
 
1 INTRODUCTION 
 
The formation of micro-cracks is largely 
responsible for the highly non-linear stress-strain 
behaviour of concrete, with increasing micro-
cracking causing progressive weakening of the 
material and the apparent overall degradation of 
elastic properties and the formation of inelastic 
strains (Imran & Antazopoulou 1996). It has been 
widely accepted that continuum damage mechanics 
provides a natural framework for simulating the 
deterioration of material stiffness as well as the 
loss of material strength, but it has also been 
acknowledged that this theory is not able to 
represent the permanent straining that results from 
the micro-cracking process but that this latter 
phenomenon can be properly simulated using the 
theory of plasticity. 

Over the past few decades, considerable effort 
has been devoted to developing numerical models 
for the description of this complex behaviour of 
concrete. Both plasticity models (Este & Willam 
1994; Imran & Pantazopoulou 1996; Grassl et al. 
2002) and damage models  (Ortiz 1985; Oliver et al. 
1990; Brencich & Gambarotta 2001; Luccioni & 
Oller 2003) have been developed to simulate the 
non-linear behaviour of concrete. Gradually more 
comprehensive concrete models have been 
produced as the understanding of the behaviour of 
material has developed. Many researchers have 

proposed constitutive models that employ both 
damage and plasticity formulation to capture the 
responses of concrete under tension and 
compression (Lubliner 1989; Luccioni et al. 1996; 
Lee & Fenves 1998; Meshke et al. 1998, Hansen et 
al. 2001). 

Experimental evidence on shear transfer across 
crack faces has intrigued many researchers and led 
them to develop numerical models that are capable 
of simulating the mechanisms governing the stress 
transfer. Many have looked into ways of predicting 
the full behaviour of a crack interface subjected to 
both normal and shear stresses (Bažant et al. 1980; 
Walraven 1981; Li et al. 1989). In an assessment of 
these models by Feenstra et al. 1991, the contact 
density model of Li et al. was found to provide the 
numerical predictions with the greatest accuracy 
when measured against observed experimental 
behaviour. Wu and his colleagues (Wu et at. 1994) 
have proposed a plastic-fracture stress transfer 
model to simulate the behaviour of concrete 
discontinuities with contact surface degradation, 
dilatancy, and material non-linearity. An explicit 
relationship between stress increments and relative 
discontinuity displacements at all possible 
interfaces across the crack was developed to 
provide a more realistic representation of concrete 
discontinuities. 

A number of experimental studies have been 
publis hed, which have been aimed at understanding 
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the behaviour of cracks under combined normal 
and shear loading (Hassanzadeh 1991; Nooru-
Mohamed 1992; Gálvez et al. 1998; Cendón et al. 
2000), whose data have been used to verify 
normal/shear cracking of concrete models. A 
proper concrete crack model should be capable of 
simulating both monotonic and cyclic behaviour of 
the cracked material (Olofsson 1995; Carol et al. 
1997; Ba žant et al. 2000). The aforementioned 
crack plane models employ a plasticity approach to 
capture some of the behaviour of cracks under 
combined normal and shear loading.  

Experimental evidence has shown that there is a 
possibility for an open crack to regain contact in 
shear, resulting in a distribution of the normal and 
shear stresses across the crack interface with a 
residual positive opening displacement (Walraven 
& Reinhardt 1981). 

Jefferson (2003a, b) has utilised a combined 
plastic-damage-contact theory in a new constitutive 
model for concrete, which is able to simulate with 
reasonable accuracy crack closure, shear contact 
and aggregate interlock behaviour as well as the 
general non-linear behaviour of concrete in 
compression up to moderate degrees of 
confinement. The model uses planes of degradation 
that can undergo damage and separation but that 
can regain contact according to a contact law.  The 
model, known as Craft, has been developed within 
a thermodynamically consistent framework and has 
been imp lemented in the finite element program 
LUSAS. 

The contact model within Craft was a simplified 
version of a more detailed crack plane model 
Jefferson (2002). It is the further development of 
the embedded contact component within the Craft 
model that is the focus of the present work. The 
formulation of the new two-phase contact surface 
was derived using experimental data from 
Walraven and Reinhardt (1981) and Hassanzadeh 
(1991). 

 
2 CRACK SURFACE CHARACTERISATION 
 
Experimental evidence has shown that the overall 
shear strength of a material is affected by the type, 
shape and size of aggregate particles. In normal 
strength concretes, both fine and coarse aggregate 
particles are evenly distributed within the mortar 
matrix. Large mismatches between the elastic 
moduli of aggregate and mortar matrix prevents 
cracks from penetrating into the aggregate particles. 
Crack paths tend to move towards the interface 
between aggregate and mortar, a region which is 
normally regarded as the weakest link in concrete 

(Karihaloo 1995). Figure 1 illustrates the path of a 
typical crack within a normal strength concrete 
matrix that comprises both coarse and fine 
aggregate particles. Paulay and Loeber (1974) 
undertook experiments to investigate the behaviour 
of such cracks in shear and, as may be seen from 
Figure 2, their results show that with increasing 
shear movement, for an open crack, the stiffness 
increases significantly at a certain shear 
displacement. Similar behaviour is also seen in 
other such data (e.g. Walraven & Reinhardt 1981). 
In Jefferson (2002a) this stiffness increase point 
was taken as the first contact point and used to 
define the contact ‘Interlock’ surface. However, 
this ignores the fact that there are significant shear 
stresses before this point is reached. In order to 
better simulate the observed behaviour, a two-
phase contact model is explored in which, 
tentatively, the two components are associated with 
the mortar and coarse aggregate components. 

Figure 1. Crack profile  

Figure 2. Shear stress-displacements from Paulay and Loeber. 
 
3 NUMERICAL MODEL 
 
As mentioned in previous section, the present 
model is a development of the Craft model that 
employs a combination of plasticity, damage and 
contact theories. In the model the local crack-plane 
strains are related to the relative displacements on 
the crack plane via a characteristic length 
parameter. 
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3.1 Damage-contact model 
 
The damage-contact model employed in Craft is a 
simplified version of the crack plane model 
originally proposed by the same author (Jefferson 
2002). A relationship between the local stress and 
effective strain is derived, in which the local stress 
on each crack plane is taken as the sum of the 
contribution of stresses from the undamaged and 
contact components  
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where hc and hf denote the undamaged and contact 
component respectively. DL is the local elastic 
constitutive matrix, I is the identity matrix and Φd 
is a transformation matrix. The compressive 
contact strain is denoted by the vector g, which has 
a magnitude g representing the nearest distance to 
the interlock surface. 

Figure 3 shows a schematic diagram of the 
contact model. In the open state, the stress in the 
contact component is assumed to be zero. In the 
interlock state, the embedment g is taken as the 
distance to the interlock contact surface. In the 
closed state, g is equal to the local strain vector as 
the contact point coincides with the origin of the 
local strain space. The following expressions are 
the interlock and closed functions, which are used 
to define the state of contact on a crack plane.   
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Figure 3. Contact states and embedment. 
 
 

22
tsgrcl eeme)( ++=eφ    (3) 

 
If φcl(e) = 0   State = Closed 
If φcl(e) > 0 and φint(e) < 0 and er < eful 
    State = Interlock 
If φint(e) = 0 or er = eful State = Open 
 
mg is the gradient of the interlock function, and eful 
denotes the local opening strain beyond which no  
further contact can be gained in shear. eful is 
obtained by multiplying the strain at the end of the 
softening curve ε0 with a multiplier constant mful, 
for the contact function. 

The value of mg is obtained from experimental 
data in which shear loading is applied to an open 
crack. With reference to the test conducted by 
Walraven and Reinhardt (1981), it is found to be 
reasonable to have mg in the range 0.3-0.6 for 
normal strength concrete. For concrete that 
comprises relatively large coarse aggregate 
particles (i.e. 20-30 mm), a value of mful in the 
range 10-20 is appropriate, whereas for relatively 
small coarse aggregates (i.e. 5-8 mm), a lower 
value in the range 3-5 is appropriate (Jefferson 
2003a). 

A plane of degradation (POD) is formed once the 
major principal stress exceeds the fracture strength. 
For the formation of successive crack planes, a 
tolerance angle αp is introduced to ensure that new 
PODs are not too close to existing planes. Figure 4 
shows a schematic diagram of the damage surface 
used in the model, which was similar in shape to 
that of Kroplin and Weihe (1997). ζ is the damage 
strain parameter and rζ is the strain equivalent of 
the relative shear stress intercept. 

 

 
Figure 4. Damage surface in local strain space. 
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Considering Equation 1, the relationship between 
the local stress and effective strain can also be 
written as 
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where Mx  is the contact matrix. The inelastic 
component of e, also known as the added fracture 
local strain vector, is denoted by ef, as follows 
 

sCee Lf −=       (5) 

 
where CL  is the inverse of the local elastic 
constitutive matrix. Using Equation 4 in 5 gives an 
expression that relates the added fracture local 
strain to the local stress 
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where Clsf is the local compliance matrix. 
 
3.2 Plasticity Model 
 
In simulating the compressive behaviour of the 
material, the model employs a triaxial yield surface 
and plastic potential based upon the compressive 
meridians after Lubliner et al. (1989). The surface, 
as illustrated in Figure 5, is enhanced by 
introducing a smoothing function developed by 
Willam and Warnke (1975). 

The mo del employs a frictional work hardening 
and softening law to account for pre and post peak 
nonlinear behaviour. It is assumed that the amount 
of work to achieve peak stress increases with the 
mean stress, in which a parameter is introduced 
that has the same function as the ductility 
parameter of Este and Willam (1994). A dilatancy 
parameter is included to allow for the plastic flows 
to be associated or non-associated. Details of the 
plasticity model and its implementation are 
described elsewhere (Jefferson 2003a). 

 

 
Figure 5.  Yield surface in octahedral plane. 

3.3 Two Component Contact Model 
 
A new two-phase contact model is proposed in 
which two contact surfaces are introduced, each of 
which captures the contact states of the damaged 
component on a crack plane. Considering Equation 
1 from the previous section, a new parameter αc, i.e. 
the proportion of coarse particles in a 
representative volume of the fully debonded 
material, is introduced in the current model to 
enhance the damage-contact component of the 
constitutive model. The relationship between the 
local stress and effective strain is now written as 
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where both hfc and hff govern the fully debonded 
component, with the subscripts fc and ff denoting 
the fraction of coarse and fine particles, 
respectively, in a representative volume of the 
damaged material. 

The material parameters that define the contact 
surface, i.e. the slope of interlock function mg, and 
multiplier constants mhi and mful, are now required 
for both the coarse and fine components. mhi is the 
multiplier of the strain that governs the point at 
which contact starts to reduce. As discussed in 
Section 2, for large opening displacements, the 
coarse component is assumed to control the overall 
stress due to the aggregate interlock behaviour, 
whereas at small opening displacements the fine 
component is also significant. Using the 
experimental data of Walraven and Reinhardt 
(1981), as shown in Figure 6, the mg values were 
determined by treating the first half of the non-
linear curve as being influenced more by the fine 
component, and the second half by the coarse 
component. In the current model, the mg value for 
the fine component is taken as 0.2 and for the 
coarse component as 0.4. 

 
 
Figure 6. Normal-shear contact relationship (Walraven and 
Reinhardt 1981). 
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A number of images captured using a Scanning 
Electron Microscope (SEM) at the meso-level have 
been gathered from which an average measurement 
of the crack surface roughness has been obtained 
(Ollivier 1985; van Mier 1997). The procedure for 
deriving the contact parameters for the two-phase 
model, with reference to Figure 7, is as follows; a 
mean reference crack line is drawn parallel to the 
direction of crack propagation, which intersects 
aggregate particles whose perimeters form part of 
the crack faces. By taking several sampling points 
along the crack, the distances between the free 
surface and reference line are measured, i.e. ci and 
fj for the coarse and fine components respectively, 
where i and j denote the number of sampling point 
for the coarse and fine particles respectively along 
the crack reference line. Thereafter, the average 
values of the surface roughness mful for each of the 
two components are obtained. These allow for an 
estimate of the ratio between the mful values of both 
fine and coarse components, which lies in the range 
0.3-0.6. In addition, the proportion of the crack 
length over which the surface roughness of coarse 
aggregate applies is determined. This provides an 
estimate of the percentage of coarse particles 
present within the concrete matrix (αc=lc/L). 
Having examined a number of SEM images, it was 
found that αc falls in the range 0.3-0.4. 
 
4 NUMERICAL EXAMPLES 
 
In this section, the results obtained from numerical 
simulations are compared with those from 
experimental studies. Experimental tests conducted 
by Walraven and Reinhardt (1981) and 
Hassanzadeh (1991), which involve the application 
of normal and shear loadings on concrete 
specimens, are chosen for comparisons and to 
validate the proposed model. Table 1 gives the 
material parameters used in the analyses. 

 
Figure 7. Derivation of contact parameters. 

Table 1. Material properties used for analyses. 
Material Parameters Ex. 1 Ex. 2 
Young’s modulus E (N/mm2) 30000 50000 
Poisson’s ratio υ 0.15 0.15 
Comp. strength fc (N/mm2) 29.5 40 
Tensile strength ft (N/mm2) 2.5 3 
Strain at peak uniaxial stress εc 0.0022 0.0023 
Strain at end of softening curve ε0 0.0026 0.0 
Fracture energy GF (N/mm) 0.0 0.1 
mg (coarse / fine) 0.4/0.2 0.4/0.2 
mhi (coarse / fine) 3.0/1.5 0.4/0.2 
m ful (coarse / fine) 13.5/9.0 2.0/1.0 
αc 0.3 0.3 

 
4.1 Walraven and Reinhardt’s Tension-Shear Tests 
 
This example involves a numerical simulations 
based on the normal-shear tests undertaken by 
Walraven and Reinhardt (1981). Figure 8 shows an 
illustration of the test specimens, which had a shear 
plane of 300 × 120mm2 and were tested in a stiff 
testing frame with external restraints bars to control 
the crack opening displacement. All specimens 
were initially loaded in tension to a set initial crack 
opening displacement before being loaded in shear. 
The tests were denoted by the code a/b/c where ‘a’ 
is the the concrete mix number, ‘b’ the nominal 
opening and ‘c’ the normal stress at an arbitrary 
crack width of 0.6mm. The tests were conducted 
with three different nominal values of opening 
displacement, i.e. 0.0, 0.2 and 0.4mm, and for each 
of the three nominal values, two tests were 
conducted. 

Figures 9 and 10 show the variation of normal 
and shear stress with the corresponding 
displacement, respectively. At the initial stage of 
loading, the model predicts results that are within 
the bounds of the two experimental curves, after 
which it over-predicts the stress-displacement 
response. However, at the final stage of loading, 
the response gradually decreases and moves back 
to within the boundaries. 
 

 
Figure 8. Walraven & Reinhardt’s test specimen. 

400mm 

300mm 

Thickness = 120mm 

150mm 

150mm 

Reference line

j

j

i
f

f

c

cl

L



 
Figure 9. Normal stress-displacement relationship. 
 

 
Figure 10. Shear stress-displacement relationship. 
 
4.2 Hassanzadeh’s Tension-Shear Test 
 
The example presented here is an analysis based on 
an experimental study undertaken by Hassanzadeh 
(1991). In the tests, feedback loops where used to 
link shear and normal displacements to the 
associated loads. The test specimen is illustrated in 
Figure 11 and has an effective cross-section at the 
notch level of 40 × 40mm2. The finite element 
mesh comprises of 8-noded quadratic elements. 
The testing procedure involved firstly applying 
tension to the point of first fracture (at the top of 
the softening curve) and then applying 
displacements according to u = (tanα)v. The tests 
considered here are those with α = 45° and α = 60°. 

Figure 12 shows the numerical crack plots at the 
final step of the analyses . Figures 13-16 give the 
stress-displacement responses  and provide 
comparisons of the numerical predictions with that 
of experimental results. As can be seen in Figures 
13 and 14, the trends in the numerical results are 
similar to those of the experimental. 
 
 
 
 
 
 

 
Figure 11. Hassanzadeh’s test specimen. 
 
 
 
 
 
 
 
 
                      (a)                                    (b) 
 
Figure 12. Crack plots for (a) a = 45°, and (b) a = 60°. 

Figure 13. Normal stress-displacement relationship  (α = 45°). 

 
Figure 14. Shear stress-displacement relationship (α = 45°). 
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Figure 15. Normal stress-displacement relationship  (α = 60°). 

 
Figure 16. Shear stress-displacement relationship (α = 60°). 
 
5 DISCUSSION AND CLOSING REMARKS 
 
The proposed two-phase contact model is able to 
simulate the behaviour of aggregate interlock in 
cracked concrete. Although perfect agreement with 
experimental results has yet to be achieved, the 
model does predict similar trends to those observed 
in experiments. It should be noted that the results 
obtained in both numerical examples were based 
on a different set of constants used in the contact 
component. Therefore, further refinement in the 
contact model is required in order to expand its 
applicability and to achieve good matches to a 
wide range of experimental data. 

 
REFERENCES 
 
Bažant, Z. & Gambarova, P. 1980. Rough cracks in reinforced 

concrete. J. Struct. Div. ASCE, 106(4), 819-842. 
Bažant, Z.P., Caner, F.C., Carol, I., Adley, M.D. & Akers, S.A. 

2000. Micro-plane model M4 for concrete. I Formulation 
with work conjugate deviatoric stress. J. Engng. Mech. ASCE , 
126(9), 944-953. 

Brencich, A. & Gambarotta, L. 2001. Isotropic damage model 
with different tensile-compressive response for brittle 
materials, Int. J. Solids Struct., 38, 5865-5892. 

Carol, I., Prat, P.C. & López, C.M. 1997. Normal-shear 
cracking model: Application to discrete crack analysis. J. 
Engng. Mech. ASCE, 123(8), 765-773. 

Cendón, D.A., Galvez, M., Elices, M. & Planas, J. 2000. 
Modelling the fracture of concrete under mixed loading. Int. 
J. Fract., 103, 293-310. 

Este, G. & Willam, K. 1994. Fracture energy formulation for 
inelastic behavior of plain concrete. J. Engng. Mech. ASCE , 
120(9), 1983-2011. 

Feenstra, P.H., de Borst, R. & Rots, J.G. 1991. Numerical study 
on crack dilatancy. II. Applications. J. Engng. Mech. ASCE , 
177(4), 754-769. 

Gálvez, J.C., Elices, M., Guinea, G.V. & Planas, J. 1998. Mixed 
mode fracture of concrete under proportional and 
nonproportional loading, Int. J. Fract., 94, 267-284. 

Grassl, P., Lundgren, K. & Gylltoft, K., 2002. Concrete in 
compression: a plasticity theory with a novel hardening law. 
Int. J. Solids Struct., 39, 5205-5223. 

Hansen, E., Willam, K. & Carol, I. 2001. A two-surface 
anisotropic damage/plasticity model for plain concrete, In de 
Borst, R., Mazars, J., Pijaudier-Cabot, G. & van-Mier, J.G.M. 
(eds.), Proc. of 4th Int. Conf. Fracture Mechanics of 
Concrete Materials, Framcos-4, Paris.  

Hassanzadeh, M. 1991. Behaviour of fracture process zones in 
concrete influenced by simultaneously applied normal and 
shear displacements. PhD Thesis, Lund Institute of 
Technology, Sweden. 

Imran, I. & Pantazopoulou, S. 1996. Experimental study of 
plain concrete under triaxial stress. ACI Mater. J., 93(6), 589-
601. 

Jefferson, A.D. 2002. Constitutive modelling of aggregate 
interlock in concrete. Int. J. Numer. Anal. Meth. Geomech., 
26(5), 515-535. 

Jefferson, A.D. 2003a. Craft , a plastic-damage-contact model 
for concrete. I. Model theory and thermodynamic 
considerations. Int. J. Solids Struct., 40(22), 5973-5999. 

Jefferson, A.D. 2003b. Craft, a plastic-damage-contact model 
for concrete. II. Model implementation with implicit return 
mapping algorithm and consistent tangent matrix. Int. J. 
Solids Struct., 40(22), 6001-6002. 

Karihaloo, B.L. 1995. Fracture mechanics and structural 
concrete. New York: Longman. 

Kroplin, B. & Weihe, S. 1997. Aspects of fracture induced 
anisotropy. Proc. of 5th International conference on 
computational plasticity (COMPLAS5), Barcelona, 255-279. 

Lee, J. & Fenves, G.L. 1998. Plastic-damage model for cyclic 
loading of concrete structures. J. Engng. Mech. ASCE, 124, 
892-900. 

Li, B., Maekawa, K. & Okamura, H. 1989. Contact density 
model for stress transfer across cracks in concrete. J. Faculty 
of Engineering, 40(1), 9-52. 

Lubliner, J., Oliver, J., Oller, S. & Onate, E. 1989. A plastic-
damage model for concrete. Int. J. Solids Struct.,  25(3), 299-
326. 

Luccioni, B., Oller, S. & Danesi R. 1996. Coupled plastic-
damaged model. Comput. Meth. Appl. Mech. Engng., 129, 
81-89. 

Luccioni, B. & Oller, S. 2003. A directional damage model. 
Comput. Methods Appl. Mech. Engng. , 192(9-10), 1119-1145. 

Meshke, G., Lackner, R. & Mang, H.A. 1998. An anisotropc 
elastoplastic-damage model for plain concrete. Int. J. Numer. 
Meth. Engng., 42, 703-727. 

Nooru-Mohamed, M.B. 1992. Mixed-mode fracture of concrete: 
an experimental approach. PhD. Thesis,  Delft University of 
Technology, Netherlands. 

Oliver, J., Cervera, M., Oller, S. & Lubliner, J. 1990. Isotropic 
damage models and smeared crack analysis of concrete. 
Computer Aided Analysis and Design of Concrete Structures, 
Pinebridge Press, Swansea, England, 945-957. 

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normal displacement (mm)

N
or

m
al

 s
tre

ss
 (

N
/m

m
2 )

Exper. data

Old model

New model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.1 0.2 0.3 0.4
Shear displacement (mm)

S
he

ar
 s

tr
es

s 
(N

/m
m

2
) Exper. data

Old model

New model



Ollivier, J.P. 1985. A non destructive procedure to observe the 
microcracks of concrete by scanning electron-microscopy. 
Cement and Concrete Research , 15(6), 1055-1060. 

Ortiz, M. 1985. A constitutive theory for the inelastic behaviour 
of concrete. Mech. Mater., 4, 67-93. 

Paulay, T. & Loeber P.J. 1974. Shear transfer by aggregate 
interlock. In  Shear in reinforced concrete, Publication SP-42, 
American Concrete Institute, 1-15. 

van Mier, J.G.M. 1997. Fracture Process of Concrete. CRC 
Press, Florida. 

Walraven, J. 1981. Fundamental analysis of aggregate interlock. 
J. Struct. Div. ASCE , 107(11), 2245-2270. 

Walraven, J.C. & Reinhardt, H.W. 1981. Theory and 
experiments on the mechanical behaviour of cracks in plain 
and reinforced concrete subjected to shear loading. Heron, 
26(1A), Delft, Netherlands. 

Willam, K. & Warnke, E. 1975. Constitutive models for triaxial 
behaviour of concrete. Proc. Int. Assoc. Bridge Struct. 
Engng., Report 19, Zurich, Switzerland. 1-30. 

Wu, Z., Farahat, A.M. & Tanabe, T. 1994. Plastic-fracture stress 
transfer model for concrete discontinuities. ACI Mater. J., 
91(5), 502-508. 


