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ABSTRACT: Concrete is a heterogeneity material consisting of mortar and aggregate on meso level. 
Evaluation of fracture process in the meso level is useful to clarify the material characteristic of concrete. 
However, the mechanical characteristic in the meso level have not been fully understood yet. In this study, 
three-dimensional analyses of compression and tension test of mortar and compression test of concrete 
model are carried out by Rigid Body Spring Model (RBSM). In the analyses, fracture process and failure 
pattern of mortar and the effect of the existence of aggregate in concrete can be simulated qualitatively. 
These results show the possibility of 3D RBSM analysis to predict the concrete behavior quantitatively in 
various cases in the future.  
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1  INTRODUCTION  
 
Study on concrete on meso level in which 
concrete is a composite material consisting of 
mortar and aggregate is useful for the precise 
evaluation of its material characteristics that are 
affected by those of components. And also the 
deterioration of the material characteristics of 
damaged concrete by an environmental action 
can be predicted by the analysis from this level in 
the future. 

Many experimental researches were conducted 
on fracture mechanism on meso level in the past. 
And in recent years, researches on meso level 
with the analytical point of view have started but 
not been fully conducted yet (Asai et al. 2003, 
Stroeven & Stroeven 2001). Furthermore, 
discrete three-dimensional analysis is necessary 
to present the three-dimensional fracture 
propagation between aggregates 
three-dimensionally arranged in concrete. 

In this study, three-dimensional numerical 
simulations of fracture process of compression 
and tension test of mortar and compression test of 
concrete where shape of the aggregate model is 
sphere are conducted by 3D Rigid Body Spring 

Model (RBSM). This analytical method is useful 
to simulate a discrete behavior like concrete 
fracture. The authors had developed a 
two-dimensional RBSM analytical system and 
constitutive models for mortar and 
mortar-aggregate interface on meso level (Nagai 
et al. 2002). The constitutive model for mortar in 
three-dimensional RBSM is developed in this 
study based on that in 2D. 

 
2  ANALYTICAL METHOD 
 
The RBSM developed by Kawai (Kawai & 
Takeuchi 1990) is one of discrete analytical 
method. Analyzed model is divided into 
polyhedron elements whose faces are 
interconnected by springs. Each element has 
three transitional and three rotational degrees of 
freedom at the center of gravity. One normal and 
two shear springs are placed at the center of 
gravity of each face (Figure 1). Since cracks 
initiate and propagate along the boundary face, 
the mesh arrangement may affect fracture 
direction. To avoid formation of cracks with a 
certain direction, a random geometry is 



introduced using a three-dimensional Voronoi 
diagram (Figure 2). The Voronoi diagram is the 
collection of Voronoi cells. Each cell represents 
mortar or aggregate element in the analysis. 

In the nonlinear analysis, stiffness matrix is 
constructed by the principle of virtual work 
(Kawai & Takeuchi 1990), and the Modified 
Newton-Raphson method is employed for the 
convergence calculation. When the model does 
not converge at the given maximum iterative 
calculation number, analysis proceeds to next 
step. 

 
3.  CONSTITUTIVE MODEL 
 

3.1  Mortar model 
 

In this study, a constitutive model for mortar on 
meso scale is developed because the constitutive 
model in macro scale cannot be applied to meso 
scale analysis. 

Material characteristics of each component are 
presented by means of modeling springs. In 
normal springs, compressive and tensile stresses 
(σ) are developed. Shear springs develop shear 
stresses (τ). For the calculation of shear stress, a 

resultant value of strains generated in two shear 
springs is adopted as a shear strain in the 
constitutive model presented in this section.  

Elastic modulus of springs are presented 
assuming plane strain condition,  
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where kn and ks are the elastic modulus of normal 
and shear spring, Eelem and νelem are the corrected 
elastic modulus and Poisson’s ratio of component 
for meso level, respectively. 

In the analysis, due to the random geometry of 
the elements, values of the material property, 
which are the material property on meso level, 
given to the element are different from those of 
the analyzed object as the macro-scopic material 
property. In this study, the material properties for 
the element were determined in such a way to 
give the correct macro-scopic properties. For this 
purpose, the elastic analysis of mortar in 
compression was carried out. Element fineness of 
these models was the same level as the models 
analyzed in the later section. In the elastic 
analyses, the relationship between the 
macro-scopic and meso-scopic Poisson’s ratio 
and the effect of the meso-scopic Poisson’s ratio 
on the macro-scopic elastic modulus were 
examined. From the numerically simulated 
results, Equations 2 and 3 are adopted for 
determining the meso-scopic material properties. 
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where E and ν are macro-scopic elastic modulus 
and Poisson’s ratio of component of analyzed 
object, respectively.  

Only the maximum tensile stress has to be set 
as a material strength. Actually, mortar itself is 
not a homogeneous material, which is consisting 
of sand and paste, even when bleeding effect is 
ignored. However strength distribution in mortar 
has not been clarified yet. In this study, a normal 
distribution is assumed for the tensile strength on 
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( 0.12< ν <0.35 )  ······  (2) 

······  (3) 
Figure 1.  Mechanical model 
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Figure 2.  3D Voronoi geometry 

a) 3D view  b) Cross section 
 

   



element boundary. The probability density 
function is as follows (Figure 3), 
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when  ft elem <0  then, 
 

0=elemtf  
 
where ft elem is distributed tensile strength and ft 

average is average tensile strength of mortar on 
meso level. And also, the same distribution is 
given to the elastic modulus. Those distributions 
affect the macro-scopic elastic modulus, so that 
the elastic modulus for the element is multiplied 
by 1.05 to obtain the correct macro-scopic elastic 
modulus. 

Springs set on the face act elastic until 
generated stresses reach τmax criterion as follows,  
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where ε and γ are the strain of normal and shear 
springs, respectively. ∆n and ∆s are the normal 
and shear relative displacement of elements those 
compose springs, respectively. h is the length of 
perpendicular line from the center of gravity of 
element to the boundary. And subscripts 1 and 2 
represent elements 1 and 2 in Figure1, 
respectively. τmax criterion is given as shown in 
Equation 6 and Figure 4. 
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When a generated spring stress goes beyond τmax, 
the shear stress(τ) is reduced to τmax which 
depends on the normal stress(σ) in the range that 
the normal stress is less than ft elem. τmax can 
increase with increasing normal compressive 
stress. Stresses can be transferred only through 
the contact area of each boundary which is 
calculated by the shear displacement of elements 
constituting the boundary. Fracture happens 
between the elements when the normal stress 
reaches ft elem, and the normal stress becomes 
dependent on crack width that is the spring 
elongation. Shear stress is also affected by the 
crack width. Both normal and shear stresses are 
assumed to decrease linearly with the crack width. 
Stresses after cracking are represented as follows, 
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Figure 4.  τmax criterion for mortar Figure 6.  τmax criterion for interface Figure 5.  Mortar tensile softening model 
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where, 
 
 
 
 
 
where w is crack width and wmax is the maximum 
crack width which can carry stress. In this study, 
wmax is set 0.005mm. And the linear unloading 
and reloading path that goes through the origin is 
introduced to normal spring in tension softening 
zone (Figure 5). 

In this study, normal springs in compression 
only behave elastically and never break nor have 
softening behavior.  
 
3.2  Aggregate model  
 

In this study, effect of existence of aggregate in 
concrete on fracture process is examined. For this 
purpose, element of aggregate behaves only 
elastic in this study. The same equations as 1, 2, 3 
and 5 are adopted to present the material property 
of aggregate.  
 
3.3  Interface model 
 

The same stress-strain relationships as Equation 5 
and strength and stiffness distribution as Equation 
4 are adopted for the material properties of the 
interface between mortar and aggregate. The 
spring stiffnesses kn and ks of the interface are 
given by a weighted average of the material 
properties in two elements according to their 
perpendicular lengths. That is,  
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where subscripts 1 and 2 represent elements 1 
and 2 in Figure1, respectively. h is the length of 
perpendicular line from the center of gravity of 
element to the boundary. For the interface 
between mortar and aggregate, the τmax criterion 
as shown in Equation 9 and Figure 6 is adopted. 
 

)tan(max c+−±= φστ  
 
where φ and c are constant values. 

This criterion is based on the failure criterion 

suggested by Kosaka et al (Kosaka et al. 1975) 
which is derived from experimental results. After 
stresses reach the failure criterion, the shear 
stress(τ) is reduced to τmax which depends on the 
normal stress(σ) in the range where the normal 
stress is in compression. In tension, both normal 
and shear stresses cannot transfer the stress after 
the stresses reach the criterion.  

 
4.  ANALYSES OF MORTAR 
 
Numerical analyses of the mortar specimen in 
compression and tension are carried out. Figure 7 
shows 3D view of numerical specimen and x-y 
cross-section at z=37.5mm. Size of the specimen 
is 75x75x150mm and number of mortar element 
is 48,778. Average element size is about 2.59mm3. 
In the compression analysis, boundary of top and 
bottom are fixed in lateral direction. Material 
properties of mortar are set as shown in Table 1 
where only the tensile strength is set as the 
strength of mortar. Number of the faces in which 
springs are set is 359,149 in the specimen. 
 
4.1  Compression analysis 
 

Figure 8 shows the predicted stress-strain 
relationships in the mortar compression test. 
Lateral strains are calculated by the relative 
deformation between the elements at A and B in 
Figure 7. Strength of the specimen is 38.87MPa. 
The strength in compression is 8.7 times bigger 
than that of in tension (see Section 4.2) and this 
strength relationship is not far from the 
experimental results (Nagai et al. 2002). 
Predicted curves show nonlinearity in axial 
direction before 50% of maximum stress. Ratio 
of the lateral strain to the axial strain starts 
increasing rapidly around 70% of the maximum 
stress. These behaviors are observed in the 
experiments of mortar compression test as well 
(Goble & Cohen 1999, Harsh et al. 1990). Curves 
in Figure 9 show the number of faces whose 
crack widths reach 0.002mm, 0.005mm and 
0.03mm in the simulation. Horizontal axis shows 
the macro-scopic strain of the specimen. And also 
macro-scopic stress is presented in the figure. 
Number of the faces, whose crack widths become 
more than 0.005mm and cannot transfer the 
stresses any more, increases suddenly from 
around 85% of the maximum stress. This fact that 
the sudden increase in crack causes the failure of 
specimen is the same as in usual experimental 
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results. Figure 10 shows the specimen 
deformation after peak stress (at axial strain of 
-2,900µ). Deformations are enlarged 20 times. 
Failure occurs in other than the vicinity of 
loading boundary and the damage around the 
loading boundary is less. This is observed in the 
case that boundary in lateral direction is fixed 
(Mier 1997). However, propagation of some main 
cracks that is observed in the usual experiment 

cannot be simulated in this study.  
 
4.2  Tension analysis  
 

Predicted stress-strain relationship in the tension 
analysis is shown in Figure 11. Macro-scopic 
tensile strength is 4.47MPa, which is similar to 

Table 1.  Input material properties of mortar 

ft average 4.2 MPa 

Elastic modulus (E) 24,000 MPa

Poisson’s Ratio (ν) 0.18 

a) 3D view 
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75x75x150mm 

Figure 7.  Numerical specimen 

b) Cross-section at z=37.5mm 
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Figure 9.  Number of face reaching crack width 
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Figure 8.  Stress-strain curves in compression 

-0.003-0.002-0.00100.001

-40

-30

-20

-10

0

Strain

St
re

ss
 (M

Pa
)

Axial strainLateral strain



the average tensile strength set on the normal 
springs (see Section 3.1 and Table 1). The shape 
of stress-strain curve shows the nonlinearity 
before the peak stress as much as in compression. 
This behavior is observed in 2D analysis as well 
(Nagai et al. 2002). However, experimental 
evidence shows more linearity in tension. Further 
research is necessary. Figure 12 shows the 

deformation of the specimen at failure (at axial 
strain of 330µ). The deformation is enlarged 50 
times. Propagation of single crack that can be 
seen in usual experiments can be simulated. 
Figure 13 shows the average strains of every 
50mm section in the axial direction. To calculate 
the strains of Upper 50mm, Middle 50mm and 
Lower 50mm in Figure 13, relative deformations 
between the elements at C and D, D and E, and E 
and F in Figure 7 are used respectively. The 
vertical axis shows the macro-scopic stress. Until 
the peak, similar curves are predicted. It means 
that the specimen extends uniformly. In the post 
peak range, only the strain in Middle 50mm 
where the single crack propagates (see Figure 12) 
increases and the strains in other sections reduce. 
This localization behavior in failure processes in 
tension is also observed in usual experimental 
results. 
 
5  ANALYSES OF CONCRETE 
 
Numerical analyses of compression tests of 
concrete consisting of mortar and sphere 
aggregates are carried out. Two types of 
constitutive model for interface between mortar 
and aggregate are applied to the same specimen 
to examine the effect of interface bond character: 
(i) the constitutive model developed in this study 
(see Section 3.3) – specimen W-BOND; (ii) the 
constitutive model where only the compressive 
stress through the normal spring can be 
transferred and the tensile and shear stresses 
never be transferred. It means that bond in 
interface is cut – specimen W/O-BOND.  

Sizes of the specimens are 75x75x150mm. 
Material property of the mortar is same as in the 
mortar analyses (see Table 1). And the material 
properties of the aggregate and the interface 
between mortar and aggregate for specimen 
W-BOND are presented in Table 2. To determine 
the material properties of the interface, previous 
researches (Kosaka et al. 1975, Taylor & Broms 
1664, Hsu & Slate 1963) are referred and the 
general values are selected. Average size of the 
element is same as the mortar specimen, which is 
2.59mm3. 

Figure 14 shows the numerical model. 
Aggregate size distribution is determined based 
on the JSCE Standard Specification for Concrete 
Structures (JSCE 2002) and the maximum 
aggregate size is 20mm as shown in Figure 15. 
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Figure 12.  Deformation at failure in tension
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Aggregate diameters used for the analysis are 
varied with 2mm interval. Number of the 
aggregates of each size is calculated using the 
distribution curve in Figure 15 and points on the 
curve indicate the chosen diameters. Targeted 
aggregate volume in the model is 35%. However 
in this study, only the aggregates whose 
diameters are not less than 10mm are introduced 
because of the difficulty of forming sphere shape 
with the small size. Therefore the aggregates 
those diameter are 8mm are eliminated in 
numerical model. As a result, the total aggregate 
volume in the model becomes 24.9%.  Table 3 
shows the number of the aggregate for each 

aggregate diameter and total number of aggregate 
is 167. Loading boundary is fixed in lateral 
direction for the simulation. Total number of 

Figure 14.  Concrete model 
a) 3D view b) Aggregates in the model 

75x75x150mm 

Face with decreased shear stiffness Cracked face  

Figure 17.  Changing of condition of the interface  Figure 18.  Deformation at failure  

Deformation x10

a) Point A b) Point B c) Point C 

Table 3. Introduced 
aggregate 

Size (mm) Number 
10 72 
12 36 
14 23 
16 16 
18 11 
20 8 
22 1 

Total 167 
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Figure 16.  Stress-strain curves  
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Table 2.  Input material properties   
Aggregate 

Elastic modulus (E) 50,000 MPa 
Poisson’s Ratio (ν) 0.25 

Interface (for specimen W-BOND) 
ft average 1.6 MPa 

c 2.7 MPa 
φ 35˚ 



element is 48,258 including 15,867 aggregate 
elements. 

Figure 16 shows the predicted stress-strain 
curves. The simulated result of mortar is 
presented as well. Strength of the specimen 
W-BOND and W/O-BOND are 33.67MPa and 
20.01MPa, respectively. Reduction ratio of the 
strength due to the introduction of aggregates is 
13.4% in the case of specimen W-BOND. And it 
is 48.5% in the case of specimen W/O-BOND. 
Christensen, P.N. et al. conducted an experiment 
to examine the effect of bond characteristic of 
interface (Christensen & Nielsen 1969). In the 
experiment, two types of sphere aggregate made 
of glass marble: (i) without coating; (ii) coated by 
soft layer to cut the bond, were placed in mortar 
and the compressive test were carried out. In the 
model that aggregate volume was 20%, the 
reduction ratios of strength due to the 
introduction of aggregates were 15% and 40% for 
the experimental models (i) and (ii) at age 91days, 
respectively. And in case that aggregate volume 
was 30%, they were 21% and 54% for the 
experimental models (i) and (ii), respectively. 
Though the size of aggregate is difference, these 
reduction ratios of the strength are similar to the 
analyses in this study. 

Figure 17 shows the change in the interface 
condition of specimen W-BOND at A-C in Figure 
16. Gray and black faces present the faces that 
reach the τmax criterion in compression and 
tension, respectively. It means that the decrease 
of shear stiffness occurs on the gray face and the 
crack happens on the black face (see Section 3.3). 
From the Figure 17 a)-c), development of crack 
band on the side of aggregate is observed and the 
top and bottom side of aggregate does not have 
damage. This local behavior on the aggregate 
surface in failure process of concrete is observed 
in the experiment (Kosaka et al. 1975, 
Christensen & Nielsen 1969).  

Figure 18 shows the deformation of specimen 
W-BOND at failure (axial strain of -2,500µ). 
Deformation is enlarged 10 times. Shear crack 
can be simulated as in usual experimental results.  
 
6  CONCLUSIONS 
 

The followings are concluded from the 
analyses of mortar and concrete model by 
three-dimensional Rigid Body Spring Model 
(RBSM) with meso scale elements, where only 

tension and shear failure of spring but no 
compression failure is assumed.  
(1) The calculated stress-strain curves of the 

mortar in compression show a similar shape 
to that in usual experimental results.  

(2) Sudden increase in number of cracks on 
meso scale before the peak stress in the 
compression test of the mortar can be 
predicted by the analysis. 

(3) In the tension analysis of the mortar, the 
localization of failure after the peak stress 
and the propagation of single crack can be 
simulated. 

(4) The analysis of concrete can present clearly 
progressive fracture of the interface between 
mortar and aggregate. The simulated 
stress-strain relationship is quite similar to 
those in usual concrete tests. 

(5) Reduction in macro compression strength of 
the concrete due to inclusion of aggregates 
and elimination of interface bond can be 
predicted by the analysis. 
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