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ABSTRACT: Autogenous shrinkage is the term for the bulk deformation of a closed, isothermal, cement-
based material system not subjected to external forces (Jensen and Freiesleben Hansen 2001). It is associ-
ated with the internal volume reduction of the cement/water mixture in the course of the hydration process.
The question arising from engineering practice is the magnitude of the autogenous deformation of different
cement-based materials, such as shotcrete employed in tunneling or high-performance concrete. Whereas
autogenous shrinkage in shotcrete linings results in a significant reduction of compressive loading, restrained
autogenous deformation in high-performance concrete may lead to cracking. In this paper, a multi-scale
approach, allowing to consider induced strains at lower scales of observation, is presented. In addition to
the theoretical work on multi-scale modeling, macroscopic shrinkage experiments on cement pastes were
conducted at the Vienna University of Technology.
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1 PHYSICAL ORIGIN OF AUTOGENOUS
SHRINKAGE

Autogenous shrinkage is associated with the inter-
nal volume reduction of the cement/water mixture
caused by the hydration process. The volumetric
imbalance is depicted in Figure 1 [adapted from
(Acker 2001)]: the specific volume of the reaction
products [calcium-silicate-hydrates (CSH) and port-
landite (CH)] is about 8% lower than the sum of the
volumes of the reactants (water, cement, and addi-
tiva), a behavior also referred to as Le Chatelier con-
traction. In Figure 1, ξ denotes the degree of hydra-
tion, with ξ = fh/fh,∞, where fh is the volume frac-
tion of hydration products and fh,∞ is the respec-
tive quantity in case the entire amount of cement has
been consumed by the hydration process. The volu-
metric imbalance of 8% results in a progressive in-
crease of the pore volume filled with gaseous phase
(see Figure 1). On the other hand, the relative pore
volume occupied by the liquid phase, i.e., the liq-
uid saturation, decreases in the course of the hydra-
tion process (see Figure 1). The stress state in the
liquid phase follows the law of surface tension: the
smaller the pore size, the larger the tension at the
interface between liquid and gaseous phase. As the

degree of liquid saturation (relative pore volume oc-
cupied by the liquid phase) decreases, the location of
this interface moves into smaller pores, resulting in
an increase of surface (capillary) tension in the liq-
uid phase. This tension in the liquid phase causes a
contraction of the solid phase (unhydrated cement
and reaction products), which is macroscopically
observable as autogenous-shrinkage strain (Acker
and Ulm 2001). Experimental observations suggest
that the magnitude of the capillary tension is mainly
influenced by the water/cement-ratio, defining the
pore structure of the cement paste (Acker 2001).

2 EXPERIMENTAL BASIS

2.1 Hydration kinetics

As mentioned in the previous section, the extent of
the hydration process, i.e., of the chemical reaction
between cement and water, is described by the de-
gree of hydration ξ, with 0 ≤ ξ ≤ 1. A suitable evo-
lution law for the hydration kinetics may be written
in the form (Ulm and Coussy 1995):

ξ̇ = Ã(ξ)exp

(

−
Ea

RT

)

, (1)
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Figure 1: Variation of volume fractions for
cement pastes with w/c = w/c = 0.425
[adapted from (Acker 2001)]

where Ea, R, and T denote the activation energy
of the employed cement, the universal gas con-
stant, and the absolute temperature, respectively.
The Arrhenius factor exp[−Ea/(RT )] accounts for
the thermal activation of the hydration reaction.
The normalized chemical affinity Ã(ξ) represents
the driving force of the hydration process, depend-
ing only on the hydration extent (Ulm and Coussy
1995). For the types of ordinary Portland cements
(OPC) considered in the experimental program, the
chemical affinity was computed from experimental
results obtained from differential calorimetry (Toni-
CAL I, Toni Technik, Berlin, Germany). Hereby, the
heat flux out of the sample, Q̇(t) [J/s], is recorded,
whereas the temperature in the calorimeter is kept
constant (isothermal conditions).

Integrating the field equation for the thermochem-
ical problem (Ulm and Coussy 1995) over the vol-
ume of the test sample, specialized for isothermal
conditions, one gets

−Lξ ξ̇(t) = −Q̇(t) ⇒ ξ(t) =
Q(t)

Lξ

, (2)

where Lξ [J] denotes the heat of hydration of the
cement considered in the test sample. Inserting ξ̇ =
Q̇/Lξ (Equation (2)) into Equation (1) yields the
evolution of the the chemical affinity as

Ã(t) =
Q̇(t)

Lξ exp[−Ea/(RT )]
[1/s] . (3)

Combination of ξ(t) and Ã(t) as computed from
Equations (2) and (3) gives access to the chemical-
affinity function Ã(ξ). Figure 2 depicts Ã(ξ) ob-
tained for ordinary Portland cement (OPC) charac-
terized by a w/c-ratio of 0.42 and various Blaine
(grinding) fineness. In Equation (3), Lξ was com-
puted from the amount of cement (in [g]) multiplied

by 400 J/g [see, e.g., (Ballim and Graham 2003)],
Ea/R was set equal to 4000 K (Freiesleben Hansen
and Pedersen 1977), and T is set equal to the con-
stant temperature of 303 K throughout the experi-
ment.
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Figure 2: Normalized chemical affinity Ã(ξ) of
OPC obtained from differential calorimetry

2.2 Autogenous-shrinkage measurements

Figure 3 depicts test results for the autogenous
shrinkage strain εs obtained from a uniaxial test
setup proposed by (Jensen and Freiesleben Hansen
1995). For all shrinkage experiments, the tempera-
ture in the specimen was kept constant at 19◦C. The
circle in Figure 3 marks the time instant of the perco-
lation threshold, t0, also referred to as setting time,
i.e., the time instant when the solid phases in the ma-
terial become interconnected. For t < t0, the cement
paste can shrink freely and, hence, the Le Chatelier
contraction is converted directly into a macroscopi-
cally observable shrinkage strain. In Figure 3, t = 0
refers to the time instant of water addition, whereas
εs is set equal to zero at t = t0. All specimens show
a small expansion period right after setting which
is explained by suction of bleed water back into the
specimen. Figure 4 shows εs as a function of the de-
gree of hydration ξ. Hereby, the history of ξ was ob-
tained from numerical integration of Equation (1),
using Ã(ξ) depicted in Figure 2 and T =292 K.
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Figure 3: History of autogenous-shrinkage strain
of OPC with a Blaine fineness of 480 m2/kg
obtained from uniaxial experiments
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Figure 4: Autogenous-shrinkage strain as a func-
tion of ξ for OPC with a Blaine fineness of
480 m2/kg

2.3 Pore structure and capillary depression
In this subsection, a model for the prediction of the
pore size distribution of hardening cement paste is
developed, giving access to the capillary depression
in the pore liquid. In the context of multiscale mod-
eling, the so-obtained capillary depression will be
considered as loading in the liquid phase (see Sub-
section 3.3).

In partially-saturated cement pastes, the pressure
difference along the liquid-gas interface, ∆p [Pa],
is given by the generalized Young-Laplace equation
(Gaydos et al. 1996):

∆p = γ12

(

1

R1

+
1

R2

)

+ CH

1

R1R2

, (4)

where R1 [m] and R2 [m] are the principal radii of
curvature of the liquid-gas interface and γ12 [N/m]
is the interfacial tension between two non-solid, im-
miscible substances. CH [Nm/m] is the flexural stiff-
ness. Since the radii R1 and R2 depend on the pore
size, experimental techniques are required for de-
termination of the pore-size distribution of hydrat-
ing cement. In the past, three different experimental
techniques were developed:

• Mercury intrusion porosimetry (MIP) is char-
acterized by the quasi-static injection of a pres-
surized, nonwetting fluid (mercury) into the ce-
ment paste. All evaporable pore water is re-
moved from the pores prior to the test. MIP
provides the intruded volume as a function of
the applied mercury pressure. Based on the as-
sumptions of (a) a cylindrical shape of the in-
truded pores and (b) a decreasing pore size
with increasing distance from the outer surface
of the specimen (accessibility, see case (i) in
Figure 5), the intruded pore diameter at a cer-
tain mercury pressure and, furthermore, the rel-
ative pore-size distribution can be computed
from the intruded volume – mercury pressure
relation. Unfortunately, assumption (b) cannot
be confirmed by microscopic techniques (Dia-
mond 2000). A great portion of larger capillary

pores is located inside the specimen and can
only be reached by mercury through a chain of
smaller pores of various size and shapes (see
cases (ii) and (iii) in Figure 5). Accordingly,
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outer
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Figure 5: Accessibility of pores by MIP

these larger pores can only be intruded by mer-
cury after applying a pressure which admits the
intrusion of the smallest pore size encountered
on that chain. The pore diameter correspond-
ing to this pressure is referred to as “thresh-
old” diameter. When passing the mercury pres-
sure corresponding to the “threshold” diame-
ter during MIP experiments, a steep increase
of the intruded volume is observed. Despite the
mentioned limitation of MIP, qualitative infor-
mation can be extracted from experimental re-
sults, such as, e.g., the progressive refinement
of the pore structure in the course of hydra-
tion (Diamond 2000). Moreover, once the pres-
sure corresponding to the “threshold” diame-
ter is exceeded, large capillary pores inside the
specimen become filled and MIP gives the cor-
rect distribution for pore sizes smaller than the
“threshold” diameter. In cement pastes charac-
terized by low water content at an advanced
state of the hydration process, the liquid-gas in-
terface is located in this pore-size range.

Specialization of Equation (4) for a spherical-
cap shaped meniscus, neglecting the flexural
stiffness (CH = 0), yields an expression for the
principal radius of the mercury-gas interface:

RHg =
2γHg,gas

∆pHg

, (5)

with γHg,gas = 0.474 N/m. Accounting for
cylindrical pores and the different contact an-
gles of mercury and water with cement, αHg



and αw, respectively, the principal radius of the
corresponding water-gas interface can be esti-
mated as (see Figure 6)

Rw = RHg

cosαHg

cosαw

=
2γHg,gas

∆pHg

cosαHg

cosαw

.

(6)
Since αw is negligibly small [αw ≈ 0◦ , see,
e.g., (Hua et al. 1995)], 2Rw can be set equal to
the pore diameter at the location of the liquid-
gas interface. Based on the given value of Rw
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Figure 6: Principal radii and contact angles at (a)
mercury-gas and (b) water-gas interfaces

[Equation (6)] for an intruded mercury vol-
ume equal to the gaseous volume of unprepared
partially-saturated cement pastes, the capillary
depression in these cement pastes can be com-
puted from Equation (4) as

∆pl =
2γw,gas

Rw

, (7)

where γw,gas = 0.073 N/m.

• Nuclear magnetic resonance (NMR) [see (Hor-
nak 2003) for a detailed description] is a phe-
nomenon observed when the nuclei of certain
atoms are immersed in a static magnetic field
while exposing them to a second oscillating
magnetic field. Under such magnetic-field con-
ditions, some nuclei, including the protons of
hydrogen in a water molecule, experience this
phenomenon. One NMR measuring technique
for the estimation of the pore size distribution
exploits the decreasing freezing temperature of
water embedded in capillary pores. Hereby, the
temperature of the cement specimen is contin-
uously reduced, while the NMR signal, which
is associated with the liquid part of the water,
is recorded. Finally, the known relationships
between the freezing point depression and the
pore size provide access to the pore-size dis-
tribution (Milia et al. 1998). Respective pore
size distributions for a cement paste character-
ized by a w/c-ratio of 0.43 and a curing time of
122 d are reported in (Jehng et al. 1996).

• Image analysis of scanning-electron-
microscopy (SEM) micrographs is charac-
terized by embedding thin slices of cement
paste in low viscosity epoxy resin, polishing
the surface, and detecting the epoxy filled pores
in the backscatter electron images (Diamond
and Leeman 1995). Coverage of these pores
is based on the different gray level of epoxy
resin and the solid phase. The lower limit of
detectable pores is bound to the SEM magni-
fication and resolution of the micrographs. In
(Diamond and Leeman 1995) pore sizes down
to 8×10−7m are reported. Additionally, a
comparison of pore-size distributions obtained
from SEM micrographs and the respective
distributions from MIP measurements is
given in (Diamond and Leeman 1995). The
comparison clearly shows the aforementioned
underestimation of the portion of larger pore
sizes when employing MIP [see Figure 7(b)].

Figure 7(a) shows typical data obtained from MIP
and image analysis of vacuum mixed cement pastes,
characterized by no initial porosity, i.e., fg(ξ = 0) =
0. Taking into account that MIP measurements pro-
vide reliable results for small pore sizes and im-
age analysis is limited to greater pore-size ranges, a
line approximating the respective ranges of the pore
size is introduced [see Figure 7(b)]. Based on ex-
perimental data of cement pastes characterized by
various values of the w/c-ratio and ξ (Cook and
Hover 1999; Diamond and Leeman 1995), the slope
of the line was identified as k = 0.2/log

10
(3 ×

10−7/1 × 10−8) = 0.135, starting from a pore di-
ameter of 2.5×10−9m. According to (Bye 1999),
the latter corresponds to the smallest pore size, at
which menisci can form. The linear approximation
of the cumulative pore-size distribution allows to de-
termine the pore radius at the liquid-gas interface
for a given volume fraction of the gaseous phase
fg(ξ, w/c) [see Figure 7(b)]. For the so-obtained
value of 2Rw(fg), the capillary depression of the
pore liquid can be computed from Equation (7).

This approach was assessed by four different data
sets reported in the open literature (Acker 2001;
Hua et al. 1995; Cook and Hover 1999; Jehng et al.
1996). Figure 8 shows the comparison of these test
data and the model prediction based on k = 0.135.
The model result for ∆pl as a function of the
w/c-ratio and ξ were obtained from the calculation
scheme outlined in Table 1.

3 CONTINUUM MICROMECHANICAL
MODEL

The framework of continuum micromechanics is
proposed to predict autogenous-shrinkage strains at
the macroscale. After identification of the material
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Figure 7: Cumulative pore-size distributions: (a)
typical experimental data, (b) line, fitting ex-
perimental data [see also (Koenders and van
Breugel 1998)]
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Figure 8: Capillary depression of the pore liquid
as a function of the w/c-ratio and ξ

phases at the different scales of observation, the elas-
tic properties and, finally, the autogenous-shrinkage
deformations will be upscaled.

3.1 Representation

First, the different phases in a representative vol-
ume element (RVE) need to be identified. A phase

in terms of continuum micromechanics constitutes a
material domain with constant material properties at
a given length scale. In this work, three length scales
are considered. The phases at the different length
scales are identified as follows:

• At the cement-paste scale, water, yet unhy-
drated (anhydrous) cement, reaction products,
and capillary pores, either filled with liquid or
gas, are forming a polycrystal.

• At the aggregate scale, aggregates are repre-
sented as spherical inclusions in the cement
paste.

• Finally, at the macroscale, concrete is treated as
a continuum.

The three length scales obey the separability of scale
condition, i.e., they are separated one from another
by at least one order of magnitude.

3.1.1 The cement-paste scale
The volume fractions fr at the cement-paste scale
are defined as functions of the w/c-ratio and the de-
gree of hydration ξ (Acker 2001) (see Figure 1):

fc(ξ) = (1− ξ)× fc(ξ = 0) ,
fh(ξ) = 2.16× [fc(ξ = 0)− fc(ξ)] ,
fg(ξ) = 0.18× [fc(ξ = 0)− fc(ξ)] + fg0 ,
fl(ξ) = fc(ξ = 0)×w/c× ρc/ρl

−1.34× [fc(ξ = 0)− fc(ξ)] ≥ 0 ,
(8)

with fc(ξ) + fh(ξ) + fg(ξ) + fl(ξ) = 1. fc, fh, fg

and fl denote the volume fractions of cement, hy-
drates, the gaseous phase, and the liquid phase, re-

Table 1: Determination of ∆pl for specific values
of the w/c-ratio and ξ

1. Determination of fl and fg on the basis of
the linear relations given in Figure 1 (see also
Subsection 3.1).

2. Use of linear relationship in Figure 7(b),
defined by the computed values for fg + fl

at 2Rw = 2.5 × 10−9 m and the slope
k = 0.135 = const., for determination of
2Rw, max and 2Rw(fg) from

k =
fg+fl

log
10

(2Rw, max)−log
10

(2.5×10−9)

k =
fg

log
10

(2Rw, max)−log
10

(2Rw(fg))

3. Determination of ∆pl from 2Rw(fg) using
Equation (7)



spectively. In Equation (8), ρc/ρl is the ratio of ce-
ment to liquid density, with ρc/ρl = 3.15 (Acker
2001), the numbers 2.16, 0.18, and 1.34 were com-
puted from (1 + w/c × ρc/ρl) × (100% − 7.7%),
(1 + w/c× ρc/ρl)× 7.7%, and w/c× ρc/ρl, where
7.7% represents the volumetric imbalance in the
course of hydration (Le Chatelier contraction) and
w/c = 0.425 (Acker 2001). fg0 denotes the volume
fraction of the gaseous phase introduced during the
mixing process (entrained air). Figure 1 shows the
evolution of the volume fractions given in Equa-
tions (8) as a function of ξ. Depending on the w/c-
ratio, three cases are distinguished:

• Cement pastes characterized by w/c = w/c =
0.425 hydrate completely, i.e., all cement
clinker is consumed. No water is present at
ξ = 1 (see Figure 1).

• Pastes with w/c < w/c cannot hydrate com-
pletely. The chemical reaction stops by the time
all liquid has been consumed. Accordingly, ξ
remains smaller than one.

• Pastes characterized by w/c > w/c hydrate
completely. The larger the w/c-ratio, the more
liquid is present at ξ = 1.

3.1.2 The aggregate scale
The volume fractions fr at the aggregate scale are
defined as follows:

• fp denotes the volume fraction of the cement
paste.

• fa is the volume fraction of aggregates.

The sum of fp and fa must be equal to 1.

3.2 Localization & homogenization of elastic
properties

For determination of macroscopic elastic properties
of early-age concrete, a recently published homog-
enization scheme by (Bernard et al. 2003) is em-
ployed. Whereas four scales of observation below
the macroscale were introduced in (Bernard et al.
2003), requiring four homogenization steps for the
upscale of elastic properties, only two homogeniza-
tion steps are required when using the material rep-
resentation introduced in Subsection 3.1. Similar to
(Bernard et al. 2003), homogenization at the cement-
paste scale is performed using the generalized self
consistent scheme (Hershey 1954; Kröner 1958),
whereas the Mori-Tanaka scheme is used for homog-
enization of the cement paste / aggregate compound,
finally providing the macroscopic elastic proper-
ties. The intrinsic properties of the different material
phases employed in this paper are listed in Table 2.

Table 2: Bulk modulus k and shear modulus µ
for the single phases [average values taken
from (Acker 2001)]

cement paste scale
phase k [GPa] µ [GPa]
anhydrous cement 117 54
liquid phase 2.3 0
gaseous phase 0 0
hydrates 14 9

3.3 Homogenization of autogenous-shrinkage de-
formation

Homogenization of elastic properties (Subsec-
tion 3.2) is characterized by the assumption that each
hydrate formed in the course of the hydration pro-
cess contributes equally to the macroscopic elas-
ticity tensor C(ξ) by its intrinsic stiffness proper-
ties (see Table 2). At the macroscopic scale, the
stress-free formation of hydrates [the hydrates are
not loaded when they are formed (Bažant 1979)]
is standardly considered by an infinitesimal stress-
strain law [see, e.g., (Sercombe et al. 2000; Lackner
et al. 2002)], reading

dσ = C(ξ) : dε , (9)

where C(ξ) = CII
hom(ξ) is the elasticity tensor of the

material at the macroscopic scale of observation. At
this scale, autogenous shrinkage is considered by ex-
tending Equation (9) to

dσ = C(ξ) : [dε− dε
s(ξ)] , (10)

where ε
s(ξ) represents the yet unknown macro-

scopic autogenous-shrinkage strain tensor corre-
sponding to a situation free of macrostress. Accord-
ingly, no macrostress is applied in the subsequent
determination of ε

s(ξ) by means of homogeniza-
tion. However, the hydrating cement at finer scales
of observation becomes loaded, resulting from the
capillary depression of the liquid phase. Similar
to the infinitesimal approach at the macroscopic
scale of observation [see Equations (9) and (10)],
newly-formed hydrates do not affect the autogenous-
shrinkage strains developed so far at finer scales
of observation. Within the framework of continuum
micromechanics, this situation is accounted for by
an infinitesimal approach, continuously introducing
additional hydrate phases, dfh (see Figure 9). Each
hydrate phase is loaded exclusively by changes in
the capillary depression, d(∆pl), occurring after for-
mation of the respective phase. In the context of this
infinitesimal approach, the stress-strain law in the
liquid phase Vl at the cement-paste scale takes the
form

Vl : dσ = Cl : (dε
0 + dεl − dε̄l) , (11)
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where the strain tensor is composed of a constant
part dε

0 and a variable part dεl. In Equation (11),
the strain tensor dε̄l is introduced in order to account
for the applied load in consequence of capillary de-
pression, with dε̄l =−1d(∆pl)/(3kl), where ∆pl is
obtained from the degree of hydration as outlined in
Table 1. Within the self-consistent scheme, the mate-
rial tensor Cl for the liquid phase in Equation (11) is
replaced by the homogenized material tensor CI

hom,
reading

dσ = CI
hom : (dε

0 + dεl − dε
∗

l − dε̄l),(12)

where the introduction of the constant tensor of
eigenstrains dε

∗

l (constant in Vl) compensates the
change of material properties (see Figure 10). The
variable part of the strain tensor dεl in Equation (12)
is a function of dε

∗∗

l , with dε
∗∗

l = dε
∗

l + dε̄l. Ac-
cording to (Eshelby 1957), it is obtained as

dεl = Sl : dε
∗∗

l , (13)

where Sl denotes the fourth-order Eshelby tensor.
(Eshelby 1957) showed that in case of an ellipsoidal

inclusion Vl, Sl and, hence, dεl is constant in Vl.
Consideration of Equation (13) in the stress-strain
laws (11) and (12),

Vl : Cl : [dε
0 + Sl : dε

∗∗

l − dε̄l]
= CI

hom : [dε
0 + (Sl − I) : dε

∗∗

l ] ,
(14)

yields an expression for dε
∗∗

l in the form:

dε
∗∗

l = [(Cl −CI
hom) : Sl + CI

hom]−1 :
[(CI

hom − Cl) : dε
0 + Cldε̄l] .

(15)
The infinitesimal stress-strain law in the remaining
phases r, with r ∈ {c, g, h}, is given as

Vr : dσ = Cr : (dε
0 + dεr)

= CI
hom : (dε

0 + dεr − dε
∗

r) .
(16)

Consideration of dεr = Sr : dε
∗

r in Equation (16)
yields

dε
∗

r = [(Cr −CI
hom) : Sr + CI

hom]−1 :
[(CI

hom −Cr) : dε
0] .

(17)
Based on 〈dσ〉V = 0, which follows from 〈σ〉V = 0
in the situation free of macrostress, one gets

V : 0 = flCI
hom : [dε

0 + (Sl − I) : dε
∗∗

l ]
+ fcCI

hom : [dε
0 + (Sc − I) : dε

∗

c ]
+ fgCI

hom : [dε
0 + (Sg − I) : dε

∗

g ]

+
∫ fh

0
CI

hom : [dε
0 + (Sh − I) : dε

∗

h]dfh .
(18)

Considering Equations (15) and (17) in Equa-
tion (18), the constant part of the strain tensor dε

0

is obtained as a function of dε̄l in the form

dε
0 = −Λ

−1 : Γl : dε̄l , (19)

where the fourth-order tensors Λ and Γl contain
the volume fractions fr, the Eshelby tensors Sr,
and the elasticity tensors of the different phases as
well as the homogenized material tensor (see Ap-
pendix). The infinitesimal macroscopic total strain
tensor dε̄

I
hom for an infinitesimal increase of the hy-

drate phase, dfh, is obtained from the volume aver-
age of the strain field dε

0 + dε, reading

dε̄
I
hom =

∫

V
(dε

0 + dε)dV =
= dε

0 + fl 〈dεl〉Vl
+ fc 〈dεc〉Vc

+fg 〈dεg〉Vg
+

∫ fh

0
〈dεh〉Vh

dfh

= dε
0 + flSl : dε

∗∗

l + fcSc : dε
∗

c

+fgSg : dε
∗

g +
∫ fh

0
Sh : dε

∗

hdfh

= (I + Ξ) : dε
0 + Θl : dε̄l ,

(20)



where the expressions for Ξ and Θl are given in
the Appendix. Considering Equation (19) and dε̄l =
−1d(∆pl)/(3kl) in Equation (20), one gets

dε̄
I
hom = [(I+Ξ) : Λ−1 : Γl −Θl] : 1d(∆pl)/(3kl) .

(21)

w/c � ��� ���

ξ � ��	


��������������������������
w/c � ��� ���

εs,
ε̄hom

3
� � � −3 	

w/c � ��� �� 

w/c � ��� �� 
��!"�#������
����"��$��%�$���$& ���('*),+.-/� ��01$243 57698;:4< �=���=��>?>
� & ��@7� 
 2 ACB"D

���  ��� � ��� � ��� @ �

E � � �

�

E ��� F

Figure 11: Comparison of results obtained from
continuum-micromechanical model with ex-
perimental data

Accounting for the isotropic character of the cap-
illary depression in the liquid phase and, hence, of
the prescribed strain dε̄

I
hom, Equation (21) can be

written in volumetric form as

dε̄I
hom = [(1 + Ξ)Λ−1Γl −Θl]d(∆pl)/kl . (22)

Ξ, Λ, Γl, and Θl are given in the Appendix and S =
1/3 (1 + νI

hom)/(1 − νI
hom) (see Appendix). Ho-

mogenization of autogenous shrinkage strains at the
aggregate scale is performed by prescribing shrink-
age strains dε̄

I
hom in the cement-paste phase follow-

ing the procedure outlined in (Pichler et al. 2003).

4 COMPARISON WITH EXPERIMENTAL RE-
SULTS

The multi-scale model presented in the previ-
ous section was employed for re-analysis of
one-dimensional autogenous-shrinkage experiments
conducted at Vienna University of Technology. In
the respective testing program, three types of ce-
ment characterized by various Blaine fineness with
varying w/c-ratios were considered. Figure 3 shows
the obtained histories for the uniaxial strain. Com-
bination of these data with the chemical affinity
Ã(ξ) computed in Subsection 2.1 gives access to
the autogenous-shrinkage strain as a function of ξ.
From comparison of the so-obtained material func-
tion εs(ξ) with the prediction of the multi-scale
model ε̄I

hom(ξ)/3, the following conclusions can be

drawn: Whereas the described homogenization ap-
proach is capable to qualitatively describe autoge-
nous shrinkage of cement-based materials, the mag-
nitude of autogenous-shrinkage strains is underes-
timated. This may be explained by the underlying
elastic behavior of the single constituents assumed
in the employed homogenization approach. Experi-
mental results [see, e.g., (Acker 2001)], as well as
theoretical considerations [see, e.g., (Bažant et al.
1997)] suggest to extend the proposed homogeniza-
tion approach to creep. Future work will include the
identification of the governing creep process in the
hydrate phase. The proposed infinitesimal homoge-
nization scheme will allow to incorporate these re-
sults, accounting for the different load histories of
hydrate phases formed at different instants of time.

5 CONCLUDING REMARKS AND OUTLOOK

Starting with the identification of the pore structure,
a linear relationship between the accumulative pore
space and the pore diameter in logarithmic scale was
introduced [similar to (Koenders and van Breugel
1998)]. Surprisingly, this rather simple approxima-
tion defining the pore size distribution and, hence,
the capillary depression at various extents of the hy-
dration process showed good agreement with exper-
imental data, accounting for the large scatter present
in such experiments. Even though an infinitesimal
homogenization approach was chosen for upscaling
autogenous-shrinkage deformations, accounting for
the stress-free formation of new hydrates at finer
scales of observation, the experimental results ob-
tained from uniaxial shrinkage tests were still un-
derestimated. This was explained by the underlying
assumption of linear elastic material behavior of the
different material phases. Future work will be de-
voted to the extension of the proposed homogeniza-
tion scheme to finer-scale creep of hydrates; respec-
tive experiments are in progress.

Before the obtained material function for autoge-
nous shrinkage may be used in the context of macro-
scopic analyses accounting for chemomechanical
couplings (Ulm and Coussy 1996; Hellmich et al.
1999; Lackner et al. 2002; Pichler et al. 2003), veri-
fication of the second homogenization step from the
aggregate scale to the macroscale is required. For
this purpose, the uniaxial autogenous-shrinkage ex-
periments conducted with cement pastes will be ex-
tended to mortar.

Hence, finally the prediction of the influence of
autogenous shrinkage on the response of real-life
structures will become possible. The optimization
of concrete mixtures for specific applications, aim-
ing at a reduction of the deformations caused by
autogenous-shrinkage represents the far-goal of this
research.
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APPENDIX
For the sake of clarity of the description of the mi-
cromechanical model, the following symbols were
introduced:

Λ = I + fl(Sl − I) : [(Cl − CI
hom) : Sl

+CI
hom]−1 : (CI

hom − Cl)
+ fc(Sc − I) : [(Cc − CI

hom) : Sc

+CI
hom]−1 : (CI

hom − Cc)
+ fg(Sg − I) : [(Cg − CI

hom) : Sg

+CI
hom]−1 : (CI

hom − Cg)

+
∫ fh

0
(Sh − I) : [(Ch − CI

hom) : Sh

+CI
hom]−1 : (CI

hom − Ch)dfh

(23)

Γl = fl(Sl − I) : [(Cl − Chom) : Sl

+CI
hom]−1 : Cl

(24)

Ξ = flSl : [(Cl − CI
hom) : Sl

+CI
hom]−1 : [(CI

hom − Cl)]
+ fcSc : [(Cc − CI

hom) : Sc

+CI
hom]−1 : [(CI

hom − Cc)]
+ fgSg : [(Cg −CI

hom) : Sg

+CI
hom]−1 : [(CI

hom − Cg)]

+
∫ fh

0
Sh : [(Ch − CI

hom) : Sh

+CI
hom]−1 : [(CI

hom − Ch)]dfh

(25)

Θl = flSl : [(Cl −CI
hom) : Sl

+CI
hom]−1 : Cl

(26)

Λ = 1 + fl(S − 1)[(kl − kI
hom)S

+kI
hom]−1(kI

hom − kl)+
+ fc(S − 1)[(kc − kI

hom)S
+kI

hom]−1(kI
hom − kc)+

+ fg(S − 1)[(kg − kI
hom)S

+kI
hom]−1(kI

hom − kg)+

+
∫ fh

0
(S − 1)[(kh − kI

hom)S
+kI

hom]−1(kI
hom − kh)dfh

(27)

Γl = fl(S − 1)[(kl − khom)S
+kI

hom]−1kl
(28)

Ξ = flS[(kl − kI
hom)S + kI

hom]−1

[(kI
hom − kl)]

+ fcS[(kc − kI
hom)S + kI

hom]−1

[(kI
hom − kc)]

+ fgS[(kg − kI
hom)S + kI

hom]−1

[(kI
hom − kg)]

+
∫ fh

0
S[(kh − kI

hom)S + kI
hom]−1

[(kI
hom − kh)]dfh

(29)
Θl = flS[(kl − kI

hom)S + kI
hom]−1kl (30)

In Equations (27) to (30), S denotes the remaining
part of the Eshelby tensor S, specialized for spher-
ical inclusions (see, e.g., (Nemat-Nasser and Hori
1993))

Sijkl =
5νI

hom − 1

15(1− νI
hom)

δijδkl

+
4− 5νI

hom

15(1− νI
hom)

(δikδjl + δilδjk) ,

(31)
giving S = Siiii + 2Siijj = 1/3 (1 + νI

hom)/(1 −
νI

hom), where νI
hom denotes Poisson’s ratio of the

homogenized material.
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