Shear failure of plain concrete in strain localized area
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ABSTRACT: The objective of this paper is to study the shear failure of plain concrete in strain localized
area. An experimental study on plain concrete subjected to shear was carried out. The shape of specimen
was a horizontally double-notched concrete block. In order to study the shear softening characteristics of
plain concrete, a mechanical model for the macroscopic shear failure is applied to the experiments,
focusing on the entire load-displacement relation. The method makes use of rotating smeared crack
concept and truss model, combined in a simple model. The analysis employs the development of multiple
diagonal cracks and macroscopic fictitious shear crack propagation. The model isfound in good agreement
with the experiments. The analytical results point out that the shear softening characteristics depend on the

size of strain localized area.
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1 INTRODUCTION

The research on cracking behavior of concrete has
been largely progressed after the proposal of
Fictitious Crack Model (FCM) by Hillerborg et al.
(1976). The model describes the mode | fracture
behavior at the cracking process zone by means of
tension softening curve, which is the function of
tensile strength and fracture energy. The tension
softening curve is the relation between the cohesive
force along the fictitious crack and the crack width.
After this proposal, many experimental and
analytical research works on mode | fracture of
concrete have been carried out and it becomes
possible to obtain experimentally the fracture
parameter such as fracture energy and tension
softening curve.

It has been known that the actual fracture mode
observed in concrete structures is complex
behavior associated with structural system, loading
and boundary conditions and so on. Therefore, it is
necessary to comprehend the physical behavior on
mixed mode fracture combined with mode | and I1,
to develop the mechanical model to describe the
behavior, and to obtain the mechanical parameters
to express quantitatively the model based on the
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standard test. However, most of evaluation
methods on shear fracture behavior of concrete
structures are based on experiments, and the
theoretical approach such as a limit analysis does
not give the sufficient solution regarding
deformation behavior. In addition, there are a few
researches on shear softening characteristics and
the generalized definition on shear softening is not
confirmed.

For this technical background, the objective of
this research is to expand the concept of so-called
fictitious crack model to mode Il shear fracture, to
develop a mechanical model and to propose finally
a smple test method with which the necessary
mechanical parameters are identified for modeling.

Authors have constructed the shear fracture
seguence based on the fracture process observed in
the experiments of a direct shear test, developed a
mechanica model and identified the correlation
between shear softening behavior and aggregate
interaction behavior (Kaneko et al. 2001). The
methodology of this mechanical model has been
applied to the shear-off failure of plain and fiber
reinforced concrete shear key joints (Kaneko et al.
1993ab, Kaneko 1993) and the shear failure of
reinforced concrete membrane elements (Kaneko



1998) in  which the force-displacement
characteristics were predicted appropriately.

Based on the research achievement, a mechanical
model is applied to the direct shear test (Ishihara et
al. 2003) focusing on the entire deformation
behavior of concretein this paper.

2 EXPERIMENTAL WORK

As shown in Figure 1, the direct shear test was
conducted with the parameters of the notch-
distance and with joint or without joint to obtain
the post-peak characteristics and the deformation
behavior at the localized shear failure area. In the
test, the ratio of notch-distance (a) to the specimen-
height (D) was set as 0.1 or 0.17, and the fracture
behavior at the shear failure area was observed by
means of a microscope.

In the specimens, the horizontal wedge-type
notch with the maximum opening displacement of
5 mm was installed at upper and lower positions,
and two types of specimens were adopted such as
the notch distance of 60 mm (a/D=0.1, UJ60 and
JR60 series) and 100mm (a/D=0.17, UJ100 series).
Here, UJ stands for the unjointed specimens and JR
for the jointed ones with surface roughness of 2.0
mm.

The compressive strength f'. and splitting tensile
strength f; of concrete obtained with the same
mixing proportion are summarized as follows:
concrete CO1 (f'.=30.4MPa, f=2.47MPa) for UJ
series; concrete CO1 and concrete CO2
(fe=35.5MPa and f=3.0MPa) for JR series. The
maximum aggregate size was 15 mm for relatively
narrow notch-distance. The basic support (loading
point) condition was the pin-support at the upper
and the fixed one at the lower. The specimens of
UJ60-8 and 9 were supported at both pin-supports.
In UJ0 series, the verticd and horizontal
displacements between Al-bolt and A2-bolt were
measured at both frontage and reverse, as shown in
Figurel.

Regarding the fracture behavior, the following
phenomena were observed. In the specimens of
UJ60-1, 2 and 3, the flexural cracks initiated at
both upper and lower notches. Each flexura crack
propagated to the opposite notch tip and finaly
reached to it. In the specimens of UJ60-4, 5, 6 and
7, only one flexural crack initiated and reached to
the opposite notch tip. On the other hand, in the
specimens of UJ60-8 and 9, the flexural cracks first
initiated and propagated similar to the specimens of
UJB0-1, 2 and 3. Subsequently, the shear cracks
were observed near the center of shear plane
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between both notches with the microscope.
Specifically, in the specimen of UJ60-8, the shear
cracks dominated the failure mechanism and the
compression struts between both notches finaly
crushed as shown in Figure 2. In the specimen of
UJ60-9, the shear cracks stopped propagating and a
flexural crack propagated to the opposite notch tip
and finally reached to it.

In the specimens of UJ100-1 and 2, only one
flexura crack first initiated and propagated to the
opposite notch tip. Subsequently, the shear cracks
were observed at the shear plane between both
notches with the microscope. Finally, the shear
cracks dominated the failure mechanism and the
compression struts between both notches crushed.
In the specimens of UJ100-3, the similar behavior
was observed to the specimens of UJ100-1 and 2.
However, the final failure was caused by not shear
cracks between both notches but flexural cracks
that reached the notch tip.
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Figure 1. Specimens and Loading System of UJ 60 (Frontage)
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3 SHEAR FRACTURE MODEL
3.1 Modeling for Strain Localized Area

The damage area (width: W;,) associated with
shear failure is modeled by a single fictitious
macroscopic shear crack as shown Figure 3(a) and
(b). The cracking behavior is modeled based on the
fracture sequence defined in the previous research
(e.g., Kaneko et al. 2001). The following simple
fracture sequence of diagonal multiple crack is
macroscopicaly constructed and is schematically
shown in Figure 3(c).

1. At the damaged area, diagona multiple cracks
initiate along the principal stress axis, and finally
the shear fracture zone is formulated as
distributed cracks. The diagona multiple cracks
are assumed evenly distributed along the shear-
fractured zone with a certain angle of inclination.

2. With further shear loading, the diagonal multiple
cracks are assumed to rotate following the
principal stress axis under mode | condition.

3. The tensile strain of cracks and the compressive
strain of struts between each crack and the next
increase continuously, and the macroscopic shear
softening starts associated with the crushing
failure of compression struts.  Specifically,
diagonal multiple cracks are coalesced into the
macroscopic fictitious shear crack caused by the
highly localized strain distribution.

In order to evaluate a quantity of energy, the
strain at the damaged area is translated to both the
shear dlip displacement and the shear crack opening
displacement of macroscopic fictitious shear crack.
In the present approach, the fracture process of
diagonal multiple cracks is modeled by means of a
combination of a rotating smeared crack concept
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and a truss model. The intent of this approach is
based on the fact that it is often desirable to find
general analytical solutions, which are much easier
to handle than numerical solutions produced by
nonlinear FEM analysis.

3.2 Rotating Smeared Crack Model

The present mechanical model satisfies three basic
requirements: equilibrium, compatibility and
material constitutive laws. Stress transformation
conditions (eguilibrium) in a cracked element at the
damaged area are formulated based on the works of
Vecchio & Collins (1986) and Hsu et al. (1987).

In this modeling, stress and strain are assumed
uniformly distributed as averaged ones over the
entire damaged area.  After diagona cracking
occurs, a series of diagonal compression struts is
formed in the compression direction (c-direction).
The element takes only compressive stress o in the
c-direction of compression struts and only tensile
stress o ¢ in the tension direction (t-direction)
transverse to compression struts. Shear stress zy
along the cracked element is assumed zero. Thus,
o. and oy are aways principa stresses of this
system. The angle between the x-y and c-t
coordinate systems is designated as @ as shown in
Figure4. Thisangleis also the angle of inclination
of compression struts with respect to the x-axis.
The averaged stresses and strains of concrete
element in the two coordinate systems, x-y and c-t,
are transformed according to the following
equations.

0, =0,C080+0,89n*0 (1a)
o,=0,8n°0+0,00s 0 (1b)
r,, =(0,—0,)sindcosd (1c)

(1) Crack Initiation (2) Crack Rotation (3) Crushing of Strut
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(c) Fracture Sequence

Figure 3. Modeling for Shear Fracture at Damaged Area
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Figure 4. Stress Transformation System

For the concrete element between the uniformly
distributed diagonal cracks, which rotate along the
principal stress axis, the following constitutive laws
are applied.

The assumed tensile stress-strain relation of plain
concrete in the direction perpendicular to the
compression struts is formulated by the following
equations. The bilinear tensile stress-deformation
relation originaly proposed by Hillerborg (1985)
as a tension softening concept is adopted for the
descending branch based on the crack band theory
(Bazant and Oh 1983) as shown in Figure 5(a).

o, =Eg, 16 <&y (29)
(“'R 17 b _ %j
o =f # ey <& SEy (Zb)
(gtul — & )
Gt = M : gtul < gl < Stuz (ZC)
3(‘c"tuz - gtul)
ft
=— 2d
=g (20)
4G
E = &g T ST; (2@)
t
un =0+t (20)
t
h= e (29)
5
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where E. = Young's modulus; f, = tensile strength
of concrete; &, = cracking strain; gy and gy =
post-cracking characteristic strains;, and Gp =
fracture energy. h is the interval between each
diagonal crack and the next as shown in Figure 3
(Kaneko et a. 2001).

The assumed compressive stress-strain relation
in the direction of compression struts is constructed
based on the works of Soroushian et al. (1986) and
Hognestad (1951) as shown in Figure 5(b). In
addition, softening of concrete struts related to
tensile strain in the direction perpendicular to struts
is considered based on the work of Vecchio &
Collins (1986).  Thus, assumed stress-strain
relations are described by the following equations
(Kaneko et al. 2001).
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E
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where f'. = compressive strength; &, = associated
strain; and A = coefficient to take care of the
softening phenomena.
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Figure 5. Stress-strain Relationship (a) Tension; (b)Compression

Young's modulus of concrete was estimated by
the following relation (Chen 1982, Kaneko et al.



2001). The fracture energy was estimated as 0.1
N/mm, a value often used by many researchers
(e.g., Rots & Blaauwendraad 1989, Balakrishnan &
Murray 1988).
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In the present modeling, a principal strain ratio
va (F&lg, or apparent Poisson's ratio) is
constructed to evaluate simply a complex fracture
sequence governed by a tensile strain. It is
assumed that the relation between the tensile strain
and compressive strain of a compression strut are
related by theratio v, defined as:

v,=¢16=02 g <, (59)
v,=05 g, <e, (mode 1) (5b)
v,=02 g,<g, (modd 2) (5¢0)

The ratio v, is a salient feature in the present
mechanical model and is defined as &/g for the
case in which the tensile strain controls the
deformation of the structure. This is because the
coalescence of diagonal cracks could be achieved
by high strain localization between each diagonal
crack and the next. The aim of this model is to
eliminate a numerical iteration in the calculation of
the stress and strain in both tension and
compression (see the detail in Kaneko et al. 1993ab,
Kaneko et a. 2001). Specifically, the compressive
strain (&) is calculated by Equation (5) for
monotonically increasing tensile strain (g). The
tensile and compressive stresses can be then
calculated by substituting the known values of
tensle and compressive strain  into  each
constitutive model without numerical iteration.

The ratio v, was formulated based on structural
experiments (Vecchio & Collins 1986, Mansure &
Ong 1991). The model 1 gives a mean value of
scattered experimental data and the model 2 is
defined as a constant value of v, without steep
increase of compressive strain. In the analysis for
deep beams (Kaneko & Mihashi 2002), the model 2
gave stable converged solutions associated with the
steep drop after the maximum load. Therefore, in
this paper, the model 2 is adopted to study the post-
peak characteristics.

The load P, the shear sliding displacement (J)
and the crack opening displacement (&) orthogonal
to shear plane at the macroscopic fictitious shear
crack are calculated for the specimens with the
width (b) by the following equations.
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P=1,bd (63)
5y =W (6b)
5x = ngda (GC)

Using the principal strain ratio (vx=&/&) and the
specified confined stress (0;=0.0), the preceding
11unknowns (o, oy, Ty & & Yy Ot O & &, and
6) are reduced to 9. By selecting one of them (&)
as a known value, the remaining 8 unknowns can
be obtained from a set of 8 equilibrium,
compatibility and constitutive equations. Hence,
one can develop the relation between the average
shear stress 7, and the average shear strain y, by
the following steps:

a) Selectavaueof g;

b) Assume v,=0.2 (model 2);

c) Cdculate ¢ from v=&/g;

d) Cadculate o, o, and A from Equations (2)
and (3);

e) Calculate ¢ from Equation (1a) with specified
ox(=0.0);

f) Calculate 5y, 55y and & from Equation (1);

g) Cdculate the parameters associated with load
and displacement from Equation (6).

4 VERIFICATION STUDY
4.1 Load-displacement relation

The applicability of the mechanical modd is
mainly examined with three unjointed specimens
of UJ60-8, UJ100-1 and UJ100-2, which showed
obvious shear failure between two notches. Figure
6(a) shows the comparison of |oad-displacement
relation between experiment and analysis. In the
analysis, the damaged area width (Wy,) of 15 mm
observed in the experiment of UJ60-8 was adopted.
It isrealized that the prediction isin relatively good
agreement with the experimental results for the
entire range of loading consisting of the post-peak
region. Specificaly, in the specimen of UJ60-8,
the stiffness in the experiment reduces around the
loading level of 20 kN. This is caused by the
flexural cracks near the notch tip, which is not
considered in the mechanical model.

In the specimen of UJ100-2, good agreement
between the experiment and the analysis is
observed, except that the experimental result keeps
the loading level awhile after the peak load. Thisis



caused by the rotation of specimen due to the one-
sided flexural crack. Figures 6(b) and (c) show the
comparison of load-displacement relation between
the experiment and the analysis employing several
widths (Wy,) of damaged area. It is clear that the
larger width (Wg) gives the larger post-peak
ductility with aslight reduction of the peak load.
Figure 6(d) shows the comparison of load-
displacement relation between the experiment for
jointed specimens and the analysis employing
Wga=15mm and the lower value of f'; in the jointed
specimens (concrete C01). The predictions are in
good agreement with the experimental results as
well as the analyses for unjointed specimens,
except the specimen of JR60-1, which gave
extremely low peak load. It was observed that the
cracking sequence of JR60-1 deviated from the

joint-plane, which was completely different from
the other jointed specimens. Thus, it is clarified
that there exists the strain localized area even in the
jointed specimens with sufficiently roughened
surface as well as unjointed specimens of UJ60-8,
UJ100-1 and UJ100-2.

Figure 7(a) shows the comparison of shear
softening characteristics and dissipated energy at
the damaged area employing several widths (Wj,)
of damaged area. The dissipated energy is defined
here as the area under the shear stress-shear
displacement curve up to the considered shear
displacement. It is clear that the larger width (W;,)
gives the larger post-peak ductility and larger
dissipated energy with a dight reduction of the
peak stress.

Figure 7(b) shows the stress-tensile strain curves
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obtained in the analysis. It is redlized that the
compressive stress o, in a compression strut
becomes highly close to the peak stress and the
stress point in the tensile constitutive law is on the
first softening region when the shear stress g
reaches the peak stress. This numerical
phenomenon is considered in the formulation of
shear strength in the next section.

4.2 Formulafor Shear Srength

In order to verify the proposed mechanical model
aternatively, the formula for the shear strength is
developed based on the assumption: the
compressive stress o, in a compression strut
becomes equal to the peak and the stress point in
the tensile congtitutive law is on the first softening
region when the shear stress g, reaches the peak
stress (see Figure 7(b)). Here, the values of o, f',
& &xo e considered negative since the tensile
stress and strain are defined positive and the
compressive stress and strain are negative.

Substituting Equations. (5a) and (3d) with x = -
&/ & (>0) into Equation (3a), one can aobtain the
following equation.

0.80, +0.340,x —0.4fx+004fx*=00  (7)

The conditions for x to give the maximum (local
minimum) of o, are as follows:

2
do, ~00 . d“o,

o Ve >0.0

(8a,8b)

Differentiate Equation (7) with respect to x, one
can obtain the following equations.

089% ., 0345 +0.3ax 9% 04140087 x=00
dx dx
©)
2 2
083 % 1 2,0349% , 0.34x L%, 0.08/=00
dx dx dx
(10)

Substituting Equations (7) and (8a) into Equation
(9), one can obtain the following equation.
0.0136f/x* +0.064 f/x—0.32/= 0.0 11

Then, x (=x") associated with the maximum
(local minimum) of o iscalculated as follows:

718

cr

X =4 _30383~30 (12)
ch

Substituting Equation (12) into Equation (10),
one can see that the condition with Equation (8b) is
satisfied as follows:

d’o, _
dx?

oo,
0.8+0.34x3.0

(13)

Substituting Equation (12) into Equation (7), one
can obtain the maximum (local minimum) of o as
follows:

o, =0.462f/ (14)

Subgtituting Equations (3¢) and (12) into
Equation (2b), one can obtain the tensile stress o
(= &) associated with o.™ as follows:

2
o _ g, Shh
6E

t t
C—F

(f,+6%) (15)

Substituting the condition of ;=0.0 into
Equation (1a), one can obtain @ (=¢") associated
with o™ as follows:

_ % (16)

Substituting Equations (14)-(16) into Equation
(1c), one can formulate the shear strength by the
following equation. Here, ' is considered negative.

(o," —0.4621,) Sn2p”

max _
Txy =
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A comparison of experimental data with the
predictions by Equation (17) for every unjointed
and jointed specimens are shown in Figures 8(a)
and (b), along with a =10 % and % 20% error
ranges. In the case of unjointed specimens, the
agreement between the measured and calculated
shear strength is indeed good within £10 % error
range. In the case of jointed specimens, the
predictions give dlightly larger deviation from
experimental results than unjointed specimens and
are amost within=20 % error range.

Here, it should be noted that the present formula
for shear strength is applicable to the geometric and



loading configurations of the specimens presented
in this paper. In order to apply the formulato other
configurations, further numerical study may be
necessary.

5 CONCLUSION

In this paper, an experimental study on plain
concrete subjected to shear was carried out. In
order to study the shear softening characteristics of
plain concrete, a mechanicad modd for the
macroscopic shear failure is applied to the
experiment, focusing on the entire load-
displacement relation.  From this study, the
following conclusions can be drawn.

1) The analysis employing the proposed
mechanical model agrees well with the
experimental results on load-displacement
curves consisting of the post-peask region.
Furthermore, a formula for shear strength is
developed and the prediction with the formula
is found in good agreement with the
experimental data.

2) The shear softening characteristics depend on
the size of strain localized area.  Specificaly,
the larger width of strain localized area gives
the larger post-peak ductility and larger
dissipated energy with a slight reduction of the
peak stress.

Future work must be directed at further
verification studies with experimental observations
and alternative analytical studies consisting of
severa congtitutive models in order to generaize
the analytical conclusion identified in this paper.
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