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ABSTRACT: The present contribution aims at deriving a chemomechanical damage model within the
framework of open system thermodynamics. The governing equations, which are essentially characterized
through the balance of mass and momentum of the chemical reactant, are discretized with the help of the
finite element method. The central idea is the reformulation of the classical damage variable in terms of the
non–constant reference density, which is then introduced as nodal degree of freedom next to the deformation it-
self. The basic features of the derived model will be discussed with the help of selected computational examples.
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1 INTRODUCTION

It is well–known, that concrete structures subjected
to changing water level or constant water flow ex-
hibit not only mechanically induced damage. Rather,
their stiffness is reduced significantly as they undergo
permanent chemical reactions with the surrounding
ground water. Due to the chemically induced disso-
lution of the cementitious skeleton, a remarkable in-
crease of porosity can be observed which, in turn,
accelerates the accumulation of mechanical damage
related to stiffness degradation. On the other hand,
the increase of porosity, or rather decrease in den-
sity, manifests itself in a local increase of permeabil-
ity which accelerates further dissolution due to im-
proved transport properties for the solved ions. Chem-
ical and mechanical effects are thus interacting in a
complex manner and typically result in a consider-
able reduction of life time. The above phenomenon
is particularly relevant in the context of long-time
durability prediction, e.g. for containers of radioac-
tive waste, see e.g. (Coussy 1995), (Torrenti, Main-
guy, Adenot, and Tognazzi 1998), (Carmeliet 1998),
(Ulm and Coussy 1995; Ulm, Torrenti, and Adenot
1999), (Kuhl and Meschke 2002; Kuhl 2003).
The present contribution is concerned with the deriva-
tion of a theoretical and computational model for
chemomechanically coupled problems. To this end,
we will make use of the framework of open system

thermodynamics, whereby the chemical reactant, in
this context the cementitious skeleton, is considered
as an open system which is allowed to constantly
gain or lose mass. In the case of chemically reacting
concrete, dissolution of portlandite or ettringite and
the progressive decalcification of the calcium silicate
hydrates represent typical examples of mass sources
while the transport of the solved cations and anions
manifests itself in an additional mass flux. Conse-
quently, the classical conservation law of mass has to
be recast into a balance equation balancing the rate
of change of the mass of the reactant with a possible
mass source or rather sink term, and an in- or rather
outflux of matter. This enhanced mass balance typi-
cally has a direct impact on the balance equations of
momentum, kinetic energy, energy and entropy of the
open system. In contrast to the theory of porous media
documented by (Truesdell and Toupin 1960), (Bowen
1976), (Coussy 1995), (de Boer 2000), the theory of
open systems is based on the fundamental assump-
tion that the constituents, in this context the cemen-
titious skeleton and the reacting fluid, are not super-
posed locally but are rather spatially separated. More-
over, the overall behavior is assumed to be determined
primarily by the response of the cement matrix which
is allowed to undergo a permanent exchange of mass,
momentum, energy and entropy with its environment,
compare also (Katchalsky and Curran 1965), (Epstein
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and Maugin 2000), (Kuhl and Steinmann 2003d; Kuhl
and Steinmann 2003b).
The chemomechanical problem is thus primarily gov-
erned by the balance of mass and momentum of the
cementitious skeleton. It turns out, that the former can
alternatively be interpreted as the damage evolution
law, whereby the damage variabled is directly related
to the material densityρ0 asd= 1− ρ0/ρ

∗
0 with ρ∗0 de-

noting the reference density of the intact material. The
damage variable thus gains a real physical interpreta-
tion and can be measured experimentally just by mea-
suring the current density. The temporal discretiza-
tion of the governing equations is carried out with the
implicit Euler backward scheme while for the spatial
discretization, we suggest a monolithic two–field fi-
nite element formulation by introducing both, the lo-
cal density and the deformation as primary unknowns
on the nodal level. The nonlinear set of discrete equa-
tions is solved with the help of the incremental it-
erative Newton-Raphson scheme supplemented by a
consistent linearization as described in detail in (Kuhl
and Steinmann 2003e; Kuhl and Steinmann 2003c;
Kuhl and Steinmann 2003a).
This contribution is organized as follows. After intro-
ducing the basic kinematics, the balance equations,
the constitutive equations and the corresponding weak
form of open system thermodynamics in section 2, we
will derive the temporal and spatial discretization in
section 3 followed by its consistent linearization in
section 4. Finally selected examples will be discussed
in section 5.

2 CONTINUOUS EQUATIONS
2.1 Kinematics
LetB0 andBt denote the reference and current config-
uration occupied by the body of interest at timet0 and
t ∈ R, respectively. Then the kinematic description is
basically characterized through the deformation map
ϕ mapping the material placementX in the material
configurationB0 to its spatial placementx in the spa-
tial configurationBt.

x = ϕ (X, t ) : B0 ×R → Bt (1)

The corresponding deformation gradientF character-
izes the linear tangent map from the material tangent
spaceTB0 to the spatial tangent spaceTBt.

F = ∇ϕ (X, t) : TB0 → TBt (2)

Its determinant defines the related JacobianJ asJ =
detF > 0. In what follows, Dt = ∂t{•}|X will de-
note the material time derivative of a quantity{•} at
fixed material placementX. Accordingly, the spatial
velocityv = Dtϕ (X, t) can be understood as the ma-
terial time derivative of the deformation mapϕ. We
shall apply a formulation which is entirely related to

the material frame of referenceB0. Thus,∇{•} and
Div {•} denote the gradient and the divergence of any
field {•} with respect to the material placementX.

2.2 Balance equations
The present section briefly summarizes the relevant
balance equations for open system thermodynamics
which constitute the basis for the finite element anal-
ysis to be derived later on. Unlike classical closed sys-
tems typically found in traditional mechanical appli-
cations, open systems exhibit a permanent exchange
of mass, momentum, energy and entropy with their
environment, compare (Kuhl and Steinmann 2003d;
Kuhl and Steinmann 2003b; Kuhl and Steinmann
2003e). As a natural consequence, the classical bal-
ance of mass Dt ρ0 = 0 has to be enhanced by an ad-
ditional mass fluxR and a mass sourceR0.

Dt ρ0 = Div R +R0 (3)

The mass specific balance of momentum

ρ0 Dt p = Div Π̄
t
+ b̄0 (4)

balances the rate of change of the mass specific mo-
mentum densityp = v with the reduced momentum
flux Π̄

t and the reduced momentum sourceb̄0. The
Clausius–Duhem inequality for open system thermo-
dynamics can then be expressed in the following
form,

d̄0 = Π̄
t
: DtF − ρ0Dtψ + θ [Div S −S0 ] ≥ 0 (5)

whereby the non–standard extra termsS andS0 have
been included accounting for the explicit exchange
of entropy with the outside world. By introducing a
free Helmholtz energy of the following formψ =
ψ (ρ0,F ) we straightforwardly obtain the definition
of the reduced first Piola–Kirchhoff stress̄Π

t

Π̄
t
= ρ0 DFψ (6)

as thermodynamically conjugate variables to the spa-
tial motion deformation gradientF . Moreover, we are
left with the additional restrictions

d̄0 − ρ0 Dρ0 [Div R−R0 ] + θDiv S −S0 ] ≥ 0 (7)

for the constitutive assumptions for the extra external
entropy fluxS and the extra external entropy source
S0 which ensure that the overall dissipation does not
become negative.

Remark 2.1: Interpretation of the balance of mass
Within the framework of chemomechanics, in partic-
ular in the context of leaching, the balance of mass
(3) typically expresses the evolution of the moisture
content in terms of the moisture flux.
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2.3 Constitutive equations
To close the set of governing equations, we shall in-
troduce constitutive assumptions for the reduced mo-
mentum fluxΠ̄

t, the reduced momentum sourceb̄,
the mass fluxR, the mass sourceR0, the extra en-
tropy flux S and the extra entropy sourceS0. For
the particular case of chemomechanical damage to be
considered in the sequel, the chemical reactant can
be considered as an open system which is allowed to
constantly gain or lose mass due to moisture transport
in combination with chemical reactions. The funda-
mental idea is to introduce a damage variabled as

d = 1− ρ0 /ρ
∗
0 (8)

which can thus be interpreted as the change in the
density ρ0 with respect to a reference densityρ∗0.
The Helmholtz free energy densityψ can then be ex-
pressed in the following familiar format,

ψ = [1− d ]ψneo (9)

in terms of the current amount of damage[ 1− d ] and
the classical Neo–Hookean free energyψneo.

ψneo=
1

ρ0

[
1

2
λ0 ln2(J)+

1

2
µ0[F : F −ndim− 2 ln(J)]]

(10)
The momentum fluxΠ̄

t or rather the reduced
first Piola–Kirchhoff stress tensor follows straightfor-
wardly from the evaluation of the dissipation inequal-
ity (6) asΠ̄

t
= ρ0 DFψ.

Π̄
t
= [1− d ]Π̄

neot (11)

It can thus be expressed as the classical Neo–Hookean
stress tensorΠneot

Π̄
neot

= [λ0 ln(J)− µ0 ]F−t + µ0 F (12)

weighted by the current amount of damage[ 1− d ].
For the sake of simplicity, we shall assume that the
reduced momentum source, i.e. the volume force vec-
tor b̄0 vanishes identically.

b̄0 = 0 (13)

In analogy to Fick’s law, the mass fluxR is related to
the gradient of the density∇ρ0

R = R0∇ρ0 (14)

which can be related to the gradient of the dam-
age variabled as ∇ρ0 = −ρ∗0∇d. Herein,R0 de-
notes the materially isotropic mass conduction coef-
ficient. Note, that in the case of progressive damage,
it might seem reasonable to related the mass conduc-
tion coefficient to the reduced cross section area as

R = R0 / [ 1− d ]∇ρ0. Finally, we introduce a mass
sourceR0 of the following format.

R0 = −ρ∗0 exp [−α 1

1− d

ψ∗0
ψneo

0

] (15)

Alternatively, by making use of equation (9) asψ0 =
[1− d ]ψneo

0 , the above equation can be expressed as
followsR0 = −ρ∗0 exp [−α ψ∗0 /ψ0 ]. Last, we shall a
priori exclude the possibility of stiffness recovery by
assuming a vanishing extra entropy supply such that
the extra entropy fluxS

S = 0 (16)

and the extra entropy sourceS0

S0 = 0 (17)

vanish identically.

Remark 2.2: Interpretation of the mass flux
In the case of chemically reacting concrete, the mass
flux R can be related to the transport of solved cations
and anions Ca2+, OH−, Al(OH)−4 , SO2−

4 , SiO−4 , see
e.g. (Ulm and Coussy 1995; Ulm, Torrenti, and Ade-
not 1999), (Torrenti, Mainguy, Adenot, and Tognazzi
1998), (Carmeliet 1998) or (Kuhl 2003) for detailed
studies of moisture transport in the context of calcium
leaching.

Remark 2.3: Interpretation of the mass source
In the context of chemomechanical damage of cemen-
titious materials, the dissolution of portlandite or et-
tringite and the progressive decalcification of calcium
silicate hydrates

Ca(OH)2 → Ca2+ + 2 OH−

Ca6Al 2O6(SO4)3 · 32H20 → 6 Ca2+

+ 2 Al(OH)−4 + 3 SO2−
4

+ 4 OH− + 26 H2O
Ca0·SiO2 ·H20 → Ca2+ + H3SiO−4 + H20

represent typical examples of changes in mass of the
cementitious skeleton, see e.g. (Coussy 1995), (Kuhl
and Meschke 2002) or (Stark and Wicht 2002) for de-
tailed overviews. Recall, that in the absence of trans-
port phenomena asR = 0, the particular choice ofR0

of equation (15) can be interpreted as an exponential
damage evolution law

Dt d = exp [−αψ∗0 /ψ0 ]

which characterizes an exponential increase of dam-
age with increasing time and deformation.
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2.4 Weak form of the coupled problem
While for classical chemomechanical applications,
e.g. the leaching of portlandite, the capillary pressure
and the deformation furnish the primary unknowns,
we will introduce the reference densityρ0 and the
spatial deformationϕ as primary unknowns within
the mechanics of open systems. They are governed
by the scalar–valued balance of mass (3) and by the
vector–valued mass–specific balance of momentum
(4) which can be cast into the corresponding resid-
ual statements with the residualsrρ andrrrrrrrrrϕ defined in
the following form.

r ρ (ρ0,ϕ) = Dt ρ0 − Div R −R0 = 0 inB0

rrrrrrrrrϕ (ρ0,ϕ) = ρ0 Dt p − Div Π̄
t − b̄0 = 0 inB0

(18)
Herein, the boundary∂B0 of the material domain can
be decomposed into disjoint parts∂Bρ

0 and∂Br
0 for the

density problem and equivalently into∂Bϕ
0 and∂Bt

0

for the deformation problem. While Dirichlet bound-
ary conditions are prescribed on∂Bρ

0 and∂Bϕ
0 ,

ρ0 − ρpresc
0 = 0 on ∂Bρ

0

ϕ − ϕpresc = 0 on ∂Bϕ
0

(19)

Neumann boundary conditions can be given for the
mass flux and the tractions on∂Br

0 and∂Bt
0,

R ·N − r = 0 on ∂Br
0

Π̄
t ·N − t = 0 on ∂Bt

0

(20)

with N denoting the outward normal to∂B0. As a
prerequisite for the finite element discretization, the
coupled set of equations has to be reformulated in
weak form. To this end, the residual statements of
the balance of mass and momentum (18) and the cor-
responding Neumann boundary conditions (20) are
tested by the scalar– and vector–valued test function
δρ andδϕ, respectively.

gρ ( δρ;ρ0,ϕ ) = 0 ∀ δρ
gϕ ( δϕ;ρ0,ϕ ) = 0 ∀ δϕ

(21)

Thereby, the weak formsgρ andgϕ expand into the
following expressions.

gρ =

∫
B0

δρ Dt ρ0 dV +

∫
B0

∇δρ ·RdV

−
∫

∂Br
0

δρ r dA−
∫
B0

δρ R0 dV

gϕ =

∫
B0

δϕ·ρ0 Dt pdV +

∫
B0

∇δϕ : Π̄
t dV

−
∫

∂Bt
0

δϕ· t dA−
∫
B0

δϕ· b̄0 dV

(22)

3 DISCRETE EQUATIONS
3.1 Temporal discretization
For the temporal discretization of the governing equa-
tions (21), we partition the time interval of in-
terest T into nstep subintervals[tn, tn+1] as T =⋃nstep−1

n=0 [tn, tn+1] and focus on a typical time slab
[tn, tn+1] for which ∆t := tn+1 − tn > 0 denotes the
actual time increment. Assume, that the primary un-
knownsρ0n andϕn and all derivable quantities are
known at the beginning of the actual subintervaltn. In
the spirit of implicit time marching schemes, we now
reformulate the set of governing equations in terms of
the unknownsρ0n+1 andϕn+1.

gρ
n+1 ( δρ;ρ0n+1,ϕn+1 ) = 0 ∀ δρ

gϕ
n+1 ( δϕ;ρ0n+1,ϕn+1 ) = 0 ∀ δϕ (23)

Without loss of generality, we shall apply the classi-
cal Euler backward time integration scheme. Conse-
quently, the first order material time derivatives Dtρ0

and Dtp can be approximated in the following form.

Dt ρ0 = [ ρ0n+1 − ρ0n ] /∆t
Dt p = [ pn+1 − pn ] /∆t

(24)

3.2 Spatial discretization
In the spirit of the finite element method, the domain
of interestB0 is discretized intonel elementsBe

0 as
B0 =

⋃nel

e=1Be
0. The test functionsδρh and δϕh and

the trial functionρh andϕh are interpolated on the
element level with the basis functionsNρ andNϕ, re-
spectively.

δρh=

neρ∑
i=1

N i
ρ δρi δϕh=

neϕ∑
j=1

N j
ϕ δϕj

ρ0
h=

neρ∑
k=1

Nk
ρ ρk ϕh=

neϕ∑
l=1

N l
ϕ ϕl

(25)

Recall that the element set of density nodesi =
1, . . . , neρ and the element set of deformation nodes
j = 1, . . . , neϕ can generally be chosen independently.
With the above discretizations, the discrete residuals
can be rewritten as follows.

r ρ
I =

nel

AAAAAAAAA
e=1

∫
Be

0

N i
ρ

ρ0n+1 − ρ0n

∆ t
+∇N i

ρ ·Rn+1 dV

−
∫

∂Ber
0

N i
ρ rn+1 dA −

∫
Be

0

N i
ρR0n+1dV= 0

rrrrrrrrrϕ
J =

nel

AAAAAAAAA
e=1

∫
Be

0

N j
ϕρ0

pn+1 − pn

∆ t
+∇N j

ϕ · Π̄n+1 dV

−
∫

∂Bte
0

N j
ϕ tn+1 dA −

∫
Be

0

N j
ϕb̄0n+1 dV= 0

(26)
Herein, the operatorAAAAAAAAA symbolizes the assembly of
all element contributions at the element density nodes
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i = 1, . . . , neρ and the element deformation nodesj =
1, . . . , neϕ to the overall residuals at the global den-
sity and deformation node pointsI = 1, . . . , nnρ and
J = 1, . . . , nnϕ.

4 LINEARIZED EQUATIONS

The discrete residual statements characterizing the
mechanics of open systems (26) represent a highly
nonlinear coupled system of equations which can be
solved efficiently within the framework of a mono-
lithic incremental iterative Newton–Raphson solution
strategy. To this end, we perform a consistent lin-
earization of the governing equations at timetn+1

r ρ
I

k+1
n+1 = r ρ

I
k
n+1 + d r ρ

I
.
= 0 ∀ I = 1, . . . , nnp

rrrrrrrrrϕ
J

k+1
n+1 = rrrrrrrrrϕ

J
k
n+1 + d rrrrrrrrrϕ

J
.
= 0 ∀ J = 1, . . . , nnp

(27)

whereby the iterative residua drρI and drrrrrrrrr ϕ
J take the fol-

lowing format.

dr ρ
I =

nnρ∑
K=1

Kρρ
IK dρK +

nnϕ∑
L=1

K ρϕ
IL · dϕL

drrrrrrrrrϕ
J =

nnρ∑
K=1

Kϕρ
JK dρK +

nnϕ∑
L=1

Kϕϕ
JL · dϕL

(28)

In the above definitions, we have introduced the fol-
lowing iteration matrices.

Kρρ
IK =

nel

AAAAAAAAA
e=1

∫
Be

0

N i
ρ

1

∆ t
Nk

ρ dV

−
∫
Be

0

N i
ρ ∂ρ0R0 Nk

ρ dV

+

∫
Be

0

∇N i
ρ · R0 ∇Nk

ρ dV

K ρϕ
IL =

nel

AAAAAAAAA
e=1

−
∫
Be

0

N i
ρ ∂FR0 · ∇N l

ϕ dV

Kϕρ
JK =

nel

AAAAAAAAA
e=1

∫
Be

0

∇N j
ϕ · ∂ρ0Π̄

t
Nk

ρ dV

Kϕϕ
JL =

nel

AAAAAAAAA
e=1

∫
Be

0

N j
ϕ ρ0

1

∆ t2
I N l

ϕ dV

+

∫
Be

0

∇N j
ϕ · ∂F Π̄

t · ∇N l
ϕ dV

(29)

The specification of the partial derivatives of the mass
sourceR0, the mass sourceR and the reduced mo-
mentum flux Π̄

t with respect to the primary un-
knownsρ0 andϕ depends on the particular choice of
the constitutive equations. For the constitutive equa-
tions suggested in section 2.3, we obtain the following

expressions,

∂ρ0 R0 =
1

[1− d ]

ψ∗0
ψ0

α R0

∂F R0 =
1

ψ0

ψ∗0
ψ0

α R0 Π̄
t

∂∇ρ0R = R0 I

∂ρ0 Π̄
t

=
1

[1− d ]

1

ρ∗0
Π̄

t

∂F Π̄
t

= [1− d ][µ0I⊗I + λ0F
−t ⊗F−t

−[λ0 ln(J)− µ0]F
−t⊗F−1]

(30)
whereby the component representations of the non–
standard dyadic products read{•⊗◦}ijkl = {•}ik ⊗
{◦}jl and{•⊗◦}ijkl = {•}il ⊗ {◦}jk. Finally, the so-
lution of the system of equations (27) renders the it-
erative update for the increments of the global un-
knownsρI andϕJ .

∆ ρI = ∆ ρI + d ρI ∀ I = 1, . . . , nnρ

∆ϕJ = ∆ϕJ + dϕJ ∀ J = 1, . . . , nnϕ

(31)

5 EXAMPLES
Finally, we shall elaborate the proposed model
in terms of a one–dimensional and two three–
dimensional model problems.

5.1 One–dimensional model problem
To illustrate the physical nature of the constitutive in-
troduced in section 2.3, figures 1 and 2 show the ma-
terial response in a one–dimensional tension test. For
the sake of transparency, we have neglected transport
effects asR = 0 such that the density evolution is
governed by the mass sourceR0 alone. The reference
density and the reference free energy are chosen to
ρ∗0 = 1.0 andψ∗0 = 0.1 while the exponentα takes the
value ofα = 0.25. The Laḿe constants of the free
energy function introduced in equation (10) are cho-
sen toλ = 0.5769 andµ = 0.3846. In particular, the
curves in figure 1 show the evolution of damage ver-
sus the stretchλ for different time step sizest. The
value of the damage variable starts at zero and in-
creases exponentially with increasing stretches until it
finally converges to one. Thereby, the onset of damage
is, of course, more pronounced for larger time scales.
The curves in figure 2, on the contrary, depict the evo-
lution of damage versus time for different stretches
λ. For larger stretches, the evolution of damage ob-
viously proceeds faster than for moderate stretches.
In contrast to commonly applied time–independent
damage models, the model suggested herein is not
determined by the amount of loading alone. Rather,
the specimen damages further upon constant loading
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Figure 1: Evolution of damage with stretch
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Figure 2: Evolution of damage with time

as time evolves. From a physical point of view, this
property of the model captures the effect of ageing in
a natural and straightforward way. Moreover, from a
continuum point of view, the inclusion of rate effects
essentially stabilizes the formulation, in particular in
the post–critical regime.

5.2 Three–dimensional simulation

Finally, we elaborate the three–dimensional response
of the derived chemomechanical damage model in
tension and bending. The specimen has a length :
width : height ratio of 2 : 1 : 0.5 and is discretized
with 24 : 12 : 6 trilinear Q1Q1 elements. The material
parameters are chosen toλ = 288.46, µ = 192.31,
ρ∗0 = 1.0, ψ∗0 = 1.0 andα = 2.5, whereas the mass
conduction coefficient is set equal to zero asR0 = 0.
Since we aim at predicting the post–peak response

of the specimen, the load is applied by displacement
control. Figures 3 and 4 shows the prescribed top
and bottom displacement and the prescribed bending
deflection which both are increased during the first
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Figure 3: Tension problem – Displacement and force
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Figure 4: Bending problem – Displacement and force

ten time steps of∆t = 0.01 and then held constant
for another 90 time steps. Both figures nicely reflect
the fact that the overall load carrying capacity drops
down considerably at the onset of damage. For both,
the tension and the bending problem, the resulting
spatial force reduces to about a third of its maximum
value due to the damage induced stiffness degrada-
tion.
Figures 5 and 6 depict the corresponding evolutions
of the density, the deformation and the discrete
material surface forces for the tension, the bending
and the torsion problem. Thereby, the five different
stages depicted in the figures correspond to time step
2 right at the beginning of the loading phase, to time
step 10 at the end of the load increase and to time
step 40, time step 60 and time step 100 which illus-
trate the onset of damage upon constant prescribed
deformation. Mechanical loading obviously induces a
reduction of the load carrying capacity accompanied
by a localization of the deformation in narrow bands.
As damage evolves, this localization becomes more
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and more pronounced while the remaining parts of
the structure tend to unload almost completely.

6 CONCLUSIONS
A general theoretical and computational framework
for the thermodynamics of open systems has been
presented which is particularly suited for chemome-
chanical applications. The formulation is based on the
simultaneous solution of the balance of mass and mo-
mentum which essentially govern the evolution of the
density and the deformation field. The particularly ap-
pealing feature of the proposed formulation is based
on the fact that we no longer deal with an ’artificial’
internal damage variable which we cannot determine
explicitly in experiments but that we rather introduce
damage as a change of the current reference density
which can obviously be accessed directly through ap-
propriate experimental setups. Numerical results have
been derived and discussed for a one–dimensional
model problem as well as for a three–dimensional ten-
sion and bending test. It should be pointed out, that in
contrast to classical time–independent damage sim-
ulations, we did not encounter any algorithmic prob-
lems throughout all the analyses, even when we calcu-
lated far into the softening branch. The incorporation
of time–dependent effects apparently regularizes the
underlying damage formulation. Stability might also
have been enhanced due to the fact that damage was
interpolated continuously on the node point level in
contrast to most classical damage formulations which
typically suggest an integration point based approach.
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and G. Meschke (Eds.),Computational Mod-
elling of Concrete Structures, pp. 531–538.
Balkema, Rotterdam.

Truesdell, C. and R. Toupin (1960). The classical
field theories. In S. Flügge (Ed.),Handbuch der
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Figure 5: Tension problem – Evolution of density and material forces

Figure 6: Bending problem – Evolution of density and material forces
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