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1 INSTRUCTION 

Currently, researchers in the field accept the 
conclusion that the failure of concrete loaded in 
tension is caused by strain localization resulting in 
a finite size fracture process zone. In the last few 
years, many researchers have begun to realize that 
strain localization also occurs for concrete 
specimens loaded in compression.1,2 However, the 
compressive failure mechanism is more complex 
than the tensile failure mechanism. Size effect of 
compressive failure is not as distinct as in tensile 
failure, because the formation of microcracks in 
compressive failure is distributed in a wider region 
than in tensile failure. Presently, most design codes 
for concrete structures do not consider the effect of 
size. 

Concrete is a construction material normally 
used to withstand compressive force. However, 
specimens loaded in tension and compression both 
fail by the formation of distributed splitting cracks 
in the direction of member length as the lateral 
deformation increases. Thus, it is logical to extend 

the tensile size effect research to compressive 
failure research. For this reason, several researchers 
are currently performing many studies on 
compressive failure of concrete. Gonnerman3 
experimentally showed that the ratio of the 
compressive failure stress to the compressive 
strength decreases as the specimen size increases. 

After deriving Size Effect Law (SEL) by 
Bazant,4 Kim et al.5,6 proposed the modified size 
effect law (MSEL, Eq. (1) by adding the size 
independent strength )'( to fασ =  to SEL that can 
predict the strength of concrete members with or 
without initial cracks and with similar or dissimilar 
cracks. 

 
                                                   (1) 
 

 
where, Nσ  is the nominal strength; 'cf  is the 
compressive strength of standard cylinder; D  is 
the characteristic dimension; ad  is the maximum 
aggregate size; and B , oλ , and α  are empirical 
constants. As an application of MSEL, some 
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researches7-10 have been performed on unnotched 
and notched cylindrical specimens subjected to 
uniaxial compressive force, axially loaded Double 
Cantilever Beam, and C-shaped specimens 
subjected to flexural compression force. In 
Equation 1, the width of crack band ol  is 
empirically found to be related to the maximum 
aggregate size, e.g., aoo dl λ=  in which oλ  is an 
approximate constant with values between of 2.0 
and 3.0.7-9 In the regression analysis, this constant 
is selected as 2.0 where ol = ad×0.2 = 4.0 cm. 

The actual stress distribution in the compression 
zone of reinforced concrete (RC) flexural members 
is extremely difficult to measure and to adequately 
model. In 1955, Hognestad et al.11 experimentally 
presented concrete stress distribution in an ultimate 
strength design by a rising curve from zero to 
maximum stress, and a descending curve beyond 
the maximum stress. The test procedure on C-
shaped concrete specimens subjected to axial load 
and bending moment was developed by the 
Portland Cement Association (PCA)11,12 at this time 
formed the basis of the rectangular stress block 
used in ACI 318 Code.12 Also, Kim et al.’s studies8-

10 have shown that under flexural compression 
loading the failure strengths decrease as the sizes 
(that is, size, length, and depth variations) of the 
concrete specimens increase. Since the most widely 
used flexural member type is RC beams, it is 
logical extend the study of flexural compressive 
strength size effect to flexural loaded beam 
members. Presently, however, both experimental 
and analytical studies considering the depth of 
neutral axis for RC beam specimens are scarce to 
the point of nonexistence due to numerous 
difficulties experimentally in measuring the stress-
strain distribution. 

The purpose of this study is to experimentally 
investigate the size dependency on flexural 
compressive strength, which is flexural strength of 
RC beams, considering the depth of neutral axis. 
Previously, several researchers have reported from 
their studies that flexural compressive strength size 
effect does not exist. However, the analyses show 
that the specimens used for the study had limited 
size variation and the neutral axis depth variations 
were too similar to show distinct size effect. 
Therefore, this study enforced distinct neutral axis 
depth variations for all of the tested specimens. 
Also, analytical equations that reasonably predict 
the size effect of flexural compressive strength are 
proposed based on the experimental data obtained 
from the flexural tests of RC beam specimens, 
which is designed and constructed in the actual 
field. 

2 TEST SPECIMENS AND EXPERIMENTAL 
PROGRAM 

2.1 Test specimens 

The dimensions, shape, loading point locations, 
specimen number, and reinforcement details of 
specimens used in the experiments are shown in 
Figure 1 and Table 1. The main test variable was 
effective depth of the specimen (d = 15, 30, and 60 
cm), with the same concrete compressive strength 
of 37 MPa. The shear-span to depth ratio (a/d = 3.0) 
and the thickness (b = 20 cm) was kept constant so 
that the effect of thickness of specimen on the size 
effect can be eliminated. The central section of 
beam, the critical section under flexural 
compression loading, was not reinforced with shear 
reinforcement. The reinforcement, as shown in 
Figure 1, was used at the two ends of the specimen 
to eliminate the shear failure at the two end 
sections. 
 
 
 
 
 
 
 
 
Figure 1. Shape and dimensions of specimens. 
 
Table 1.  Specimen size and reinforcement details.  

Specimen No. I II III 
h (cm) 65 35 20 
d (cm) 58.5 30.0 14.3 
l1 (cm) 60 30 15 
l (cm) 460 230 125 
a (cm) 180 90 45 
l2 (cm) 20 20 20 
Tensile 
reinforcement 

2-D25+D19 
 

2-D16+D19 
 

3-D13 
 

Compressive 
reinforcement 

2-D10 
 

2-D10 
 

2-D10 
 

Stirrup D10@200 D8@100 D6@50
Tensile 
reinforcement ratio 
(ρt) (%) 

1.11 
 
 

1.14 
 
 

1.33 
 
 

ρt /balanced 
reinforcement ratio

0.45 
 

0.44 
 

0.42 
 

 
According to Table 1, tensile reinforcement 

ratios are different for different specimen sizes. 
The difference is to consider slight variations of 
yield strengths for various reinforcing bar 
diameters as shown in Table 2. In this experiment, 
tensile reinforcement ratios were adjusted to 
represent the same failure behavior for all 
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specimens at the time of yielding of reinforcing 
bars. 
 
Table 2. Test results of reinforcing bar. 
 

 Yield strength, 
fy (MPa) 

Ultimate 
strength, 
fu (MPa) 

fu/fy 
 

D13 390.83 582.32 1.49 
D16 445.28 666.30 1.50 
D19 473.23 693.27 1.46 
D25 467.55 697.10 1.49 

 
The concrete mixture proportions selected for the 

beam and 28-day compressive strength cylinder 
specimens are listed in Table 3. The design strength 
and slump are 35 MPa and 12 cm, respectively. 
Type I portland cement was used in all mixtures. 
Crushed gravel is used as the coarse aggregate and 
the maximum aggregate size ad  is 20 mm. As 
listed in Table 3, concrete compressive strength 

'cf , splitting tensile strength ctf , and elastic 
modulus cE  are averaged values from testing of 
three identical φ 100×200 mm cylinders in the 
series. Specimens are cast vertically on a level 
surface. Two specimens, totally 6 specimens, per 
specimen size are prepared. All beam specimens 
and cylinders were removed from the mold after 24 
hours and dry-cured under a wet burlap/tower until 
testing. The cylinders were tested at an age similar 
to the concrete used for the beam specimens. 

 
Table 3. Concrete mixture proportions and physical 
properties of concrete. 

 
Unit weight, kg/m3 MPa w/c* 

% 

s/a** 

% W C S G*** fc’ fct Ec 

45 41 186 409 643 1017 37 4 27700
 

 
Table 4. Test results of beam specimens. 
 

Specimen 
No. 

Nσ  

(MPa) 
Pu 
(kN) 

εu,test 
(×10-6) 

εu,anal 
(×10-6) 

I-1 37.57 486.58 2200 2825 
I-2 36.10 479.71 2270 2720 
II-1 39.73 247.21 3080 3245 
II-2 40.42 243.29 2990 3130 
III-1 43.46 128.51 3370 4110 
III-2 42.67 126.55 3410 4420 

 
The numbering of the specimen (that is, I-1) and 

experimental data are tabulated in Table 4. Also, 
the roman numerals I, II, and III represent the size 
of the specimens with I being the largest and 

decreasing accordingly. The arabic numbers 1 and 
2 are the two specimens tested for each specimen 
size. 
 

2.2 Experimental program 

The applied loads in four-point loading shown in 
Figure 1 was supplied by a universal testing 
machine (UTM) with a capacity of 2500 kN using 
a displacement control method. During testing, 
loads were measured up to failure by load cells. 
The horizontal thick solid lines in Figure 2 
represent the locations where strain gages are 
attached to the sides of specimens. As shown in 
Figure 2 and Table 5, strains were measured using 
11, 11, and 9 strain gages attached to each side of 
specimen I, II, and III, correspondingly. The strain 
gages in the compression zone were attached more 
closely than the tension zone. In addition, 8, 6, and 
6 linear variable displacement transducers 
(LVDTs) were used to monitor vertical 
displacements at each side of specimen I, II, and 
III, correspondingly. 

 
 
 
 
 
 
 
 
 

 
(a) strain gages                                       (b) LVDTs 

 
Figure 2. Locations of strain gages and LVDTs. 

Table 5.  Locations of strain gages and LVDTs. 

 

3 EXPERIMENTAL RESULTS AND 
EVALUATION 

3.1 Test results 

Nσ , uP , testu ,ε , and analu ,ε  represent the nominal 
flexural compressive strength, maximum load, 

I 0,  2,  4,  6,  8,  10,  14,  20,  30,  40 
II 0,  1,  2,  3,  4,  5,  7,  10,  15,  20,  30 

Xi (cm) 
strain gage 
 III 0,  1,  2,  3,  4,  5,  7,  10,  15 

I 0,  37,  115,  165,  255,  305,  383,  420 
II 0,  35,  85,  125,  175,  210 

Li (cm) 
LVDT 
 III 0,  11,  39,  66,  94,  105 
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ultimate strain obtained from experiments at failure, 
and ultimate strain obtained from analyses at 
failure, correspondingly. In Equation 1, the strength 
in concrete Nσ  is the maximum stress value in the 
stress-strain curve. All specimens were tested 
successfully where stable failure occurred in the 
middle section of specimens as shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Side surface 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Top surface 

Figure 3. Crack patterns of a specimen (II-2) after testing. 
 

In Table 5, testu ,ε  is neither ultimate strain value 
nor the corresponding strain value at the maximum 
stress, but it is a reasonable maximum strain value 
measured using the strain gages located in the 
extreme compression fiber. The reason for using 
this strain value is due to the fact that an accurate 
strain cannot be obtained in the descending branch 
of stress-strain relationship when the failure starts 
in the fiber of concrete beams (i.e., beyond the 
maximum stress). In addition, analu ,ε  is the strain 
value obtained analytically when the cross-section 
has a maximum bending moment value in the 
stress-strain relationship. 

During testing, cracks in the central section (i.e., 
a region without shear reinforcements for all 
specimens occurred after formation of diagonal 

tensile cracks in the parts located between supports 
and loading points. Finally, as shown in Figure 3, 
the failure occurred in the extreme compression 
fiber of central section with crushing preceding the 
failure. During testing, concrete showed more 
brittle failure mechanism as the specimen size 
increased. This is related to quasibrittle 
characteristics of concrete materials, energy release 
rate accumulated in the experimental device, and 
stiffness of the testing device. 
 

3.2 Size effect of flexural compressive strength 

Figure 4 shows the value '/)( cN fdσ  as a function 
of the effective depth d, the distance from the 
extreme compression fiber to the centroid of the 
steel section. In order to obtain an analytical 
equation, which predicts the flexural compressive 
strength of specimens, SEL and MSEL are used. 
Then, Least Square Method (LSM) regression 
analyses14,15 are performed on the results of the 6 
tested specimens in this study. Equations 2 and 3 
are obtained from the analyses and the results are 
graphed and shown in Figure 4. In this figure, the 
correlation coefficient (r) and standard deviation (s) 
for MSEL are 0.978 and 0.017 and for SEL are 
0.975 and 0.018, respectively. 

 

    
 
 (MSEL, this study’s data)        (2) 
 
 
 
 
 
 
       (SEL, this study’s data)         (3) 

 
where, nominal flexural compressive strength Nσ  
and uniaxial compressive strength 'cf  are in MPa 
and effective depth of the specimen d is in cm. 

In this study, we also concluded that the strength 
ratio approaches a limit with an increasing 
effective depth d. In this figure, the solid circular 
data points represent experimental data of this 
study. In addition, the thick solid line and the 
dashed line represent the results from Equations 2 
and 3, respectively. 

As shown in Figure 4, the results indicate a 
strong size effect condition. By comparing 
Equations 2 and 3, it can be seen that the difference 
is not apparent in the region which contains most 
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of the beam sizes. But, beyond this region, more 
specifically larger specimen sizes, the new equation 
(Eq. (2)) better agrees with the experimental results. 
Also, MSEL predicts the behavior of specimens 
having no initial crack or notch more appropriately. 
If specimens have initial cracks, however, Equation 
3 is better than Equation 2, because the strength 
decreases continuously as the specimen size 
increases. 

 

 
Figure 4. Relationship between '/)( cN fdσ  and effective depth. 

 
In Figure 4, the hollow circular data points and 

the diamond-shape data points represent 
experimental data of normal-strength (NSC) and 
high strength-concrete (HSC), respectively, from 
the reports by Alca, Alexander, and MacGregor.16 
Corley17 and Alca, Alexander, and MacGregor16 
rejected the hypothesis that there is a size effect in 
flexure based on the experimental results. From 
this figure, however, the authors acknowledged that 
there is a little evidence of existence of size effect 
in flexural member, which is supported by the 
results from this study. In this figure, the one dotted 
line represents the results from Equation 4 for NSC. 

 
    
 
 
 
(MSEL, MacGregor et al.’s data)        (4) 

 
From the few available experimental data, it is 

also apparent that the flexural strength decreases as 
specimen size increases. 

3.3 Comparison of proposed and existing model 
equations based on depth of neutral axis 

Figure 5 shows the value '/)( cN fcσ  as a function 
of the neutral axis depth c, the distance from the 
extreme compression fiber to the neutral axis. 
Equations 5 and 6 are also obtained from the LSM 
regression analyses on the test data for neutral axis 
depth. Figure 5 is a graph of the results obtained 
from this study. 
 

 
Figure 5. Relationship between '/)( cN fcσ  and depth to neutral 

axis. 
 
 

 
 
 

(MSEL, this study’s data)                    (5) 
 
 
 
 
 
 
(SEL, this study’s data)                       (6) 

 
where, depth to neutral axis of beam specimen c is 
in cm. 

Equations 7 and 8 are obtained from the LSM 
regression analyses on the test data obtained from 
Kim et al.’s study8 and a combination of Kim et 
al.’s study8 and this study, respectively. Namely, 
Equation 8 is a more general equation since it is 
derived using all of available data. The results are 
also graphically shown in Figure 5. 
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(MSEL, Kim et al.’s data)                   (7) 
 
 
 
 
 
(MSEL, both data)                           (8) 
 

where, c is depth of neutral axis of beam specimen 
or C-shaped specimen in cm. In Kim et al.’s study,8 
the maximum aggregate size was 13 mm. Thus, 

ol = ad×0.2 = 2.60 cm was used. 
In the previous study,8 Equation 9 was proposed 

to obtain the flexural compressive strength of C-
shaped specimens with length-depth ratio of 2:1. 

 
                                               (9) 

 
 
 
where, depth of C-shaped specimen c is in cm. 

In this figure, the solid circular data points and 
the hollow circular data points represent 
experimental data of this study and Kim et al.,8 
respectively. In addition, the thick solid line, the 
dashed line, the dotted line, the one dotted line, and 
the two dotted line represent the results from 
Equations 5-9, respectively. 

As shown in Figure 6, the results indicate a 
strong size effect condition. The comparison of 
Equations 5-8 show that the shape and trend is 
similar even though a slight scattering between 
curves smaller and larger specimens exist. 
However, the '/)( cN fcσ  value of beam 
specimens is smaller than the value of C-shaped 
specimens. Thus, an additional value must be 
considered to accurately obtain beam strength 
capacity. This difference is probably due to the 
method obtaining the location of neutral axis, the 
maximum aggregate size ad  used to obtain the 
experimental data, and the type of size effect law 
used (either SEL or MSEL). In addition, the 
difference between Equation 9 and others is due to 
the fact that the )(cNσ  value in Equation 9 is 
calculated as bcPu / . However, in other cases, 

)(cNσ  means a maximum stress value in the 
stress-strain curve. It is also important to note that, 
in order to incorporate the real loading condition, 
the additional bending moment due to eccentricity 
should be considered in Equation 9. 

3.4 Other observations 

3.4.1 Location of neutral axis 
Figure 6a shows the value of neutral axis location 
to effective depth ratio as a function of the 
normalized strain. In this figure, it is important to 
note that the location of neutral axis with an 
increasing strain goes up to extreme compression 
fiber for all size specimens. Also, even though the 
difference with specimen size is not apparent, the 
neutral axis is located slightly higher in smaller-
size specimens when strain is greater than 0.002. 
This means that the flexural compressive strength 
at failure increases as the specimen size decreases. 

 

(a) 

(b) 
 
Figure 6. Variations of neutral axis location with strain in the 
extreme compression fiber. 
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Figure 6b indicates that the location of neutral 
axis abruptly changes when the specimens are 
applied with extreme compression fiber strain of 
0.0012 0.0015. This phenomenon, as shown in ∼
Figure 7, occurs on the specimens that lie in the 
strain range of perfect plastic behavior after tensile 
reinforcement yielding. This is because the flexural 
compressive strength increases as the strain 
increases even though the increase in tensile force 
is scarce. Accordingly, it is found that the location 
of neutral axis abruptly rises to satisfy the 
equilibrium condition between compressive and 
tensile forces. 

 
Figure 7. Variations of neutral axis location due to perfect 
plasticity of reinforcement with strain. 
 

3.4.2 Stress-strain relationship 
To obtain the stress-strain curve, the extreme 
compression fiber strain and the location of neutral 
axis must be compatible. However, when the 
specimens reach testu ,ε  it is difficult to measure 
strain and neutral axis location. Therefore, the 
strain shall be obtained from the curvature 
calculated using moment-displacement relationship. 
At this time, linear elastic mechanics theory cannot 
be used, because the deflection of beam is very 
large. Therefore, the following curvature equation 
was used. 
 

        (10) 
 
 
where, υ  is the deflection of the beam when 
compared to its initial position. For deflections, a 
cubic 3

4
2

321 cccc AAAAf εεε +++=  equation  
data fitted with LSM regression analyses using 

deflections measured from LVDT’s shown in 
Figure 2b was used. 

The experimentally obtained neutral axis 
location with respect to strain shown in Figure 6b 
abruptly changes when strain reaches testu ,ε . The 
stress-strain relationship calculated using a cubic 
equation was obtained by incrementally changing 
neutral axis depth. The final stress-strain 
relationship was calculated until the experimentally 
obtained stress-strain curve of the strain equal to 

testu ,ε  where the neutral axis location no longer 
changes. When comparing the calculated and 
experimentally obtained stress-strain relationships, 
the difference was not apparent in the ascending 
branch and an insignificant difference was found in 
the descending branch. Therefore, it is safe to 
conclude that in all strain states the calculated 
stress-strain relationship is valid and similar to the 
actual beam stress-strain relationship. 

The depth of neutral axis has direct relationship 
to extreme fiber strain of flexural loaded beam 
members. Stress values on compressed face of 
specimens cf  obtained from LSM regression 
analyses using a cubic equation are plotted with 
respect to strain values on compressed face cε  in 
Figure 8. LSM regression analysis was performed 
on the experimental data by satisfying moment 
equilibrium around the neutral axis of the cross-
section. In other words, in order to perform LSM 
regression, the values of bending moment M  and 
extreme compression fiber strain cε  at every 
loading step are required. Averaged values from 
two stress-strain curves are plotted with respect to 
specimen size in Figure 8. This figure shows 
generally expected stress-strain relationship. 
 

 
Figure 8. Effect of specimen sizes on stress-strain curves. 
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The thick solid line in Figure 8 is the uniaxial 
compressive stress-strain curve obtained from 
standard concrete cylinder tests. Maximum stress 
value and the corresponding strain value and the 
ultimate strain value of beam specimens show a 
significant increase as the specimen size decreases. 
The maximum stress value and the corresponding 
strain value of specimen size III is largest when 
compared to the other specimen sizes. The stress-
strain curves from pure compression of cylindrical 
specimens and flexure-compression tests of RC 
beam specimens are similar until the maximum 
compressive strength 'cf  is reached. However, the 
relationship is significantly different after the peak 
load. This means that the maximum stress value 
and the corresponding strain value of beam 
specimen increases and more ductile behavior 
occurs as the specimen size decreases. 

It is assumed that the established cf  and cε  
relationship is valid for all layers in the cross-
section. Thus, a compressive stress can be 
determined from this relationship using the 
measured strain value. 
 

4 CONCLUSIONS 

To evaluate the size effect on the flexural 
compressive strength of RC flexural members 
considering the depth of neutral axis, a series of 
flexural tests for 6 concrete beam specimens and 
cylinders cast from the same batch with 
compressive strength of 37 MPa were carried out. 
From the test results and analyses, the following 
conclusions are drawn: 
(1) Size effect is apparent where the flexural 

compressive strength at failure and the 
corresponding strain value and the ultimate 
strain decrease as the specimen size increases. 
For the stress-strain relationship, the size effect 
is also apparent. 

(2) New parameter values of MSEL are suggested 
to better predict the reduction phenomena of the 
strength. 

(3) Further experimental study is needed to 
evaluate ultimate strain and depth of the 
equivalent rectangular stress block suggested in 
design code for RC beams. Additionally, the 
technical review on a mechanical relationship 
between RC beam specimens and C-shaped 
specimens will be performed. 
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