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ABSTRACT: The present contribution aims at deriving a chemomechanical damage model within the
framework of open system thermodynamics. The governing equations, which are essentially characteriz
through the balance of mass and momentum of the chemical reactant, are discretized with the help of t
finite element method. The central idea is the reformulation of the classical damage variable in terms of tf
non—constant reference density, which is then introduced as nodal degree of freedom next to the deformatior
self. The basic features of the derived model will be discussed with the help of selected computational exampl
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1 INTRODUCTION thermodynamics, whereby the chemical reactant, in

It is well-known, that concrete structures subjectedhis context the cementif[ious skeleton, is considered
to changing water level or constant water flow ex-aS an open system which is allowed to constantly
hibit not only mechanically induced damage. Ratherg&in or lose mass. In the case of chemically reacting
their stifiness is reduced significantly as they underg@goncrete, dissolution of portlandite or ettringite and
permanent chemical reactions with the surroundin he progressive decalcification of the calcium silicate
ground water. Due to the chemically induced dissol1ydrates represent typical examples of mass sources
lution of the cementitious skeleton, a remarkable in-While the transport of the solved cations and anions
crease of porosity can be observed which, in tyrnmanifests itself in an additional mass flux. Conse-
accelerates the accumulation of mechanical dama%&‘em'y' the classical conservation law of mass has to
related to stiffness degradation. On the other hand?® recast into a balance equation balancing the rate
the increase of porosity, or rather decrease in derff change of the mass of the reactant with a possible
sity, manifests itself in a local increase of permeabil-Mass source or rather sink term, and an in- or rather
ity which accelerates further dissolution due to im-Outflux of matter. This enhanced mass balance typi-
proved transport properties for the solved ions. Chem¢@lly has a direct impact on the balance equations of

ical and mechanical effects are thus interacting in dnomentum, kinetic energy, energy and entropy of the

able reduction of life time. The above phenomenordocumented by (Truesdell and Toupin 1960), (Bowen
is particularly relevant in the context of long-time 1976), (Coussy 1995), (de Boer 2000), the theory of
durability prediction, e.g. for containers of radioac- OPen systems is based on the fundamental assump-
tive waste, see e.g. (Coussy 1995), (Torrenti, Mainilon that the constituents, in t_hls context the cemen-
guy, Adenot, and Tognazzi 1998), (Carmeliet 1998)’Ut|ous skeleton and the reacting fluid, are not super-
(Uim and Coussy 1995; Ulm, Torrenti, and Adenot posed locally but are rather spatially separated. More-
1999), (Kuhl and Meschke 2002; Kuhl 2003). over, the overall behavior is assumed to be determ!ned
The present contribution is concerned with the derivaPrimarily by the response of the cement matrix which
tion of a theoretical and computational model for S allowed to undergo a permanent exchange of mass,
chemomechanically coupled problems. To this endMOmentum, energy and entropy with its environment,
we will make use of the framework of open systemCompare also (Katchalsky and Curran 1965), (Epstein
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and Maugin 2000), (Kuhl and Steinmann 2003d; Kuhlthe material frame of referend®,. Thus,V{e} and
and Steinmann 2003b). Div {e} denote the gradient and the divergence of any
The chemomechanical problem is thus primarily gov-field {e} with respect to the material placemexit

erned by the balance of mass and momentum of the

cementitious skeleton. It turns out, that the former car2.2 Balance equations

alternatively be interpreted as the damage evolutiorhe present section briefly summarizes the relevant
law, whereby the damage variablés directly related  balance equations for open system thermodynamics
to the material density, asd = 1 — po/pg With p5 de-  which constitute the basis for the finite element anal-
noting the reference density of the intact material. Theysis to be derived later on. Unlike classical closed sys-
damage variable thus gains a real physical interpretaems typically found in traditional mechanical appli-
tion and can be measured experimentally just by meazations, open systems exhibit a permanent exchange
suring the current density. The temporal discretizaof mass, momentum, energy and entropy with their
tion of the governing equations is carried out with theenvironment, compare (Kuhl and Steinmann 2003d:;
implicit Euler backward scheme while for the spatial Kuhl and Steinmann 2003b; Kuhl and Steinmann
discretization, we suggest a monolithic two-field fi- 2003e). As a natural consequence, the classical bal-

nite element formulation by introducing both, the lo- ance of mass [, = 0 has to be enhanced by an ad-
cal density and the deformation as primary unknownsjitional mass fluxk and a mass sourde,.

on the nodal level. The nonlinear set of discrete equa-

tions is solved with the help of the incremental it- D; po = Div R+ Ry (3)
erative Newton-Raphson scheme supplemented by a »

consistent linearization as described in detail in (KuhiThe mass specific balance of momentum

and Steinmann 2003e; Kuhl and Steinmann 2003c; o -

Kuhl and Steinmann 2003a). poDip=DiVII + b, 4)

This contribution is organized as follows. After intro- "
@alances the rate of change of the mass specific mo-

ducing the basic kinematics, the balance equation tum densitg — ith th duced i
the constitutive equations and the corresponding Weaﬁi]en um densityp = v wi € reduced momentum

.y 0
form of open system thermodynamics in section 2, welux IT" and the reduced momentum soulge The

will derive the temporal and spatial discretization in Clausius-Duhem inequality for open system thermo-
section 3 followed by its consistent linearization in dynamics can then be expressed in the following

section 4. Finally selected examples will be discussedrm,
in section 5. - _ ,
do=IT': D,F — pyDyi) +0[DivS —Sy] >0 (5)

2 CO_NTINU_OUS EQUATIONS whereby the non—standard extra terghandS, have
2.1 Kinematics ~ been included accounting for the explicit exchange
Let B, andB; denote the reference and current config-of entropy with the outside world. By introducing a
uration occupied by the body of interest attij@nd  free Helmholtz energy of the following formp =

teR, respectively. _Then the kinematic descri_ption iS4) (po, F') we straightforwardly obtain the definition
basically characterized through the deformation maps the reduced first Piola—Kirchhoff stre#g’

¢ mapping the material placemeit in the material
configurationB, to its spatial placement in the spa- It = po Dt (6)
tial configurations;.
as thermodynamically conjugate variables to the spa-
r=p(X,t): ByxR—B (1)  tial motion deformation gradied. Moreover, we are

_ _ . left with the additional restrictions
The corresponding deformation gradidntharacter-

izes the linear tangent map from the material tangent d, — p D, [Div R — R ] +0Div.S —Sy] >0 (7)
space€l ', to the spatial tangent spa@is,.
for the constitutive assumptions for the extra external

F=Vep(X,t): TBy—TB (2)  entropy fluxS and the extra external entropy source
' . Sp which ensure that the overall dissipation does not
Its determinant defines the related Jacoblaas./ =  pecome negative.

det F > 0. In what follows, O = 9,{e}|x will de-

note the material time derivative of a quant{ty} at Remark 2.1: Interpretation of the balance of mass
fixed material placemenX . Accordingly, the spatial Within the framework of chemomechanics, in partic-
velocityv = D;¢ (X, t) can be understood as the ma- ular in the context of leaching, the balance of mass
terial time derivative of the deformation map We  (3) typically expresses the evolution of the moisture
shall apply a formulation which is entirely related to content in terms of the moisture flux.
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2.3 Constitutive equations R = Ry/[1—d]Vp. Finally, we introduce a mass
To close the set of governing equations, we shall inSOurceR, of the following format.

troduce constjtltJtive assumptions for the reduced mo- -

mentum fluxIT', the reduced momentum sourb s 0

the mass fluxR, the mass sourck,, the extra er?— Ro=—=po eXp[_alew{}“] (15)
tropy flux S and the extra entropy sourc®. For

the particular case of chemomechanical damage to b&iternatively, by making use of equation (9) as =
considered in the sequel, the chemical reactant can — d] 0%, the above equation can be expressed as
be considered as an open system which is allowed tfpllows R, = —pi exp[—a ¥ /1 ]. Last, we shall a
constantly gain or lose mass due to moisture transpogriori exclude the possibility of stiffness recovery by

in combination with chemical reactions. The funda-assuming a vanishing extra entropy supply such that
mental idea is to introduce a damage variabés the extra entropy flus

d=1-po/pp (8) S=0 (16)

which can thus be interpreted as the change in the
density p, with respect to a reference densipy. ~ and the extra entropy sourcg
The Helmholtz free energy densitycan then be ex-

pressed in the following familiar format, Sp=0 a7)
P =[1-d]y"° (9)  vanish identically.
in terms of the current amount of dame{goe— d]and  Remark 2.2: Interpretation of the mass flux
the classical Neo—Hookean free energy®. In the case of chemically reacting concrete, the mass
11 1 _ flux R can be related to the transport of solved cations
Y= [ N\gIn?(J) + =po[F : F —n%™—2In(J)]]  and anions Cd, OH~, Al(OH);, SG;~, SiO}, see
Po 2 2 1) °9 (Ulm and Coussy 1995; Ulm, Torrenti, and Ade-

_ not 1999), (Torrenti, Mainguy, Adenot, and Tognazzi
The momentum fluxII" or rather the reduced 199g) (Carmeliet 1998) or (Kuhl 2003) for detailed
first Piola—Kirchhoff stress tensor follows straightfor- gt dies of moisture transport in the context of calcium
wardly from the evaluation of the dissipation inequal-|eaching.
ity (6) asIT' = po D).
Remark 2.3: Interpretation of the mass source
o' =[1-d o™ (11)  Inthe context of chemomechanical damage of cemen-
titious materials, the dissolution of portlandite or et-
It can thus be expressed as the classical Neo—Hookeatingite and the progressive decalcification of calcium
stress tensafl"¢? silicate hydrates

I = n(J) — o] F' + o F - (12) Ca(OH) — Ca&* +2 OH

weighted by the current amount of damdge- d]. CayAl204(SO,)s - 32H20 — 6 Ca*

For the sake of simplicity, we shall assume that the + 2Al(OH); +35S0;

reduced momentum source, i.e. the volume force vec- _ + 40H +26 H,0

tor b, vanishes identically. Ca0- Si0; - Ho0 — Ca™* + H3SiO; 4 H,0
bo=0 (13)  represent typical examples of changes in mass of the

- . cementitious skeleton, see e.g. (Coussy 1995), (Kuhl
In analogy to Fick's law, the mass flR is related 10 5q Meschke 2002) or (Stark and Wicht 2002) for de-
the gradient of the density p tailed overviews. Recall, that in the absence of trans-
port phenomena aR = 0, the particular choice dk,
of equation (15) can be interpreted as an exponential

which can be related to the gradient of the dam-damage evolution law

age variabled as Vp, = —p§ Vd. Herein, R, de-

notes the materially isotropic mass conduction coef- D;d = exp[—ay /1]

ficient. Note, that in the case of progressive damage,

it might seem reasonable to related the mass conduegvhich characterizes an exponential increase of dam-
tion coefficient to the reduced cross section area aage with increasing time and deformation.

R = Ry Vo (14)
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2.4 Weak form of the coupled problem 3 DISCRETE EQUATIONS

While for classical chemomechanical applications 3.1 Temporal discretization

e.g. the leaching of portlandite, the capillary pressure=or the temporal discretization of the governing equa-
and the deformation furnish the primary unknownstions (21), we partition the time interval of in-
we will introduce the reference density and the terest7 into ng., subintervals|t,,t,.:] as 7T =

the mechanics of open systems. They are govern :,:t?iﬂ] for which At := t,.; — t, > 0 denotes the

by the scalar—valued balance of mass (3) and by thgctual time increment. Assume, that the primary un-

vector—_valued mass—specmc balance of momentuRnowns p,,, and ¢,, and all derivable quantities are

(4) which can be cast into the corresponding residxnown at the beginning of the actual subinteryalin

ual statements with the residuatsandr defined in  the spirit of implicit time marching schemes, we now

the following form. reformulate the set of governing equations in terms of

the unknown$ .1 ande,, 1.

r? (po,)= Dipo—DVR —Ro=0 inB

r* (po, ) =poDip —DIVIT' —by =0 inB, 81 (991P0ns1 Pun) =0 Vop o0
(18) 8ni1 (05 pont1, Pnr1) =0 Vg

Herein, the boundar§ B, of the material domain can

be decomposed into disjoint paéi8; andoB;, for the

density problem and equivalently in&5§ and 0B},

for the deformation problem. While Dirichlet bound-

ary conditions are prescribed o8 andoB;,

Without loss of generality, we shall apply the classi-
cal Euler backward time integration scheme. Conse-
quently, the first order material time derivativegop
and Dp can be approximated in the following form.

ese Dipo = [ pon+1 — pon | / At (24)
po— po =0 ondBy (19) Dip =[Pns1 —pn | /AL
p — =0 on By
3.2 Spatial discretization

Neumann boundary conditions can be given for then the spirit of the finite element method, the domain
mass flux and the tractions &8}, andos}, of interestB, is discretized inton,; elementss; as
By = U<, BS. The test functiongp”" and d™ and
the trial functionp” and " are interpolated on the
element level with the basis functiong, and .V, re-
spectively.

R -N—-r=0 ondBj
II' N—t=0 on 9B, (20)
with IV denoting the outward normal @3,. As a fiep Miew

prerequisite for the finite element discretization, the 5 n_ Ni 5y Soh— Ni .
coupled set of equations has to be reformulated in P ; p OPi v z; @ 0%

weak form. To this end, the residual statements of ey e (25)
the balance of mass and momentum (18) and the cor- h_ NF h_ N

responding Neumann boundary conditions (20) are 7 kz:; p b ¥ 12_; v ¥

tested by the scalar— and vector—valued test function

dp anddep, respectively. Recall that the element set of density nodes:
1,...,n., and the element set of deformation nodes
g (6p;po,p)=0 Y dp j=1,...,n. can generally be chosen independently.
g (6pip0, ) =0 Y ¢ (21)  with the above discretizations, the discrete residuals
can be rewritten as follows.
Thereby, the weak formg” andg® expand into the nel . Pont1 — Pon ;
following expressions. ry = eé‘l e N, At +VN; - R,y dV
0
— [ N r,ndA — [ N'RgdV=0
g’ = / op Dypo dV+ [ Vip -RdAV oner " Tt g o
Ko Bo "R | Pnt1—Pn P F
Y __ J J .
_/ 5p dA_/ 5p RodV ;= A | Vi SN eV
95; By (22) " i g
g<P:/ 590,00 DthV-F/V(;QO ﬂth - aBtng tn—i—l dA — . N@bon—i-l dV: 0
5, By ' “ (26)
—/ op- t dA—/ S bydV Herein, the operatoA symbolizes the assembly of
OB} Bo all element contributions at the element density nodes



i=1,...,n, and the element deformation nodes  expressions,
1,...,ne, to the overall residuals at the global den-

sity and deformation node poinfs=1,...,n,, and R
J=1,...Npyp. Opy Ro = “—d| ?/)oaRO
OrF Ro = L % o Ro IT'
4 LINEARIZED EQUATIONS B0 o wo 0
The discrete residual statements characterizing theav R — Ro I
mechanics of open systems (26) represent a highly " 1 1
nonlinear coupled system of equations which can be 9, o =—_ _*ﬂt
solved efficiently within the framework of a mono- [1 —d] pj
lithic incremental iterative Newton—Raphson solution .. 7 [1—d)[pod®T + NF '@ F!
strategy. To this end, we perform a consistent lin-
earization of the governing equations at time, ~DoIn(J) — po) F'@F 1
(30)
0k _ Ldr =0 Y I=1,. whereby the component representations of the non—
I'ntl = 11 n+1 = - Tinp 27) standard dyadic products reded®o};;, = {e}ix ®

ok+l _ ok 0 - _ o}, and{e®o},ix; = {®}y ® {o};x. Finally, the so-
FJnit =P +Ar; =0 VI =1..om, I{uti}én of tée@y}s{em o{f e}quati{or}ljs (27) renders the it-
erative update for the increments of the global un-
whereby the iterative residugdand d 7 take the fol-  knownsp; andy ;.
lowing format.

Apr=Apr+dpr VI=1,... 1y

n n (31)
e A A(PJ:A(PJ+d(PJ VJ:L,TLn

drt = E:K§‘}(de+§:K - dey, ’
! [, (28) 5 EXAMPLES

dr? — K2 dox + > K9 .d Finally, we shall elaborate the proposed model
J Z PK Z JL "L in terms of a one-dimensional and two three—

dimensional model problems.

In the above definitions, we have introduced the fol-

lowing iteration matrices. 5.1 One—dimensional model problem

To illustrate the physical nature of the constitutive in-

1 troduced in section 2.3, figures 1 and 2 show the ma-

K2 = A Nﬁ — Nf dv terial response in a one—dimensional tension test. For
=l Jge At the sake of transparency, we have neglected transport
_ i k effects asR = 0 such that the density evolution is
Be Ny OpRo N, dV governed by the mass sourRg alone. The reference
: X density and the reference free energy are chosen to
5 VN, R VNydV p = 1.0 andy; = 0.1 while the exponent: takes the
0 value of « = 0.25. The Langé constants of the free
K7 = /:\ NZ OrRyo - VNfD dV (29) energy function introduced in equation (10) are cho-
n:l B3 sen to\ = 0.5769 and . = 0.3846. In particular, the
K = A VNI - 3poﬂt N’“ dv curves in figure 1 show the evolution of damage ver-
e=1 Jgg sus the stretch\ for different time step size& The
oo ; ! value of the damage variable starts at zero and in-
KoL = 6'51 e Nepo A At2 I N,dv creases exponentially with increasing stretches until it
0 ‘ _ finally converges to one. Thereby, the onset of damage
VN, - OpIT" - VN, dV is, of course, more pronounced for larger time scales.
B The curves in figure 2, on the contrary, depict the evo-

lution of damage versus time for different stretches
The specification of the partial derivatives of the mass\. For larger stretches, the evolution of damage ob-
sourceR,, the Mass source and the reduced mo- viously proceeds faster than for moderate stretches.
mentum flux IT' with respect to the primary un- In contrast to commonly applied time—independent
knownsp, and¢ depends on the particular choice of damage models, the model suggested herein is not
the constitutive equations. For the constitutive equadetermined by the amount of loading alone. Rather,
tions suggested in section 2.3, we obtain the followinghe specimen damages further upon constant loading
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Figure 2: Evolution of damage with time Figure 4: Bending problem — Displacement and force

as time evolves. From a physical point of view, thiSyo time steps ofvt = 0.01 and then held constant

property of the model captures the effect of ageing iny, another 90 time steps. Both figures nicely reflect
a natural and straightforward way. Moreover, from aye tact that the overall load carrying capacity drops
continuum point of view, the inclusion of rate effects 4, considerably at the onset of damage. For both,
essentially _s_tablllze_s the formulation, in particular iny  tension and the bending problem, the resulting
the post—critical regime. spatial force reduces to about a third of its maximum

_ _ ) ) value due to the damage induced stiffness degrada-
5.2 Three—dimensional simulation tion.
Finally, we elaborate the three—dimensional responsEigures 5 and 6 depict the corresponding evolutions
of the derived chemomechanical damage model if the density, the deformation and the discrete
tension and bending. The specimen has a length material surface forces for the tension, the bending
width : height ratio of 2 : 1 : 0.5 and is discretized and the torsion problem. Thereby, the five different
with 24 : 12 : 6 trilinear Q1Q1 elements. The materialstages depicted in the figures correspond to time step
parameters are chosen o= 288.46, © = 192.31, 2 right at the beginning of the loading phase, to time
py = 1.0, ¥§ = 1.0 anda = 2.5, whereas the mass step 10 at the end of the load increase and to time
conduction coefficient is set equal to zerofgs= 0.  step 40, time step 60 and time step 100 which illus-
Since we aim at predicting the post—peak responstate the onset of damage upon constant prescribed
of the specimen, the load is applied by displacemendeformation. Mechanical loading obviously induces a
control. Figures 3 and 4 shows the prescribed topeduction of the load carrying capacity accompanied
and bottom displacement and the prescribed bendinigy a localization of the deformation in narrow bands.
deflection which both are increased during the firstAs damage evolves, this localization becomes more
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and more pronounced while the remaining parts of Katchalsky, A. and P. F. Curran (196%onequi-

the structure tend to unload almost completely. librium Thermodynamics in Biophysicklar-
vard University Press — Cambridge, Mas-
sachusetts.
6 CONCLUSIONS Kuhl, D. (2003). lon diffusion models based on
A general theoretical and computational framework the Debye—ldckel-Onsager theory applied to
for the thermodynamics of open systems has been calcium leaching of cementitious materials.
presented which is particularly suited for chemome- Struct. Eng., ASCE, submitted for publication
chanical applications. The formulation is basedonthe k h D and G. Meschke (2002). Higher or-
simultaneous solution of the balance of mass and mo- der transport models for the simulation of
mentum which essentially govern the evolution of the dissociation—diffusion processes in reactive
density and the deformation field. The particularly ap- porous media. In H. A. Mang, F. G. Rammer-
pealing feature of the proposed formulation is based storfer. and J. Eberhardsteiner (Ed$YCCM
on the fact that we no longer deal with an ’artificial’ V. Fiftr; World Congress on Compuational Me-
internal damage variable which we cannot determine chanics

explicitly in experiments but that we rather introduce
damage as a change of the current reference density
which can obviously be accessed directly through ap-
propriate experimental setups. Numerical results have e : .
been derived and discussed for a one-dimensional N9 in Mechanobiology, accepted for publica-
model problem as well as for a three—dimensional ten- tion.

sion and bending test. It should be pointed out, thatin Kuhl, E. and P. Steinmann (2003b). Mass— and

Kuhl, E. and P. Steinmann (2003a). Computational
modeling of healing: An application of the ma-
terial force methodBiomechanics and Model-

contrast to classical time—independent damage sim- volume specific views on thermodynamics for
ulations, we did not encounter any algorithmic prob- open systems$roceedings of the Royal Society
lems throughout all the analyses, even when we calcu- of London 4592547-2568.

lated far into the softening branch. The incorporation  kyn|, E. and P. Steinmann (2003c). Material forces
of time—dependent effects apparently regularizes the in open system mechanicGomp. Meth. Appl.
underlying damage formulation. Stability might also Mech. Eng., accepted for publication

have been enhanced due to the fact that damage was
interpolated continuously on the node point level in
contrast to most classical damage formulations which
typically suggest an integration point based approach.

Kuhl, E. and P. Steinmann (2003d). On
spatial and material settings of thermo—
hyperelastodynamics for open systemsta
Mechanica 160179-217.
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Figure 6: Bending problem — Evolution of density and material forces
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