
1 INTRODUCTION 

During the last few years, embedded displacement 
discontinuity elements have been shown to be an 
effective tool to describe the propagation of cracks 
independent of element boundaries (Dvorkin et al. 
1990, Klisinski et al. 1991, Lotfi &  Shing 1995, 
Oliver 1996b, Alfaiate et al. 2002, Spencer & 
Shing 2002). Most of the work has been devoted to 
embed discontinuities into displacement-based 
finite elements (Jirásek 2000). 

The stress hybrid finite element of Pian (1995) 
has been recognized by its better performance in 
relieving shear and incompressibility lockings. 
These benefits may be also desirable in fracture 
mechanics analyses. The first attempt to use this 
class of elements for embedded discontiunity has 
been made by Spencer and Shing (2002) by means 
of a variational principle that accounts for a crack 
line in the element interior. 

In this paper an alternative technique to embed 
displacement discontinuities into these elements is 
presented. The technique follows the general 
procedure to embed discontinuities into finite 
elements as presented by Manzoli &  Shing (2002). 
In contrast to the formulation of Spencer and Shing 
(2002), the approach used here retains the original 
variational principle used to derive the underlying 
element for the continuous portion of the element 

that is crossed by a crack line. The resulting 
formulation can be easily extended to account for 
multiple discontinuities in the element, as well as 
non-uniform discontinuity modes. As it is shown in 
this paper, the later capability can be essential to 
prevent stress locking when the element is 
subjected to bending-type deformation.  

Numerical tests are presented to access the 
performance of the resulting formulation. 

2 DECOMPOSITION OF THE DISPLACE-
MENT FIELD 

The displacement field, u, of a finite element 
divided by a discontinuity interface S (Fig. 1) can 
be decomposed into a component associated with 
the deformation of the continuous portion, uC, and 
a component related to the rigid-body relative 
motion, uR, between the two parts of the element: 

RC uuu +=   (1) 

with 

[ ][ ]uu )(xR H=   (2) 

where x is the coordinate of a material point in the 
element according to an interface coordinate 
system (x, y), such that the x axis is normal to the  
discontinuity interface (Fig. 1.a). H  is the 
Heaviside function defined in the domain of the 
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element (H (x) = 1 if x > 0 and H (x) = 0 otherwise) 
and [[u]] is the vector containing the components 
of the displacement discontinuity at the interface, 
which has been assumed uniform in the element. 

The values of the uR evaluated at the nodes of the 
element can be grouped into a vector dR, such that 

[ ][ ]uPd =R  (3) 

in which the P matrix collects the values of the 
Heaviside function at the element nodes: 
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where ned is the number of element nodes and xi (i = 
1,2, ned) are the nodal coordinates.  

d = dC+dR

u = uC+uR

[[u]] 
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Figure 1. Decomposition of the displacement field . 

3 STRESS HYBRID FINITE ELEMENT 

Consider the equilibrium of a two-dimensional 
body Ω located in a coordinate system (X,Y).  The 
body is supported on the boundary Γu with 
prescribed displacements, uΓ, and is subjected to 
prescribed traction, tΓ, on Γt (Γu∪Γt = Γ, Γu∩Γt = 
∅ ). The body is also subjected to externally 
applied body forces b.   

Let u be the displacement field of the body. The 
strain field corresponding to u is 

uD� =  (5) 

where D is the differential operator on u to obtain 
the strain components. 

The continuum is assumed linearly elastic, so 
that the corresponding stress field is given by 

E�� =  (6) 

where E is the elastic stress-strain material matrix. 

3.1 Hybrid variational functional 

The Hellinger-Reissner variational principle for the 
continuum can be expressed as 
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(7) 

where t is the boundary traction vector that is 
obtained from σσσσ.  Assuming that the boundary 
condition  

uΓ= Γ onuu   (8) 

and the equilibrium equation 

 0b�D =+T    (9) 

are satisfied a priori, the variational functional (Eq. 
7) becomes: 
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in which the stresses and the boundary 
displacements are the independent variables. 

3.2 Finite element approximation 

For sake of simplicity, consider a quadrilateral 
four-node finite element with boundaries aligned 
with the global coordinate axis (X, Y). The stresses 
in the element interior can be interpolated by five 
parameters, ai (i=1,2,..,5), as follows: 

aS� =  (11) 

with 

][T
XYYYXX σσσ=�  (12) 

][ 54321
T aaaaa=a  (13) 
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Note that the equilibrium condition (Eq. 9) is 
fulfilled for the adopted stress interpolation.    

The element traction vector can be expressed in 
terms of the stress parameters as: 



aRaS�t === νν NNNNNNNN  (15) 

in which  
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where νX and νY are the components of the unit 
vector, νννν, normal to the element boundary. 

The boundary displacement are approximated by 
linear interpolation of the nodal displacements, as 
follows 

dLu =   (17) 

where L is the boundary displacement interpolation 
matrix and d is the vector collecting the nodal 
displacements. 

Substituting Equations 11, 15 and 17 into the 
Equation 10, we obtain 
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where 
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where Ωe is the element domain, Γe is the element 
boundary and Γet is the element boundary with 
prescribed traction.  

Stationarity of the potential functional (Eq. 18) 
with respect to the stress parameters a yields  

0dGaH =+−  (22) 

from which it is possible to express the stress 
parameters in terms of the nodal displacements: 

dGHa 1−=  (23) 

Substituting Equation 23 into Equation 11, we 
obtain the stresses as 

dGHS� 1−=   (24) 

The corresponding strains are given by 

dBdGHSE�E� H=== −−− 111  (25) 

Taking the variation of the potential functional 
( Eq. 18) with respect to the nodal displacements d, 

and considering Equation 23, we obtain the 
element internal force vector, 

dKf H
int =  (26) 

where KH = GT H-1 G is the stiffness matrix of the 
Pian element.  

3.3 Embedded displacement discontinuity element 

If the element is crossed by a discontinuity 
interface, we must ensure that a total relaxation of 
the continuous portion of the element takes place if 
the nodal displacements d is entirely due to the 
rigid-body motion caused by the displacement 
discontinuity, i.e.  

σσσσ = 0  if   d = dR ( = P [[u]])     (27) 

Note that this condition  is fulfilled provided that 

]])[[(1 uPdGHa −= −  (28) 

in place of Equation 23.  Equation 28 means that 
only the continuous part of the displacement field 
has been considered in the functional (18).    

In this case, the stresses, strains and the internal 
forces are respectively given by 

]])[[( uPdBE� −= HC  (29) 

]])[[( uPdB� −= HC  (30) 

]])[[( uPdKf −= H
int   (31) 

4 NON-LINEAR BEHAVIOR OF THE 
DISCONTINUITY INTERFACE  

4.1 Non-linear fracture mechanics 

The non-linear behavior of the discontinuity 
interface can be described by means of a 
constitutive relation between the cohesive traction 
in the interface, St , and the components of the 
displacement jump, [ ][ ]u . In non-linear fracture 
mechanics, this constitutive relation is given by an 
adhoc discrete law of the form:  

[ ][ ])( ut d
S Σ=  (32) 

where Σd(•) gives the traction as a function of the 
displacement jump and its history .  

4.2 Strong discontinuity approach 

In the so-called strong discontinuity approach 
(Simo et al. 1993, Oliver et al. 1999), the behavior 



of the interface is described by a continuum (stress-
strain) non-linear constitutive law. A discrete 
constitutive law is induced by degenerating the 
continuum in a consistent manner. In this case, the 
traction vector in the interface is given by:  

)( S
c

S
�t n Σ= NNNN   in   S (33) 

where Σc(•) returns the stresses from the strains 
evaluated in S, εεεεS. The NNNN n matrix contains zeros and 
the components of the unit vector normal to the 
interface discontinuity, n, according to the structure 
of Equation 16. 

The total strain field is obtained from the 
discontinuous displacement field, which can be 
recovered as follows:  

[ ][ ]uuuuu )(xCRC H+=+=  (34) 

Taking the gradient of Equation 34 leads to the 
corresponding strain field:  

[ ][ ]u��

n
TNNNNS

C δ+=  (35) 

where δS is the Dirac delta distribution placed in S. 
The last term of Equation 35 introduces an 

unbounded component in the total strain field.  
Thus, taking into account Equation 30 and  

Equation 35, the Equation 33 becomes:  
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For computational purposes, in Equation 36, the 
value of δS in S has been replaced by the 
approximation (Oliver 1996):  
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so that, when delta regularization parameter, k, 
tends to zero, the approximation in Equation 37 
transforms into an exact Dirac delta distribution.  

4.2.1 Constitutive model for the interface  
In the strong discontinuity approach, the non-linear 
behavior in the interface can be described by a 
continuum-type constitutive law. In this paper, we 
use a standard associative elastoplastic constitutive 
model that can be described by the following set of 
incremental equations (Simo & Hughes 1998):  

)( p��E� ��� −=  (38) 
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λλ �� )(Hq =  (40) 

where εεεεp is the plastic strains, φ is the yield 
function, q is the stress like internal variable, H is 
the hardening/softening modulus and λ�  is the 
plastic multiplier.  

The loading and unloading situations are 
distinguished by the Kuhn-Tucker conditions: 

0),(,0,0),( =≥≤ qq �� φλλφ ��  (41) 

where φ  defines the elastic domain φ(σσσσ,q) ≤ 0.  
To make the constitutive law compatible with 

strong discontinuity, the plastic multiplier and the 
inverse of the H modulus must have a 
distributional character (Simo et al. 1993), i.e.:  
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The following expressions for the yield surface 
and softening law are adopted:  
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where S stands for the deviatoric stresses, p is the 
mean stress,  ft is the tensile strength and GF is the 
fracture energy. 

5 COUPLING CONTINUUM AND 
INTERFACE  

The continuum and the interface can be coupled by 
means of the following condition:  

SQC
S ∈=− in0�t nNNNN  (46) 

which enforces the traction continuity at a 
collocation point Q of the discontinuity interface 
(Figure 2.a). 
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Figure 2. Collocation points: a) single interface b) multiple 
interfaces.  

Taking into account the constitutive relation for 
the continuum (Eq. 29), the equilibrium equations, 
Equation  46, become:  

[ ][ ] [ ][ ] SQS
S ∈=−− at)(),( 0uPdKudt  (47) 

where 

HS BEK nNNNN=  (48) 

and the expression of tS(d,[[u]]) is given by 
Equation 32 for the discrete interface approach or 
by Equation 36 for the regularized strong 
discontinuity approach. 

6 MULTIPLE DISCONTINUITIES 

If more than one discontinuity interface is present 
in the element (Fig. 2.b), the resulting rigid-body 
motion is the sum of those related to each interface: 

[ ][ ]�
=

=
nd

H
1k

kk
R uu  (49) 

where nd is the number of discontinuity interfaces 
in the element. H k and [[u]]k are the Heaviside 
function and the discontinuity modes of the kth 
discontinuity interface, kS .  

The corresponding nodal displacement vector is 
given by: 

[ ] [ ][ ]{ }uPd =R   (50) 

where the multiple-discontinuity matrix [P] and the 
vector { [[u]]}  collect, respectively, the P matrices 
and [[u]] vectors for the individual interfaces.  

The traction continuity (Eq. 47) must be written 
for a collocation point in each interface of the 
element (Fig. 2.b), yielding the following set of 
equations:  

[ ][ ]{ } [ ] [ ][ ] 0} ){(][),( =−− uPdKudt S
S  (51) 

where   
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SSS KKK]K �21
T [ =  (53) 

group, respectively, the traction vectors, tSj, and the 
KS

j matrices for each collocation point Qj (j = 1, 2, 
..., nd). 

7 NON-UNIFORM DISCONTINUITY MODES  

Consider an interface discontinuity with two 
collocation points, Q1 and Q2, as shown in Figure 
3.  
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Figure 3. Collocation points: single interface with non-uniform 
discontinuity modes. 

 
Each collocation point introduces a discontinuity 

jump, [[u]] i (i = 1,2). It is possible to define P1 and 
P2 matrices related to the collocation points, such 
that:  

[ ] [ ][ ]{ }uPd =R  (54) 

where  

[ ]21[ PPP] =  (55) 

[ ][ ]{ } [ ][ ] [ ][ ]{ }21
T uuu =  (56) 

Writing the traction continuity (Eq. 47) for each 
collocation point, the resulting formulation is 
identical to that described for the multiple-
discontinuity approach.  

The 1P and 2P matrices can be written as:  
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where xi (i = 1,2,…,nd) are the nodal coordinates 
according to the interface system (x,y). For 
instance, the functions Mj(x) can be constructed 
from the linear interpolation functions on S as 
shown in Figure 4: 
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where l is the distance between the two collocation 
points.    
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Figure 4. Linear interpolation functions M1 and M2. 

8 SOLUTION SCHEME  

For the embedded multiple discontinuities 
formulation, the equilibrium equations in the 
element level are given by Equations 31 and 51, 
relating the variables of an element at the ith 
iteration of the nth loading step:  

[ ][ ] )}{][( ,,, ininHin
int uPdKf −=   (59) 
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For a given dn,i, the system of non-linear 
equations (Eq. 60) can be solved for { [[u]]} n,i and 
the element internal forces vector can be evaluated 
from Equation 59.  

The rate form of Equations 59 and 60 can be cast 
into the following matrix form: 
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Condensing out { [[ u� ]]}  yields:  

( ) uduududd KKKKK
1−

−=  (62) 

9 NUMERICAL TESTS  

9.1 Willaḿ s test 

To investigate the capacity of the proposed 
approach to represent multiple embedded 
discontinuities in the element, the test proposed by 
Willam et al. (1987) has been chosen.  

The test is performed on a square plane stress 
element, whose geometry and boundary conditions 
are shown in Figure 5. The material parameters are: 
Young´s modulus, E=30 000 MPa; Poisson´s ratio, 
ν = 0.2; tensile strength, ft= 3.0 MPaand  fracture 
energy, GF = 0.1 N/mm. The delta regularization 
parameter is assumed constant, k = 0.1 mm. 
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Figure 5. Willam’s test: geometry and loads. 
 
The initially uncracked specimen is subjected to 

two consecutive loading paths. In the first one, a 
monotonically increasing uniaxial tensile stress is 
applied in the x direction by increasing the 
horizontal displacement of the right nodes (see Fig. 
5.a). The first loading path ceases when the stress 
reaches the tensile strength of the material and the 
first crack line, S1, forms perpendicular to the first 
principal stress (see Fig. 5a). 

The second loading path consists of a 
monotonically increasing of the nodal 
displacements according to the scheme shown in 
Figure 5.b. As a consequence, a strong rotation of 
the principal directions is imposed by increasing 
the in-plane total strains εxx, εyy and εxy in the 
proportion of 1.0: 1.5: 1.0. 

 A second crack is allowed to form at an angle 
perpendicular to the first principal stress if the 
stress state of the continuous portion of the element 
violates the initiation criterion again.  

 

Figure 6. Willam’s test: evolution of the stress components. 
 

Figure 6 shows the evolution of the stress 
components σxx, σyy and σxy. In the second loading 
path, prior to the second crack initiation, the σxx 
stress component decreases while the other 
components increase due to the progressive 
rotation of the principal directions of strain. The 
softening behavior in crack S1 causes a fast drop of 
the normal component σxx and it also prevents a 
significant increase of the shear component σxy. 



Since the evolution of the normal component σyy is 
not affected by the crack, the stress state changes 
gradually from the initial simple tension in the x 
direction to a single tension in the y direction. 
When the stress state reaches the initiation criterion 
again, a second crack forms at an inclination angle 
of α=77.9° (see Figure 5.b). After the second crack 
initiation, all stress components decrease leading to 
a complete stress relaxation of the element.  

9.2 Three-point bending test 

To compare the performance of the approaches 
using uniform and non-uniform modes, the three-
point notched beam tested by Peterson (1981) is 
chosen. The geometry, boundary conditions, and 
material parameters for this test are shown in 
Figure 7.  
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Figure 7. Three-point bending test. 
 
The numerical analyses are performed using 

stress hybrid finite elements with uniform and non-
uniform discontinuity modes. A single vertical 
crack is allowed to form in the element.  

The Figure 8 shows the deformed meshes at a 
prescribed displacement δ = 0.2 cm. From this 
figure we observe that a crack line propagates 
upward from the notch tip, leading to a strong 
relative rotation between the two parts of the 
elements divided by the crack. 

 

 
   

  
(a) (b) 

Figure 8. Deformed meshes: a) coarse mesh; b) fine mesh.. 
 
Since the finite element with uniform 

discontinuity modes are not able to accommodate a 
relative rigid-body rotation, the strains of the 

continuous portion are mobilized, preventing the 
stress relaxation of the element. The increasing 
load-displacement curves shown in Figure 9 
reflects this stress-locking effect, even for a very 
fine  mesh. Note in Figure 10 that the stress locking 
is completely removed by the consideration of non-
uniform discontinuity modes and the resulting 
load-displacement curves obtained with the coarse 
and fine meshes are very close. 

 

 

Figure 9. Load-displacement curve obtained with uniform 
discontinuity modes. 

 

Figure 10. Load-displacement curve obtained with non-uniform 
discontinuity modes. 

10 CONCLUSIONS 

A technique to embed displacement discontinuities 
into stress hybrid elements has been presented. In 
this technique the element displacement field is 
split into two parts: a relative rigid-body motion 
due the displacement jump and the continuous 
displacement field of the solid part.  The embedded 
discontinuity finite element formulation can then 
be obtained from the same variational functional 
used for the derivation of the underlying element 
(without discontinuity), but applied only to the 



continuous portion of the element. The non-linear 
behavior in the discontinuity interface can be 
described by a discrete constitutive law or by a 
continuous one in the context of the strong 
discontinuity approach. The continuous portion and 
interface are coupled by enforcing traction 
continuity at collocations points of the interface.    

As shown, this technique can be easily extended 
to represent multiple discontinuities interfaces as 
well as non-uniform discontinuity modes. The later 
formulation can be regarded as a particular case of 
the former.  

The numerical studies show that the technique 
can be successfully applied to described internal 
discontinuity interfaces into stress hybrid elements.  

The results of the three-point bending test show 
that the consideration of the non-uniform 
discontinuity modes is essential to avoid stress 
locking in cases involving a significant relative 
rotation between the parts of the element crossed 
by the discontinuity interface.    
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