that
the aforementioned procedure does not account for
a realistic overflow of the dam. (Consequently, hy-
drostatic pressure is neither acting on the horizontal
plane of the dam crest nor on the downstream face.)
Sometimes the load-carrying capacity and the safety
of a dam against failure are evaluated in terms of the
maximum overtopping coefficient γiff = hiff/hf .

The load displacement curve in terms of the over-

70

19.25

14.8

91
.7

5

all lengths in [m]

66
.5

36
.5

(a) (b)

hn

hf

hiff

(c) (d) (e)

� = 2630 [kg/m³]
E = 30,000 [N/mm²]

� = 0.20

ft = 2.90 [N/mm²]
Gf = 0.20 [N/mm]
R = 2000 [mm]

Figure 6. Numerical investigation of the Koyna dam: (a) geometry
and dimensions of the dam, (b) employed finite-element mesh and
loading due to (c) normal reservoir fill, (d) full reservoir fill, (e) up
to imminent failure flood.

topping coefficient is shown in Fig. 7a for the range
of γ = 0.89 – γiff with horizontal displacements
related to the unloaded condition of the dam. Obvi-
ously, considerable nonlinearity commences already
at γ = 1.0 corresponding to a full reservoir (point
(1.00) in Fig. 7a). In fact, when taking a look at the
crack pattern in Fig. 7b, a crack at the interface layer
at the base of the dam can be detected. This crack
already emerges at a reservoir level of app. 95 m. At
γ = 1.28 (h ≈ 132 m) a marked bend is found in
the load displacement curve (point (1.28) in Fig. 7a):
A second crack forms at the upstream face (Fig. 7c)
at an elevation of 61 m, which is in good agreement
with the cracks reported by (Chopra & Chakrabarti
1973). This second crack forms independently of the
first one at the most critical section of the cantilever
subjected to hydrostatic loading.

Successive loading causes further propagation of
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Figure 7. Results from numerical investigation of the Koyna
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placement; crack-patterns at (b) full reservoir load, (c) emerging
secondary crack and (d) imminent failure flood; (e) crack-opening
and (f) vertical stresses along contact joint.



both cracks. The upper crack, starting to propagate
horizontally, soon extends downward to the down-
stream base with an increasing curvature (Fig. 7d).
As the crack direction becomes parallel to the down-
stream face of the dam the crack ceases to propagate.
However, as a consequence of the redistribution of
loads a third crack emerges exactly from the crack
tip of the second crack in a direction perpendicular
to the one of the second crack. This situation is en-
countered at γ = 1.38 (h ≈ 142 m). In fact, the
structure is already too weak to sustain further load
increments and therefore this level is considered as
the one of imminent failure flood. Consequently, the
dotted curve in Fig. 7d only provides an estimate of
the propagation of the third crack. The crack pattern
of the second crack is in perfect agreement with the
one reported by (Jirásek 1999). However, in (Jirásek
1999) the bottom crack at the interface layer seems
to have been neglected.

The diagrams in Fig. 7e, f reflect the crack-opening
and vertical stress distribution found along the con-
tact joint at the respective load levels. A maxi-
mum crack opening of app. 12 mm is observed at
γiff = 1.38 with vertical stresses asymptotically
tending to zero at the widely open crack. Such
widely open cracks would certainly let water of the
reservoir penetrate into the opening crack. Due to
the high pressure water penetration would become
an additional driving force for crack-propagation.
Thus, it is questionable if a model without consider-
ation of fluid pressures acting on crack-faces yields
reliable results in the particular case. Consideration
of fluid penetration into open cracks is covered in a
detailed report on the Koyna-dam analysis in (Ialad
2003).

7 CONCLUDING REMARKS

A numerical model for the representation of discon-
tinuities in the displacement field was investigated.
The model utilizes the concept of the elements with
embedded discontinuities and is formulated as a non-
symmetric SDA-model. Shortcomings of the basic
model were outlined: Discontinuous resolution of
the crack-path appeared as a source of severe mesh-
sensitivity and locking effects. To overcome this
deficiency it proved to be necessary to enforce con-
tinuity of the crack-path, although the simplicity of
the basic model is lost. Tracking algorithms provide
the essential information to establish crack-path con-
tinuity. Existing algorithms were shortly discussed.
A new partial domain tracking algorithm was pre-
sented combining the strong points of the established
algorithms.

Objective prediction of the crack-direction was

dealt with subsequently: A criterion derived from
local constitutive response appeared to be insuffi-
cient. A nonlocal averaging procedure was proposed
to resolve objective crack-paths.

The improved model was then applied to the simu-
lation of two laboratory tests and a large-scale prob-
lem demonstrating the capability of the model and
the sketched algorithms.
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