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1 INTRODUCTION
Quasibrittle materials, such as concrete, rock, tough
ceramics, or ice, are characterized by the develop-
ment of nonlinear fracture process zones, which can
be macroscopically described as regions of highly lo-
calized strains. The degradation of strength and stiff-
ness due to the progressive growth of microcracks and
their coalescence is conveniently described by models
based on continuum damage mechanics. If a standard
(local) continuum theory is used, the softening part
of the stress-strain law must be properly adjusted ac-
cording to the size of the numerically resolved band
of localized strain, which typically corresponds to the
size of a finite element, or to a similar discretiza-
tion parameter if another numerical technique is used.
This adjustment eliminates the pathological depen-
dence of the solution on the finite element mesh and
ensures that the global energy dissipation in the fail-
ure process is captured correctly. However, the results
of the numerical simulation can still be polluted by
mesh-induced directional bias which, in some cases,
may lead to wrong failure mechanisms and to a mis-
prediction of the ultimate load.

In the present comparative study, we investigate
the influence of mesh bias on failure simulations
performed with isotropic and anisotropic damage
models. Two isotropic formulations are considered,
one with the Rankine and the other with the mod-
ified von Mises strength envelope. As a representa-
tive anisotropic damage model, the microplane-based
damage model (MDM) developed in the past by the
second author is considered. Several fracture tests
with curved crack trajectories are simulated on differ-
ent meshes, and general conclusions are drawn based
on the evaluation of the numerical results. Finally, a
crack tracking technique (inspired by embedded crack
models but implemented here for continuum dam-
age models) is proposed, and a substantial reduction
of mesh bias obtained with this approach is demon-
strated.

2 DAMAGE MODELS
2.1 Isotropic damage
The simple isotropic damage model considered here
is described by the basic equations

σ = (1− ω)De : ε (1)

ω = g(κ) (2)

f (ε, κ) ≤ 0, κ̇ ≥ 0, κ̇f (ε, κ) = 0 (3)

in which σ is the stress tensor, ε is the strain tensor,
De is the elastic stiffness tensor, ω is a scalar dam-
age variable, κ is an internal variable that drives dam-
age, and f is the damage loading function. The typical
form of the loading function is

f (ε, κ) = ε̃(ε)− κ (4)

where ε̃ is a scalar measure of the current strain level
called the equivalent strain. The internal variable κ
has then the physical meaning of the maximum value
of equivalent strain ever reached in the previous his-
tory of the material up to the current state.

The choice of a specific expression for the equiv-
alent strain ε̃ determines the shape of the elastic do-
main and depends on the type of material. For tensile-
dominated failure of quasibrittle materials, one possi-
ble choice is

ε̃ =
1

E

√

〈σe〉 : 〈σe〉 =
1

E

√

√

√

√

3
∑

I=1

〈σeI〉2 (5)

where σe = De : ε is the effective stress tensor, σeI ,
I = 1,2,3, are its principal values, and 〈. . .〉 is the pos-
itive part operator. Definition (5) leads to a Rankine-
type strength envelope with a smooth round-off in
the sectors of two or three positive principal stresses;
see Figure 1. A recently proposed alternative formula,
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Figure 1: Biaxial strength envelope for different dam-
age models and experimental data.

called the modified von Mises definition (de Vree,
Brekelmans, and van Gils 1995), reads

ε̃ =
k− 1

2k(1− 2ν)
I1 +

1

2k

√

√

√

√
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(6)
where

I1 = εkkJ2 =
1

6
I2

1
−

1

2
εijεij (7)

is the first invariant of the strain tensor,

J2 =
1

6
I2

1
−

1

2
εijεij (8)

is the second invariant of the deviatoric strain tensor,
ν is the Poisson ratio, and k is the ratio between the
uniaxial compressive strength f̄c and uniaxial tensile
strength f̄t.

The function g, which relates the damage variable
ω to the internal variable κ according to (2), is as-
sumed to have the exponential form

g(κ) =

{

0 if κ ≤ ε0

1− ε0

κ
exp

(

−( κ−ε0

εf−ε0

)
)

if κ ≥ ε0

(9)

where ε0 is the strain at peak stress under uniaxial
tension, and εf is a parameter that controls the slope of
the softening curve (Figure 2), which can be related to
the fracture energy GF and to the finite element size.

2.2 Anisotropic damage
The anisotropic damage model considered in this
study is based on the principle of energy equivalence
(Cordebois and Sidoroff 1979) and on the theoretical
framework proposed by Carol and Bažant (1997) in

σ

f̄t

ε0 εf ε

Figure 2: Uniaxial stress-strain curve with exponen-
tial softening.

the context of the microplane damage theory. A spe-
cific version of this model was developed by Jirásek
(1999) and is called the microplane based damage
model (MDM).

3 COMPARATIVE STUDY
To assess the directional mesh bias in finite element
simulations with local damage models, three frac-
ture tests were analyzed using three different models,
each time on triangular and quadrilateral meshes. The
models included in the study are

• the isotropic damage model with Rankine-type
definition of equivalent strain (IDM-Rankine),

• the isotropic damage model with modified von
Mises definition of equivalent strain (IDM-
Mises), and

• the anisotropic damage model based on the prin-
ciple of energy equivalence and the microplane
theory (MDM).

3.1 Four-point shear test
The first example is a four-point shear test of a single-
edge-notched (SEN) beam tested by Arrea and Ingraf-
fea (1982). The geometry with the loading setup and
the crack trajectories obtained in the experiments are
shown in Figure 3.
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Figure 3: Four-point shear test: Experimental setup
and crack trajectories.
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Figure 4: Influence of mesh size and element type on
the crack band trajectory in the four-point shear test
for (a) IDM-Rankine, (b) IDM-Mises and (c) MDM.

The material parameters were chosen for all models
as follows: Young’s modulus E = 30 GPa, Poisson’s
ratio ν = 0.18, tensile strength f̄t = 3.5 MPa, and
fracture energy GF = 140 J/m2. For the IDM-Mises
model, the ratio between the compressive and tensile
strength, k = f̄t/f̄c, was set to 10, and for the MDM
model, the parameter md that controls sensitivity to
the confining pressure was set to 0.05.

Three different finite element meshes were used:

• fine structured mesh of bilinear quadrilateral el-
ements with four integration points,

• fine unstructured mesh of constant-strain trian-
gular elements with one integration point, and

• coarse structured mesh of bilinear quadrilateral
elements with four integration points.

The simulated crack trajectories are shown in Fig-
ure 4. The dark elements are those with a high level
of maximum principal strain (exhibiting at the same
time a high level of damage).

3.2 Double-edge-notched specimen
The second example is the double-edge-notched
(DEN) specimen tested by Nooru-Mohamed (1992).
The experimental setup is shown in Figure 5a. The
nonproportional loading path 4c was chosen for the
comparison. This is the most challenging test of the

(a)

(b)

Figure 5: The DEN specimen: (a) geometry and load-
ing, (b) observed crack pattern for loading path 4c (af-
ter Nooru-Mohamed 1992).

(a) (b) (c)

Figure 6: Influence of mesh type and element size on
the crack band trajectory in the DEN test for (a) IDM-
Rankine, (b) IDM-Mises and (c) MDM.
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Figure 7: Influence of mesh type and element size on
the crack band trajectory in the nonsymmetric three-
point bending test (K = 0) for (a) IDM-Rankine,
(b) IDM-Mises and (c) MDM.

entire testing program, because the final failure pat-
tern consists of two cracks with a relatively strong
curvature; see Figure 5b. During the first stage, the
specimen is loaded by an increasing “shear” force,
Ps, until the maximum force that the specimen can
carry is reached. Then, in the second stage, this force
is kept constant and a “normal” force, P , is applied in
the vertical direction.

The material parameters were chosen as E = 29
GPa, ν = 0.2, f̄t = 3 MPa, GF = 110 J/m2, k = 10
for the IDM-Mises and md = 0.05 for the MDM
model. Again, three types of finite element meshes
were used. The failure patterns are presented in Fig-
ure 6.
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Figure 8: Nonsymmetric bending tests: Geometry and
loading with mean crack paths observed in experi-
ments.
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Figure 9: Influence of mesh size and element type on
the crack band trajectory in the four-point bending test
(K = ∞) for (a) IDM-Rankine, (b) IDM-Mises and
(c) MDM.

3.3 Nonsymmetric bending tests

The third example presents the three- and four-point
bending tests reported by Galvez et al. (1998). The
test geometry and the loading setup are shown in Fig-
ure 8. For a spring stiffness value of K = 0 the test
setup results in a nonsymmetric three-point bending
test, whereas for K = ∞ a nonsymmetric four-point
bending test is obtained. In the two tests two crack
paths of different orientations were obtained, running
approximately along the straight lines shown in Fig-
ure 8.

The experiments were simulated on three different
meshes: two quadrilateral meshes (fine and coarse)
analogous to the previous two tests, and a triangu-
lar mesh deliberately misaligned with the experimen-
tally observed crack paths. The failure patterns for the
analyses with K = 0 (three-point bending) and K =
∞ (four-point bending) are shown in Figures 7 and 9.

3.4 Discussion of the results

The isotropic damage model with the Rankine-type
expression for equivalent strain (5) is in general
strongly sensitive to the mesh orientation. In the four-
point shear test reported in Section 3.1, the simu-
lated crack trajectories are strongly attracted by the
mesh lines. For the structured quadrilateral meshes,
the crack ends on the left side of the upper support,
which is not in agreement with the crack trajecto-
ries observed in the tests; see Figure 3. For the DEN
test in Section 3.2, the results are even worse. Here,
the IDM-Rankine cannot represent the curved crack
trajectories obtained in the experiments. Even the
straight crack trajectory of the nonsymmetric three-
point bending testreported in Section 3.3 is not repro-
duced because the pattern of localized strain is influ-
enced by the vertical mesh lines. The straight crack of
the nonsymmetric four-point bending test is well cap-
tured, but the failure pattern is disturbed by a spurious
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Figure 10: Detail of the strength envelope in region of
biaxial tensile-compressive stress states.

secondary crack.
The results obtained with the isotropic damage

model improve if the equivalent strain is computed ac-
cording to the modified von Mises definition (6). The
simulated crack trajectories in the first two examples
appear to be almost independent of the mesh align-
ment and refinement. This is not the case in the non-
symmetric bending tests (Section 3.3). For the three-
point bending test, the pattern of localized strains is
influenced by the mesh lines. For the four-point bend-
ing test, spurious secondary crack appears.

The strikingly different results obtained with the
IDM-Rankine and IDM-Mises in the four-point shear
and DEN tests might seem surprizing, since both
models are isotropic and only differ in the type of
loading function. The explanation for this strong dif-
ference is found in the shape of the failure surface in
the region of biaxial tensile-compressive stress states.

For the Rankine-type definition of equivalent
strain, the maximum tensile stress in the biaxial
tension-compression region is equal to the uniaxial
tensile strength. On the other hand, for the modified
von Mises definition, the maximum tensile stress un-
der biaxial tension-compression is up to twice the uni-
axial tensile strength; see Figure 10.

In the first two experiments, the curved crack prop-
agates in a compressive stress field. For the IDM-
Rankine, the compressive stress does not influence
the tensile strength, and the mesh alignment has a
strong influence on the crack trajectory. On the con-
trary, the IDM-Mises has a greater tensile strength in
the presence of compressive stresses parallel to the
crack, and this forces the numerical crack to propa-
gate “around” the compressive strut. For this reason,
the curved crack path observed in the experiments
is reproduced independently of the orientation of the
mesh. However, the increase of tensile strength in bi-
axial tension-compression stress state is artificial, be-

cause it does not correspond to experimental data.
The strength envelope of concrete under biaxial

stress was determined, for instance, in the experi-
mental study by Kupfer et al. (1969). It was found
that under biaxial tension-compression the tensile
strength slightly decreases with increasing compres-
sive stresses in the perpendicular direction. The artifi-
cial increase of the tensile strength for biaxial tension-
compression exhibited by the IDM-Mises model may
lead in other examples, in which the strength in biax-
ial tension and compression is decisive, to an overes-
timation of the load resistance.

For the anisotropic MDM model, the exact shape
of the biaxial strength envelope depends on parameter
md, but this dependence is quite weak. The best agree-
ment with Kupfer’s data is achieved for md = 0, but
even with the default value md = 0.05 the numerical
strength envelope remains close to the experimental
one; see Figure 10.

The MDM model, as a representative anisotropic
damage model, gives on fine meshes (both structured
and unstructured ones) good predictions of the crack
trajectories in almost all the tests The only excep-
tion is the nonsymmetric three-point bending test, for
which the mesh bias affect a part of the crack trajec-
tory simulated on a fine quadrilateral mesh, but the re-
sult is still slightly better than with the isotropic mod-
els. Spurious secondary cracking in the four-point
bending test appears only on the coarse mesh. In the
three-point bending and four-point shear tests, the re-
sults on coarse meshes suffer by the directional bias,
but the Nooru-Mohamed test of the DEN specimen is
reasonably well reproduced even on the coarse mesh.

4 THE CRACK TRACKING METHOD
The crack tracking method is a newly proposed tech-
nique that can overcome the dependency of isotropic
damage models on the mesh orientation. It combines
a tracking algorithm, as known from the strong dis-
continuity approach (Jirásek and Zimmermann 2001),
with an isotropic damage model based on the smeared
crack concept.

The main idea is that the localized process zone is
described not only by a band of damaged elements,
but also by its idealized centerline, approximated by
a sequence of contiguous straight segments. The first
segment is placed in the center of the first cracking
element and is extended to the boundaries of that el-
ement. The direction of the segment is determined
from the weighted average of strain in the neighbor-
hood of the integration point at the element center,
and is taken as perpendicular to the principal direc-
tion corresponding to the maximum principal value
of the averaged strain tensor. The intersections of the
segment with the element boundaries define at most
two computational crack tips. Often, the first crack-
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(a) (b)

Figure 11: Propagation of crack band centerline: (a)
determination of the direction of the new crack seg-
ment from the weighted average of the strain over a
neighborhood of radius R, (b) extension of the center-
line by a new segment and determination of the new
crack tip.

(a) (b)

Figure 12: (a) Crack trajectory obtained by the track-
ing method in the DEN test, and (b) the corresponding
bands of elements with localized strain.

ing element is adjacent to the physical boundary of
the specimen and one of these “tips” is actually the
crack mouth. The position of the other tip defines the
element that is “to be entered by the crack”.

In subsequent loading steps, damage is allowed to
grow only in the elements already crossed by a crack
segment, element to be entered by the crack, or el-
ements that are sufficiently far from the previously
mentioned ones (to allow the formation of another
process zone in a different part of the specimen).

As shown in Figure 11, a new crack segment is
added to the already existing ones when the equiv-
alent strain at the integration point of the element
in front of the crack tip reaches a critical level. The
new segment starts at the current crack tip and is per-
pendicular to the principal direction of the averaged
strain tensor corresponding to the maximum principal
value. The intersection of the segment with the ele-
ment boundary defines the new position of the crack
tip and the neighboring element that is the next candi-
date for cracking.

The crack tracking technique permits a better res-
olution of the failure pattern, which is less sensi-

tive to the directional mesh bias. This is documented
in Figure 12, showing the sequence of crack seg-
ments and the corresponding bands of damaged ele-
ments for the Nooru-Mohamed DEN test from Sec-
tion 3.2. The simulation used the isotropic damage
model with Rankine-type expression (5) for equiva-
lent strain. Without the crack tracking technique, the
failure pattern would be completely mispredicted; see
Figure 6a.

5 CONCLUSIONS
The evaluation of mesh-induced directional bias of
two isotropic and one anisotropic damage model on
different types of meshes for a number of concrete
fracture tests has lead to the following preliminary
conclusions:

• The isotropic damage model with a realistic bi-
axial strength envelope is strongly sensitive to
the mesh orientation, even if the mesh is fine.

• The isotropic damage model with a modified von
Mises definition of equivalent strain appears to
be less sensitive to the mesh orientation, but this
is to a large extent an artifact caused by the un-
realistic increase of tensile strength under com-
pression parallel to the crack.

• The anisotropic damage model used in this study
can reasonably well capture arbitrary crack tra-
jectories, while the biaxial strength envelope re-
mains close to typical experimental data for con-
crete.

• Mesh refinement often reduces sensitivity to the
mesh orientation, but is not a universal remedy.

These conclusions need to be confirmed by further
investigations. In particular, alternative anisotropic
models such as the rotating crack model should be
included in the comparative study, to see whether
anisotropy is indeed the key to mesh bias reduction.

The isotropic damage model is attractive for its
simplicity but, with a definition of equivalent strain
that provides a realistic biaxial strength envelope, it is
strongly sensitive to the mesh orientation. Modifica-
tion of the equivalent strain definition is not a phys-
ically sound remedy, as discussed before. As an al-
ternative technique aiming at the reduction of mesh
bias, the crack tracking method has been proposed in
the present paper. This method is based on the track-
ing of the crack centerline and can be combined with
any standard constitutive model and two-dimensional
finite element. The crack tracking method is able to
simulate the crack patterns of complex mixed-mode
fracture tests using a simple isotropic damage model
with a Rankine loading function. A substantial im-
provement has been observed in the Nooru-Mohamed
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DEN test, but a more extensive evaluation of the true
potential of this method is needed.
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