
1 INTRODUCTION

Inverse problems stand in contrast to direct
problems. In the direct problem the objective is the
analytical or numerical solution of ordinary or
partial differential equations, knowing initial
conditions, boundary conditions and equation
constants (model parameters). The unknown
quantities are dependent variables (as stress, strain
or displacement) that depend also on the model
parameters. Experimental measurements are not
involved in the solution of direct problems. In
contrast, the model parameters represent the main
objective of the inverse problem. A spatially and/or
temporally distributed amount of measurements is
required for this purpose. The comparison of the
measurements with the corresponding
computational values is necessary for the parameter
identification. The solution of the inverse problem
is represented by the parameter set that corresponds
to the best match between computational and
corresponding experimental values. The parameter
identification problem requires appropriate
experiments and an appropriate inverse technique
(Beck & Arnold 1977).

This paper presents the parameters estimation
problem related to the elasticity based gradient-
enhanced continuum damage model used to
describe fracture phenomena in quasi-brittle

materials such as concrete and rock. In particular,
the determination of the internal length parameter
and the softening law parameters are of prime
interest.

A brief presentation of the model is given in
Section 2. In Section 3 the inverse problem is
formulated and the Kalman Filter (KF) method and
the K-Nearest Neighbors (KNN) method are briefly
described. In Section 4 the numerical results of the
two inverse techniques applied to the experimental
data of tensile size effect tests are presented.

2 NUMERICAL MODEL

2.1 Local damage model

The isotropic, quasi-brittle elasticity based damage
model (Lemaitre & Chaboche 1990) is given by

� �1 el
�� �σ D ε (1)

in which Del is the matrix of the virgin elastic
stiffness moduli and the scalar variable �

represents the damage which grows from zero
(elastic material) to one (completely damaged
material).

If an invariant measure of strain, the equivalent
strain �eq, is defined, the damage process starts
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when �eq = �i, being �i a strain threshold for
damage evolution.

A history variable � can be defined, representing
the most severe deformation undergone by the
material:

max( ) max( , )eq eq� � � �� (2)

where �max is the maximum value of equivalent
strain occurred in the material.

The damage variable � is a function of the
history variable � according to a damage evolution
law that governs the growth of damage:

( )� � �� (3)

Whether damage growth is possible is
determined on the basis of a loading function
expressed in terms of the equivalent strain:

( ) ( )eq eq eqf � � � �� � (4)

with the following Kuhn-Tucker relations

0 0 0f f� �� � �� � (5)

For the equivalent strain, the modified von Mises
definition (Vree et al. 1995) is adopted:
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where I'1 and J '2 are the first invariant of the strain
tensor and the second invariant of the deviatoric
strain tensor, respectively, and � is a model
parameter given by the ratio of the compressive
and the tensile strength of the material: � = fcc/fct.

The following exponential softening damage
evolution law has been chosen

( )1 [1 ]i ie � � ��
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where � and � are two additional model parameters
that govern the softening curve. As schematically
represented in Figure 1, � determines the residual
stress of the damaged material, and � the (negative)
slope of the softening branch.

The standard local damage model presents what
is commonly known as mesh dependence: the
width of the process zone depends on the finite
element size. This result is mathematically
explained by a local loss of ellipticity of the set of
partial differential equations that governs the rate
of deformation. Mechanically the phenomenon can
be seen as the lack of a localization limiter, related

to the micro-structure of the material, that can be
introduced adopting a nonlocal approach.

Figure 1. Exponential softening damage evolution law and
uniaxial stress-strain curve.

2.2 Nonlocal model: gradient-enhanced
formulation

In a nonlocal generalization (Bažant & Pijaudier-
Cabot 1987, 1988) a nonlocal equivalent strain��eq
is introduced, defined as the following spatially
averaged quantity:

1( ) ( ; ) ( )( ; )eq eq dd� �

�

�

� � ��
� ��

x y x yy x (8)

where y points to the positions of the infinitesimal
volume d�. The length scale parameter is related
to the size of neighborhood considered for the
spatial average of Equation 8. The homogeneous
and isotropic Gauss distribution is usually adopted
for the weight function �(y;x).

The constitutive equations are similar to those
presented in Section 2 replacing the local
equivalent strain �eq(x) by the nonlocal counterpart
��eq(x).

In a gradient damage formulation the integral
Equation 8 can be approximated by the following
partial differential equation (Peerlings et al. 1996)

2
eq eq eqc� � �� � � (9)

where �2=�i�
2/�xi

2 and c is the gradient parameter
related to the internal length scale.

The numerical implementation of the gradient-
enhanced damage model in the finite element
framework requires the spatial discretisation, by
means of different shape functions, of the
displacement field u and of the nonlocal equivalent
strain ��eq (Peerlings 1999).

The nx model parameters can be assembled in the
following vector

[E ]i
Tc� � � � ��x (10)
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where

E = Young’s modulus
� = Poisson’s ratio
�i = strain threshold for damage initiation
� = softening curve parameter
      (related to the residual stress)
� = softening curve parameter
      (related to the slope of the softening branch)
c = gradient parameter
� = ratio  of compressive and tensile strength fcc/fct

The inverse problem consists therefore in
identifying the x vector.

3 INVERSE PROBLEM

The main elements involved in the formulation of
an inverse problem are the numerical (forward)
model, the experiment and the inverse technique.
During laboratory tests, ny observable quantities
(e.g. forces, displacements etc.) can be measured at
different "instants" t and collected in a vector yt

exp
for t=1,2,3....nt.

The corresponding quantities may be computed
by the numerical model and collected in the vector
yt

comp(x), depending on the model parameters
vector x given by Equation 10.

The inverse technique deals with both vectors
yt

exp and yt
comp(x), and sets the comparison criterion

between them. The parameter estimation is the
parameter set corresponding to yt

comp that matches
the best with the comparison criterion.

3.1 K-Nearest Neighbors Method (KNN)

The criterion adopted by this method is related to
the distance between the two vectors yt

exp and
yt

comp.
Once a population of parameters sets xi is chosen,
with i=1,2,3....np, the corresponding vectors
ycomp(xi) can be computed by the numerical model
as a solution of the forward problem presented in
Section 2. All the measurements are considered in a
batch form so that the superscript index t
disappears (i.e. t=1). Hence for each ycomp the
corresponding Euclidean distance from yexp may be
easily evaluated. The solution of the parameter
identification problem is the parameter set x that
corresponds to the minimum distance between yexp
and ycomp. In other words, the identified parameters
set is the vector x that corresponds to the nearest
neighbor, denoted as K=1, ycomp of yexp.

Since the experimental vector yexp is affected by
errors and uncertainties, an obvious refinement of
the method is to weight the contribution of the
various measurements with the associated error
covariance. Hence for each parameter set xi the
following function (weighted squared distance) has
to be evaluated:

1
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where the error e(x) is defined as the difference
between the experimental and computational
response and Cexp is the matrix of the error
covariance of the measurements. If the
measurements are independent and the errors have
a zero mean, the weighting matrix Cexp reduces to a
diagonal matrix, with the error variances s2 as the
diagonal components. The standard deviation s of
repeated experiments under the same condition
may be used to compute the Cexp matrix and
Equation 11 becomes:
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The solution of the parameter identification
problem is given by

� �ˆ min ( )f�
x

x x (13)

The KNN method is a derivative free procedure
(i.e. no derivative of the objective function f(x) has
to be computed) and offers the advantage of
parallel runs of different forward problems for the
evaluation of f(x) for each parameter set xi.

3.2 Kalman Filter Method (KF)

The basic notions of the mathematical formulation
of the Kalman filter procedure are presented in
Bolzon et al. (2002) (see also Iacono et al. 2003),
and for detailed treatments see e.g. Kailath et al.
(2000), Tarantola (1987), Bittanti et al. (1984),
Catlin (1989), Bui (1994).

The solution of the forward problem depends on
the model parameter vector x according to the
following general relation:

comp ( )t
t�y h x (14)



where ht(x) is the forward operator. Here, the
gradient-enhanced damage model is a nonlinear
forward operator.

The Kalman filter technique solves the parameter
identification problem in a statistical context. The
following assumptions are considered herein:
- all the random variable vectors involved follow a

Gaussian distribution
- the mathematical model, i.e. the forward operator

ht(x), is considered as deterministic
- measurements uncertainties, represented by the

vector vt, are considered as Gaussian white
noises (i.e. zero mean and Cexp covariance
matrix).

Since the forward operator has been assumed as
deterministic, the measurement noise vt determines
the difference between the experimental and
computed observable quantities, which changes
Equation 14 into

exp comp ( )t t
t t t� � � �y y v h x v (15)

Besides the experimental and computed data, the
KF procedure relies also on an initial "a priori"
estimate of the model parameter vector x, that is
assumed to be statistically defined by a Gaussian
distribution with mean x0 and covariance matrix
C0.

Starting from the two Gaussian distributions of
the measurements uncertainty vector vt and of the
initial guess of the model parameters and
manipulating the equations, the following
optimization problem is obtained

� � � �compˆ max ( , ) min ( )t
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and � � fy(yexp) does not depend on the model
parameter vector x, and can be seen as a
normalizing factor.

The parameter vector estimation x corresponds
to the maximum conditional probability density
given by Equation 17. If the forward operator ht(x)
is linear, then fx|y(x,yt

exp) is a Gaussian (normal)

distribution. However, this is not the case for the
gradient-enhanced damage model considered here.
In this case an iterative inverse procedure can still
be formulated introducing a step-by-step
linearization (1st-order Taylor expansion) of the
forward operator and assuming a normal
distribution of fx|y(x,yt

exp) within each step. In this
case the following set of equations can be obtained:
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where the tangent operator Lt is denoted as
sensitivity matrix and Kt as gain matrix.

Equations 19-22 define a recursive procedure
that, filtering along the sequence of experimental
data, gives at each step t a better estimate of the
mean value of the model parameters and the
corresponding covariance matrix. The initialization
of the iterative scheme (i.e. for t=1) requires the
initial guess x0 and C0.

If the forward operator ht(x) is linear, it can be
proven that the final estimates of the model
parameters [ x̂ , Ĉ ] do not depend on the initial
guess [ x̂ 0, Ĉ 0] (Catlin 1989, Kalman 1960). In the
case of a non-linear forward operator, even if not
rigorously proven, this independence can be valid
for the asymptotic result [ x , C ] of an iterative
application of the KF procedure on the same
experimental data. For a finite number N of global
iterations of the KF process the resulting estimate
of the model parameters can depend on the initial
guess since multiple local minima and
corresponding attraction basins may exist. The KF
procedure, in fact, implicitly minimizes a norm of
the difference between the experimental and
computed data, which not necessarily is a convex
function of the parameter vector x, and therefore
local minima may exist. Points within the right
attraction basin, and also as close as possible to the
absolute minimum should be selected as initial
guess in order to speed up the convergence of the
method.



4 NUMERICAL APPLICATIONS

The experimental data used for the identification
problem presented in the previous Sections are the
uniaxial tensile size effect tests on dog-bone shaped
specimens performed in the Stevinlab of Delft
University of Technology (van Vliet 1998, 2000).
The specimen shape and dimensions for the
adopted size range are shown in Figure 2.

Figure 2. Specimen shape and dimensions for the adopted size
range of the tensile size effect tests.

In order to limit the computing time, only the
gradient parameter c and the two softening law
parameters � and � are considered in the
identification problem. The other model parameters
are considered as a priori known and their values,
measured in standard tests, are E=33000 [MPa],
�=0.2, �i=0.0001, �=14.55.

The experimental data available are the global
load-displacement curves of all the specimen sizes.
The load is defined as the total force applied at the
end of the specimen. The deformation is the
average value of all the LVDTs placed in the
middle of the specimen with a scaled measurement
length (van Vliet 2000).

4.1 KNN method application

The experimental quantities collected in the vector
yexp are represented by 100 points along the global
load-displacement curve of each specimen size. In
other words 100 total forces are considered in
correspondence with 100 fixed and equally spaced
deformations, so that the Equation 12 may be
rewritten as:

100
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The parameters population selected for the
evaluation of ycomp is represented by the sets
generated by all the combinations of the values
given in Table 1.  For each specimen size a total

number of 9x7x3=189 forward problems have to be
solved in order to compute the ycomp vector
corresponding to each parameters set xi.

Table 1.  Values for the generation of the
parameter sets population.________________________________________________________________________________
Parameter c [mm2] � �_________________________________________________
Value n. 1 20.0 1500.0 0.93
Value n. 2 25.0 1400.0 0.94
Value n. 3 30.0 1300.0 0.95
Value n. 4 35.0 1200.0 -
Value n. 5 40.0 1100.0 -
Value n. 6 45.0 1000.0 -
Value n. 7 50.0 900.0 -
Value n. 8 - 800.0 -
Value n. 9 - 700.0 -________________________________________________________________________________

The plot of the approximated surface f(x) as
function of c and �, starting from the 189 points
f(xi), is shown in Figure 3, for all the specimen
sizes (except type F, omitted because of the large
computational effort). Figure 3 is related to
�=0.93, having analogous results for the other
values of �. The objective function f(x) has
basically a saddle shape and the promising region
for the parameters estimation is a diagonal area.
Sections of f(x) with planes perpendicular to the �
axis may be approximated by the following
regression formula:

3 2 1
1 2 3 4( )f c b c b c b c b

� �
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�

�

� � � � (24)

The (cubic) curves represented by Equation 24
are plotted in Figure 4 for all values of �, in case of
specimen type B and for �=093.

Figure 4. Sections of the objective function f(x) with planes
perpendicular  to the � axis, for specimen type B and �=0.93.



Figure 3. Objective function f(x) for different specimen sizes. In all cases � = 0.93.

Moving along the diagonal area that corresponds
to the saddle of the objective function, different
minima can be found. The gradient parameter c and
the softening law parameter � are strictly correlated
and the inverse problem is ill posed, since different
parameter sets give the same global response of the
specimen. However, the displacement field and the
damage distribution in the process zone resulting
from equivalent parameter sets may be different, so
that experimental local information near the crack
may be used in order to select the best parameter
set (Carmeliet 1999). Another possible way to
regularize the problem is the introduction of an
initial guess of the model parameters in the
objective   function   f(x),  so  that,  analogously   to

Figure 5. Objective function with initial guess (type B).

Equation 18, Equation 11 may be rewritten as:

1 1
exp 0 0 0( ) ( ) ( )T Tf � �

� �x e C e x - x C x - x (25)

The initial guess x0 and the associated
covariance C0 play a key role and the objective
function takes a convex shape, as shown in Figure
5.

However, the identified model parameters may
be strongly influenced by the initial guess and
small values of C0 may result in a biased
estimation.

Different diagonal promising areas are found for
the various specimen  sizes, as  shown in  Figure 6,

Figure 6. Parameter sets corresponding to the promising areas
for the various specimen sizes, for �=0.93.
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where the lines corresponding to the best parameter
sets are plotted on the parameters grid for all the
specimen types (case �=0.93).

The horizontal line corresponding to the
specimen type A, in Figure 6, denotes that the
chosen parameter grid is not correct for that
specimen size. Regions of higher values of �
correspond to better parameter estimations in the
case of the smallest specimen size.

The best parameter set, corresponding to the
nearest neighbor ycomp of yexp, for each specimen
size is presented in Figure 7(“o” marker).

However, if the peak load is considered in
Equation 23 (i.e. j=1) to find the parameter set that,
among the considered population, gives the best
reproduction of the maximum load carried by the
specimen, different parameter estimations are
obtained (see Fig 7, “+” marker).

 Using these estimations, the size effect curve
can be computed. Although different parameter sets
are considered for each specimen size (“+” marker
in Fig. 7), the calculated size effect curve is too
flat, as shown in Figure 8 (Lehký & Novák 2002).
The absolute minimum of the optimization problem
can not be found in the considered parameter grid
for the specimen type A and E.

4.2 KF method

Four KF procedures are considered in order to
investigate the influence of C0, Cexp and number of
KF steps on the estimated parameter values, for the
specimen type B. The related data are reported in
Table 2, expressing the covariance matrixes in
terms of uncertainty on the mean values.

Figure 7.  Best parameter sets for all specimen types,
corresponding to the best global load-displacement curve and to
the best the peak load.

Table 2.  KF procedures data________________________________________________________________________________
KF procedure C0 [%] Cexp  [%] n. steps_________________________________________________
KFI (ref.) 40 50 (real) 20
KFII 10 50 20
KFIII 40 5 20
KFIV 40 50 30_______________________________________

In order to limit the computing time (forward
finite difference scheme is used for the numerical
evaluation of the sensitivity matrix), only two
parameters are involved in the identification
procedure, considering � as a priori known
(�=0.95).

The initial guess for all the KF procedures is
taken equal to x0

T=[�0 c0]=[1200  40].
The estimated parameter values of the four KF

procedures are represented in Figure 9 on the same
parameter grid used earlier for the KNN method.
Also the minima of the surface f(x) (see Fig. 6,
type B) are reported in the same figure.

A decrease in C0 corresponds to a decrease in the
uncertainty of the initial guess and, as a
consequence, the final parameter estimate is forced
to be close to the initial point, as observed for the
case of KFII. The best result, among the four
procedures, is obtained by the KFIII. A small
uncertainty of the experimental information forces
the procedure to obtain computational results as
close as possible to the experimental data. The final
estimation is improved by increasing the number of
KF steps, as in the case of KFIV.

The parameter sets identified by the considered
KF procedures converge to the same local
minimum (except KFII), being the starting point in
that attraction basin.

Figure 8.  Experimental and computational nominal strength �n

vs. specimen size d.



Figure 9. Estimated parameter sets for KFI, KFII, KFIII, KFIV.

5 CONCLUSIONS

The parameter identification based only on global
information of a single tensile test may result in an
ill posed problem with a non-unique solution. The
objective function of the minimization problem
may be regularized by adding local information on
the process zone or an initial guess on the model
parameters. The estimate of x0 and the associated
covariance C0 is a crucial point, since the identified
parameters may be strongly influenced by this
choice.

Diagonal promising areas in the parameter space
of c and � characterize the examined inverse
problem, so that the gradient parameter is
correlated with the softening law parameter � in
terms of global response of the specimen.

The parameter identification based only on the
peak loads of size effect tests may give different
results than identification based on the entire global
force-deformation response of the specimens.
However the gradient damage model, with only
one parameters set, can not reproduce the
experimental size effect curve of the considered
dog-bone specimens.

The Kalman filter technique is a powerful tool
that identifies not only the model parameters, but
also the related uncertainty. However the non
linearity of the problem does not guarantee the
independence of the final parameters estimate from
the initial guess, which is a weak point for many
numerical applications.
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