
1 INTRODUCTION

Elastic damage models or elastic plastic laws are
not totally sufficient to correctly capture the
constitutive behavior of concrete. In some cases
(using damage mechanics), the calculation of the
damage variable (isotropic case) or tensor
(anisotropic laws) is a key point. It can become
essential when coupled effects are considered
(coupling between damage and permeability,
damage and porosity …). In (Picandet et al, 2001)
(see figure 1), an experimental law is so proposed
between the damage distribution in the material
and its gas permeability. Damage is measured
using the unloading slope during cyclic
compressive loading. In this case, the capability of
the constitutive model to capture the unloading
behavior is thus essential if a proper evaluation of
the permeability needs to be achieved.

An elastic damage model is not appropriate as
irreversible strains cannot be captured: a zero stress
corresponds to a zero strain and the value of the
damage is thus overestimated (figure 2a). An
elastic plastic relation is not adapted (even with
softening, see for example Grassl et al, 2002) as the
unloading curve follows the elastic slope (figure

2b). Another alternative consists in combining
these two approaches to propose an elastic plastic
damage law. The softening behavior and the
decrease in the elastic modulus are so reproduced
by the damage part while the plasticity effect
accounts for the irreversible strains. With this
formulation, experimental unloading can be
simulated correctly (figure 2c).

Figure 1. Experimental relation between damage and
permeability. kv0 and kv are the intrinsic permeabilities of the
initial and damaged material respectively. (Picandet et al, 2001).

It is such a model which is presented in this
contribution. The constitutive law is validated on
three different applications : a simple tension test
to evaluate the ability of the simulation to capture
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the softening behavior of concrete, a cyclic
compressive loading  to reproduce the development
of irreversible strains, and a triaxial test with
confinement to study the material response with
increasing hydrostatic pressures. For each loading,
the plastic damage simulation is compared with
experimental results and with an elastic damage
formulation to underline the interest of including
“plastic” strains.

Figure 2. Unloading response of  elastic damage, elastic plastic
and elastic plastic damage models.

2 MODEL FORMULATION

2.1 Plasticity

The plastic model is governed by the following set
of equations  :
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where ε, εe and εp are respectively the total, elastic
and plastic strains, σ’ is the effective stress, E is
the elastic tensor,  λ the plastic multiplier and kh

the hardening parameter (0 1hk≤ ≤ ). m and h are

the flow vectors defined by :
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where f is the yield surface and ζ a function of the
stress (Etse et al, 1994).
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with I1 and J2 the stress invariant and θ the Lode
angle function of the second and third stress

invariant and ranging from [-π/6 ; π/6]. , and ck rρ
are three functions of the stress invariant and
internal variable.
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where rc is a parameter.
The evolution of the plastic multiplier is finally

given by :
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This local problem is solved with an iterative
procedure associated to a closest point projection
algorithm (see Perez-Foguet et al, 2000).
Figure 3 shows the evolution of the yield surface
with an increasing hardening parameter kh for
simple compression. Figure 4 highlights the non
symmetry of the plastic surface with the Lode
angle (for simple compression, simple tension or
hydrostatic loading).

Figure 3. Plastic yield surface. Evolution with the hardening
parameter for simple compression (Lode = PI/6).
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Figure 4. Plastic yield surface. Evolution with Lode angle
(simple compression, lode = PI/6, simple tension, lode = -Pi/6,
hydrostatic loading, lode = 0).

Figure 5. Plastic yield surface. Failure surface for an hardening
parameter equal to 1.

Depending on the type of loading which is applied,
the initial threshold (and the evolution) of plasticity
is not the same. Finally, figure 5 illustrates the
failure surfaces for simple tension and
compression. As the hardening parameter has a
limited value of 1, once it has reached this critical
level, hardening is not allowed any more and the
yield surface becomes a failure one (constant
effective stress).

2.2 Damage model

The damage part of the model was initially
developed in (Mazars, 1984). It describes the
constitutive behavior of concrete by introducing a
scalar variable D that quantifies the influence of
microcracking.

For the description of the damage growth, an
equivalent strain εeq is introduced from the elastic
strain tensor εe.

1 'e Cε σ−=                                                           (6)

where C-1 is the inverse of the elastic tensor.
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with e
iε +< >  the positive principal elastic strains.

The loading surface g is defined by:
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where the damage variable D is also the history
variable which takes the maximum value reached

by d����  during the history of loading,
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d����  is defined by an evolution law which
distinguishes the mechanical responses of the
material in tension and in compression with the
help of  two couples of scalars, (αt, Dt) for tension
and (αc, Dc) for compression.
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εD0 is a parameter and represents the initial
threshold from which damage grows. Dt and Dc are
the tensile and compressive parts of the damage.
A t, Ac, Bt and Bc are four parameters. The weights
αt and αc are computed from the elastic strain
tensor. They are defined as functions of the
principal values of the strains εi

t and  εi
c due to

positive and negative effective stresses. In uniaxial
tension, αt = 1 and αc = 0. In uniaxial compression,
αt = 0 and αc = 1.

The evolution of damage is determined by the
Kuhn – Tucker conditions :
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Once the damage variable has been calculated,
the stress is computed :

(1 ) 'Dσ σ= −                                                     (11)

2.3 Model implementation

The integration of the constitutive law follows two
main steps as depicted in figure 6.



Figure 6. Elastic plastic damage formulation. Principle of the
computational implementation.

The state at time t-1 (i.e. quantities εt-1 and σt-1)
and the total strains εt

n
 at time t and global iteration

n are known. An effective stress σ’ t
n,j (undamaged

stress) is then computed using the equations of
plasticity (particularly the expression of the yield
surface f) (step 1) (see section 2.1.). After an initial
prediction, successive corrections, δσj, are applied,
if necessary, to determine the appropriate value of
the effective stress. Once the elastic – plastic strain
decomposition εe,t 

n εp,t 
n is known (from the

plasticity), a scalar damage variable D is
calculated. Finally, the total stress σt

n is computed
from the damage and the effective stress. If the
equilibrium equations of the mechanical problem
are not satisfied, some corrections δεn are
considered on the total strains (Newton – Raphson
iterative scheme).

3 VALIDATION

The constitutive law is now going to be validated
on three types of loading : a simple tension test, a
cyclic compression and  a triaxial application with
increasing confinement pressures.

3.1 Simple tension test

For concrete, tension is the most relevant loading
that a model has to predict as far as cracking is
concerned. It is indeed when the concrete is
subjected to tension that the first cracks usually
appear.

That is why the numerical response (elastic
plastic damage law) is first compared with such a
test (Gopalaratnam et al., 1985). Figure 7 gives the
axial stress – strain curve. To evaluate the interest
of including plasticity in the formulation, a pure
damage model is also considered for which the
plastic strains are supposed to keep a constant zero
value so as the elastic strain equals exactly  the
total strain (ε = εe) (original damage model,
Mazars,1984). Figure 8 illustrates the simulation
with the elastic damage model. As the development
of damage is predominant during simple tension
tests, the two models are able to reproduce the
experiment globally. Especially, the elastic plastic
damage constitutive law gives a correct value of
the peak position and simulates the post peak
behavior. Choosing the appropriate parameters, the
model is thus adapted for simple tension test.

Figure 7. Stress strain curve for simple tension test. Elastic
plastic damage formulation.

Figure 8. Stress strain curve for simple tension test. Elastic
damage constitutive law.
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3.2 Cyclic compression simulation

Cyclic compression is the second elementary test
used to validate the interest of the model.
Experimental results are taken from (Sinha et al,
1964). Figure 9 illustrates the numerical response
for simple damage law (without plasticity).  With
this type of relation, a zero stress corresponds to a
zero strain. No irreversible effect is simulated. The
unloading curve is elastic with a slope equal to the
damaged Young’s modulus Ed .

0(1 )dE D E= −                                                   (12)

with E0 the virgin Young’s modulus.
The numerical response of the elastic plastic

damage model is given in figure 10. This time,
damage induces the global softening behavior of
concrete while the plastic part reproduces
quantitatively the evolution of the irreversible
strains. Experimental and numerical unloading
slopes are thus  similar, contrary to the simple
damage formulation response.

If this difference could seem negligible, it is in
fact essential if a correct value of  the damage
needs to be captured. The elastic damage model
overestimates D whereas the full constitutive law
provides more acceptable results.

Figures 11 and 12 illustrate the differences
between the two approaches in term of  volumetric
behaviors. While, with the simple damage law, the
volumetric strains keep  negative values, the
introduction of  plasticity simulates a  change in the
volumetric response from contractant (negative
volumetric strains) to dilatant, a phenomenon
which is experimentally observed (see Sfer et al,
2002 for example).

The introduction of plasticity associated with the
development of damage plays thus a key role in the
numerical simulation of a cyclic compression test.

Figure 9. Cyclic compression test. Elastic damage simulation.

Figure 10. Cyclic compression test. Elastic plastic damage
formulation.

Figure 11. Cyclic compression test. Volumetric behavior for
elastic damage model.

Figure 12. Cyclic compression test. Volumetric behavior for
elastic  plastic  damage model.

The apparition of irreversible strains during
loading is quantitatively reproduced and the
softening behavior fits well. Moreover, the
volumetric response, that was totally misevaluated
by the elastic damage model, is correctly simulated
by the full formulation.

3.3 Triaxial test with confinement pressures

To evaluate the ability of the constitutive law to
reproduce triaxial tests after hydrostatic loading,



the experimental results  from (Sfer et al, 2002) are
simulated.

A vertical displacement is applied on the plane
face of a concrete cylinder after an initial
hydrostatic loading.

Numerical results are compared with experiment
for different levels of confinement pressures (P = 0,
1.5, 4.5, 9, 30 and 60 MPa). Figure 13 gives the
axial response after the confinement phase (the
application of the hydrostatic pressure is not
represented) for the first four pressures.

Simulations and experiment propose similar
results. The peak position is quantitatively well
reproduced (except for 1.5 MPa). The global
evolution is also correct: the maximum of the axial
stress increases with the pressure and the softening
part is less and less significant. When the initial
hydrostatic pressure takes higher values, the
damage part of the model plays a minor role and
plasticity effect becomes predominant.

Figure 13. Triaxial test with increasing confinement. Axial
stress - strain curves for low hydrostatic pressures. Straight lines
(black markers) correspond to simulation, dotted lines (white
markers) to experiment.
(a) 0 MPa, (b) 1.5 MPa, (c) 4.5 MPa, (d) 9 MPa

Figure 14. Triaxial test with increasing confinement. Axial
stress – strain curves for high hydrostatic pressures.

Figure 15. Triaxial test with increasing confinement. Axial
stress strain curves for high hydrostatic pressures. Comparison
between  the elastic damage model (dam) and the elastic plastic
damage formulation (plas).

Figure 16. Hydrostatic confinement. Comparison between elasic
plastic damage model (pl dam) and elastic damage constitutive
law (dam).

Figure 14 presents the axial curves for 30 and 60
MPa. Once again, experimental results and
simulations are in agreement. Especially, the
decrease in the initial modulus is reproduced by the
consitutive law.

Figure 15 proposes a comparison between the
elastic plastic damage formulation and the damage
model for the high confinement pressures. The
damage law fails to reproduce the decrease in the
initial modulus. As soon as the pressure takes
important values (30 MPa and 60 MPa in the
figure), the model gives an overestimated
prevision of the real behavior. In fact, this comes
from the definition of the equivalent strain (7) that
characterizes the material extension during loading.
When the hydrostatic pressure is applied, the
sample is not subjected to tension, the equivalent
strain keeps a zero value and the material response
is elastic. If this prediction is acceptable for low
confinement pressures, it is no longer true when
one considers higher levels. For 30 MPa for

(a)
(b)

(c)

(d)



example, non linearity has already initiated when
the application of the vertical displacement begins.
On the contrary, the introduction of plasticity and
the characteristic shape of the associated yield
surface (closed function along the volumetric
invariant) enable to simulate the non linear
behavior. To underline this difference, figure 16
gives the  two stress strain curves during the
application of the hydrostatic pressures. As
expected, the elastic damage evolution is linear
whereas with the elastic plastic damage model, a
decrease in the slope is observed.

Figure 17 shows the evolution of the simulated
transversal strains for low confinement pressures
and a comparison with experiment. Even if the first
part of the curve  is underestimated by the
simulation,  the transversal strains are globally
correct.

Figure 17. Triaxial test with increasing confinement. Axial
stress vs transversal strains for 1.5, 4.5 and 9 MPa.

4 CONCLUSIONS

An elastic plastic damage formulation was
developed to simulate the response of concrete
under different loading. It is based on an isotropic
damage model,  for the description of the softening
behavior and the degradation of the Young’s
modulus which is associated to a plastic surface,
responsible for the irreversible strains. The
constitutive law was tested on three applications.

For simple tension, where damage is
predominant compared to plasticity, the response
was correctly described. Especially the peak
position and the post peak  part were simulated in a
good way.

Cyclic compression underlines the necessity to
include a plastic surface. If the softening part is
reproduced by both elastic damage and elastic
plastic damage models, only the second one is able

to simulate the development of irreversible strains.
With this formulation, unloading slopes are in
agreement with experimental results. A “plastic”
effect is also observed on the volumetric behavior
with a characteristic  change from a contractant
response to a dilatant response.

Finally, triaxial confinement tests confirm the
interest of the association of damage and plasticity.
The experimental evolution of the peak stress and
the softening part with increasing hydrostatic
pressures are noticed especially. Due to its shape,
the plastic yield surface is able to simulate the
decrease of the initial slope observed for some
levels of confinement. The experimental
transversal strains are also reproduced.
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