
1 INTRODUCTION 

In 1998 a combined experimental and numerical 
research program CAMUS was launched in France 
with the aim of evaluating the effects of 2-D 
earthquake motions and torsion on lightly 
reinforced concrete shear wall structures. As part of 
the program, two 1:3-scale structural models 
representative of a five-story reinforced concrete 
building (Fig. 1) were tested on the Azalee shaking 
table of the Commissariat a l’Energie Atomique 
(CEA) in the Saclay Nuclear Center. The first 
structure (CAMUS 2000-1) was subjected to 
horizontal bi-directional excitation. A combination 
of table accelerations was applied at three levels of 
amplitude (the nominal accelerations were 0.15g, 
0.40g and 0.55g in RUN1, RUN2, RUN3). 
Structural stiffness was provided by two identical 
shear walls in one direction, and a steel bracing 
system in the orthogonal direction. For the second 
test (CAMUS 2000-2), an in-plane excitation was 
applied to two shear walls of different geometry 
introducing torsional response due to lack of 
symmetry[1][2]. 

2 GEOMETRIC MODELING 

The basic geometry and the mesh layout of the 3-D 
finite element model of the CAMUS 2000-1 test 

article are illustrated in Figures 1 and 2.  The main 
difficulty of the geometric idealization was the 
transverse bracing model of the hat frame at each 
story, which determines the interaction between the 
two shear walls under transverse excitation. 
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Figure 1. Five-story shear wall building : Layout of specimen 

In the 3-D finite element model, the transverse hat 
frame was replaced by the rectangular solid frame 
structure shown in Figure 3(a), the stiffness of 
which was calibrated from the frequency measured 
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in the experiment, see Table 1. The 3-D finite 
element mesh consists of TETRA elements (38,400 
four-node tetrahedrons) which are arranged in four 
layers through the wall thickness in the form of 
union-jack triangulation. In addition, BRICK8 
elements (1,100 eight-node bricks) are used for the 
shaking table, the floor slabs between the two walls, 
and the transverse bracing system. Finally, BAR3D 
elements (562 two-node bars) are used for the 
vertical reinforcement and the horizontal stirrups. 
The 3-D finite element mesh has a total of 13,517 
nodes (39,906 dofs) and 46,926 elements as shown 
in Figures 2 and 3. A total mass of 60 tons is added 
to the five floors with 12 tons lumped at each story. 
The shear wall structure stands on the rigid shaking 
table which has 40% of the total mass.  A total of 
four springs are used to model the support of the 
shaking table. The spring constants are 215 MN/m 
each. 

    
(a)                                          (b) 

Figure 2. Five-story shear wall building : (a) Experimental 
setting by courtesy of [2],  (b) 3-D finite element mesh. 

3 LINEAR DYNAMIC ANALYSIS  

3.1 Frequencies for Tuning Elastic Damage  

The purpose of this task is to develop an equivalent 
linear model which is representative of a simplified 
engineering approach. For concrete, the nominal 
value of Young’s modulus Ec=28,000 MPa was 
specified by the CAMUS test program, and for 
steel, Es=200,000 MPa. Poisson ratios of concrete 
and steel were given to be 2.0=ν  and 3.0=ν  
respectively. If these nominal elastic material 
values are used in the 3-D finite element model, the 
first three frequencies (1st mode: Out-of-Plane 
Bending, 2nd mode: In-Plane Bending, 3rd mode: 
Torsion as shown in Figure 4.) are considerably 
higher than those measured in the experiment under 
low amplitude excitation (before testing), see 
summary in Table 1. The intent of the equivalent 
linear dynamic analysis is to tune the frequencies 
of the 3-D model by reducing the Young modulus 

of concrete due to damage in the 1st floor, see 
Table 2. 

(a)                               (b)                     
Figure 3. Five story shear wall building:(a) Transverse floor 
and bracing system, (b) Reinforcements of shear walls. 
 

(a)                      (b)                      (c) 
Figure 4. First three eigenmodes of CAMUS III structure: 
(a) Out-of-Plane, (b) In-Plane, (c) Torsion modes. 
 
Table 1:  Experimental frequencies before testing 

TEST # 1st Mode 2nd Mode 3rd Mode 
RUN1 5.80 Hz 6.25 Hz 11.6 Hz 
RUN2 5.40 Hz 6.00 Hz 11.0 Hz 
RUN3 4.20 Hz 5.80 Hz 10.4 Hz 

NOMINAL 6.28 Hz 9.28 Hz 15.1 Hz 
 
Table 2: Experimental frequencies after testing 

TEST # 1st Mode 2nd Mode 3rd Mode 
E 4.00 Hz 4.39 Hz 10.2 Hz  

RUN1 T 4.76 Hz 4.97 Hz 9.80 Hz 
E 4.00 Hz 4.39 Hz 8.10 Hz  

RUN2 T 4.04 Hz 4.34 Hz 7.96 Hz 
E 2.93 Hz 2.73 Hz 6.40 Hz  

RUN3 T 3.05 Hz 3.78 Hz 6.29 Hz 
*E: Measured, T:Tuned (elastic concrete damage of 1st floor ) 
 
Experimental observations indicate that the main 
damage caused by localized cracking and global 
degradation developed mainly in the 1st floor of the 
two shear walls. In other words, a simple 
engineering approach assumes uniform damage in 
the 1st floor of the two shear walls with a damage 
parameter d=1-Ed/Eo = 0.94 to 0.98. This elastic 



degradation is used subsequently in the equivalent 
linear dynamic response analysis including 
proportional damping. Three ground motions with 
different levels of acceleration (0.15g, 0.40g, 
0.55g) are applied at the base of the shaking table. 
To emulate the experimental condition, the base 
displacements at the table are used to input the 
earthquake motion rather than the accelerations 
measured at the transducers shown in Figure 7. The 
displacement histories in Figure 5 and 6 are applied 
simultaneously in the two directions `in-plane’ and 
`out-of-plane’ to the two shear walls shown in 
Figure 7. 

Figure 5. In-Plane displacement input: RUN1,RUN2, RUN3 

3.2 Linear Dynamic Response of Partially 
Damaged Structure 

The main results of the elastic damage analyses are 
shown in Figure 8 and 9. Although the eigen-
frequencies of the structure in each RUN are pre-
determined by tuning experimental data, the global 
behavior under bi-axial seismic loading depends 
primarily upon the level of damage in the 1st floor 
of the two shear walls where the large base shears 
and moments are expected. There are two main 

issues for this type of analysis, the amplitudes and 
the frequencies of the response histories. The 
amplitudes are primarily influenced by the amount 
of viscous Rayleigh damping assuming 2% 
proportional damping applied to the 1st and 3rd 
modes. The frequencies shift due to the large 
reduction of elastic stiffness of the two concrete 
walls in the damaged 1st floor (RUN1: Ec=2,000 
MPa, RUN2: Ec=1,000 MPa, RUN3: Ec=500 MPa 
from the initial intact value Eo=28,000 MPa) as 
described in Section 3.1. 
 

Figure 6. Out-of-Plane displacement input: RUN1, RUN2, RUN3 

Figure 7. Bi-seismic excitation of shaking table : In-Plane 
and Out-of-Plane directions by courtesy of [2]. 
 



Figure 8. Relative in-plane displacement histories: RUN1, 
RUN2, RUN3. 
 

Figure 9. Relative out-of-plane displacement histories: 
RUN1, RUN2, RUN3. 

4 NONLINEAR PUSH-OVER STUDY 

4.1 Material Nonlinearities in Concrete & Steel  
 

In view of the complex 3-D finite element model a 
simple material model is used for the inelastic 
behavior of reinforced concrete under cyclic 
loading. This model is based upon plasticity theory 
for concrete assuming associated flow with no 
hardening/softening. For the yield condition a 
parabolic Drucker-Prager condition is employed 
which permits an analytical solution of the plastic 
return map of the trial overstress in Eq. 1 as 
depicted in Figure 10. 
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Here f’c and f’t denote the uniaxial compressive and 
tensile strength values of concrete. When the yield 
surface is reached in tension, a crack is created 
perpendicularly to the major principal direction of 
stress, whereby its orientation rotates with the 
principal axis according to the isotropic (rotating) 
crack concept. The cyclic behavior of concrete in 
tension-compression under increasing amplitude is 
illustrated in Figure 11 (considering no softening 
takes place at the material level of observation 
during progressive cracking and crushing the 
hysteretic energy dissipation is overestimated 
significantly). For the axial behavior of the 
reinforcing steel bars an isotropic hardening 
plasticity model is adopted which results in the 
cyclic response behavior shown in Figure 12.  

Figure 10. Plastic return map to parabolic Drucker-Prager 
loading surface. 
 



The identification of the material parameters is 
quite simple. The nominal values of material 
properties are directly taken from the CAMUS 
2000-1 test data. For steel, the elastic modulus is Es 

= 200,000 MPa, the yield stress is fy = 664 MPa, the 
failure stress is fu = 733 MPa at 2.2% strain. For 
concrete, the initial elastic modulus is Ec= 28,000 
MPa, the uniaxial compressive strength is f’c = 35 
MPa, and the direct tensile strength is f’t = 3.5 MPa. 

Figure 11. Cyclic uniaxial behavior of plain concrete in 
tension-compression. 

 

Figure 12. Cyclic uniaxial behavior of steel reinforcement. 

4.2 Static Nonlinear Push-Over Tests  

To appreciate the structural performance of the test 
article, a uniformly distributed horizontal 
displacement is applied at the top floor in the in-
plane and out-of-plane directions. The main results 
of the monotonic push-over test are shown in 
Figure 13. The response predictions indicate that 
the elastic stiffness of this structure is quite similar 

for both in-plane and out-of-plane loading. 
Moreover, the level of RUN1 excitation is still in 
the linear elastic range, while the increased level of 
excitation of RUN2 and RUN3 indicate significant 
nonlinearities. Due to the linearity of the transverse 
bracing system and the floor connections between 
the two shear walls, the nonlinear effect of the out-
of-plane response is relatively small since it is 
considerably below the ultimate load capacity FP 
=789 kN when tensile cracking is confined to the 
‘narrow’ wall region. In contrast, the nonlinear in-
plane behavior is pronounced because of the 
perfectly-plastic Drucker-Prager concrete model. In 
this case confinement effects together with the 
associated flow rule overestimate the ultimate load 
capacity FP =261 kN of the in-plane resistance 
according to elementary beam theory. 

Figure 13. Force-relative displacement response under mono-
tonically increasing in-plane displacement at top level. 
 

        
 

 
Figure 14. Deformed mesh of push-over test (in-plane failure 
mode). 



5 NONLINEAR DYNAMIC ANALYSIS 

The numerical simulations are performed using the 
general-purpose finite element program MFEM 
developed by a team in Aerospace Engineering 
Science at the University of Colorado at Boulder. 
To predict the inelastic seismic response of the 
tested structure with sufficient accuracy, special 
care is exercised to take into account all necessary 
geometric characteristics, construction details, 
reinforcement and boundary conditions. Assuming 
0.5% critical damping for the first and third 
vibration mode, the damping parameters α and β  
are calculated for proportional Rayleigh damping, 
C= α M+ β K, where M and K are the structural 
mass and stiffness matrices. In view of the fact that 
the proportional damping characterization is 
consistent only for linear elastic systems, the 
damping matrix C is assumed to remain constant 
throughout the loading history. With increasing 
levels of excitation in RUN1, RUN2, and RUN3, 
the fundamental frequencies decrease due to 
concrete `cracking’ and reinforcement yielding, 
which leads to considerable hysteretic damping of 
the lower structural modes. In contrast, viscous 
damping can only partially compensate for the 
different sources of hysteretic damping, unilateral 
closure, shear slip between the crack lips, bond slip 
between steel and concrete, etc. To solve the 
nonlinear equilibrium equations, the Newmark 
constant acceleration method ( β =0.5 and 
γ =0.25) is used for the dynamic shaking table 
simulations. The nonlinear analysis results are 
shown in Figure 15 and 16. From the previous 
observation of the nonlinear push-over response in 
Figure 13, the behavior under RUN1 loading is still 
in the linear elastic regime. Note the experimental 
response closely agrees with the results of the 
nonlinear analysis using 0.5% damping and 
nominal (high) values for the elastic modulus of 
concrete.  

Figure 15. Relative In-Plane displacement response histories: 
RUN1-3, Nonlinear Analysis. 
 

Figure 16. Relative Out-of-Plane displacement response 
histories: RUN1-3, Nonlinear Analysis. 
 
FFT analysis of the experimental and 
computational response for RUN2 and RUN3 
indicates that the frequencies of the elasto-plastic 
results are approximately 1.0 Hz higher than those 
of the experiments. However one should keep in 
mind that failure of the connections of the 
transverse bracing system with the floor slabs was 
observed during the experiments. Since the finite 
element model assumes linear elastic behavior of 
the floor and bracing connections the higher 



frequencies may be caused by these modeling 
discrepancies. 

6 INTERFACE DAMAGE MODEL IN 2-D 

6.1 Interface Models in Reinforced Concrete  

The tensile weakness of concrete and the ensuing 
cracking is a major factor contributing to the 
nonlinearity of reinforced concrete structures. 
There are four major approaches for describing this 
cracking in finite element analysis. They are (a) 
smeared (distributed) crack models, (b) embedded 
crack models, (c) discrete crack (cohesive) models, 
(d) fracture mechanics models. In the discrete crack 
model, the ‘potential’ failure zones are spread over 
the entire finite element domain with initial zero-
thickness interface elements interspersed among 
elastic solid elements. When the interface element 
is subjected to mixed mode failure, the ‘potential’ 
crack candidates can be opened or slide according 
to the underlying softening law.  For those 
problems that involve a few dominants cracks, the 
discrete crack model offers a realistic 
representation of those failure modes, that represent 
a strain or rather `displacement discontinuity’, 
while the stress or rather traction boundary 
conditions remain nearly continuous. In addition, 
aggregate interlock and bond slip in mono- and bi-
materials can be represented by this discrete 
cracking model although these physical issues are 
closely related to the mesh topology. The 
viewpoint of the discrete cohesive model is still a 
macroscopic one, with the basic behavior 
characteristics lumped in the elements. Therefore, 
an interface element has their life of its own in the 
elastic body. With cracking passing along element 
boundaries, the use of simplex elements such as the 
constant strain triangular (CST) element is well 
suited to concept and application in Figure 17. 
However, the interface elements do not adapt to 
sharp strain gradients except with a fine mesh. The 
stresses in the vicinity of the crack tip are mesh-
dependent because of local stress concentrations. 
 

Figure 17. 2-D interface damage element. 

6.2 Cohesive Interface Formulation 

The material separation and thus damage of the 
structure is described by cohesive interface 
elements. Thereby, adjacent continuum elements 
are not damaged in this approach. Using this 
technique, the behavior of the material is split into 
two parts, the damage-free continuum with elastic 
material behavior that can vary across the body, 
and the interspersed cohesive interface zones 
between continuum elements, which represent 
localized damage of the material. The interface 
elements open up when damage occurs and entirely 
loose their stiffness at failure so that neighboring 
continuum elements are disconnected. For this 
reason, the crack can propagate only along the 
boundaries of solid elements in the form of inter-
element failure. If the crack propagation direction 
is not known in advance, the mesh generation has 
to be sufficiently refined such that different crack 
interface paths are possible. The separation of the 
cohesive interfaces is calculated from the 
displacement jump [|u|], i.e. the difference between 
the displacements in adjacent continuum elements,  
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Rather than the defining  the separation vector in 
global coordinates it is described in a local 
coordinate system to distinguish between normal 
separation, [|u|]n, and tangential slip, [|u|]t in Eq. (2). 
The critical separation parameters denoted as [|u|]0 , 
and [|u|]f are defined in Figure 18. The maximum 
traction T0, is a fracture parameter, which 
designates the ‘cohesive strength’ and is the value 
of the traction at [|u|]0 while T0 describes the 
maximum value of the traction separation relation 
T([|u|]). In the following, the exponential cohesive 
interface law shown in Figure 18 is used for the 
nonlinear interface simulations shown in Figures 
19 and 20. 



Figure 18. General softening law for the concrete cracking. 
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6.3 Finite Interface Model of Push-Over Study 

In spite of using a simple method of placing 
interface elements among all solid elements, and in 
spite of the lack of generality in possible crack 
directions, a structured ‘union-jack’ mesh is used in 
this study. Hence, all possible crack directions are 
limited to horizontal, vertical and ± 45-degree 
diagonal directions. A total of 24,373 nodes 
(48,746 dofs), 22,976 elements (CST: 7,696, 
INT2D: 11,385, BAR2D: 3,894) are used in the 
deformed 2-D mesh shown in Figure 21. The same 
dimension and material parameters of CAMUS 
2000-1 are used as in the previous analysis. Two 
types of interface elements are introduced to 
capture the nonlinearities of reinforced concrete. 
They are concrete-concrete interfaces (C-C) and 
concrete-steel interfaces (C-S). The former are 
essential to capture the softening behavior of plain 
concrete by tension failure due to tensile cracking 
or compression failure due to slip. The latter is 
better known as ‘bond slip’ interfaces which 
mainly affects the crack spacing. Thereby, the 
shear slip energy primarily depends upon the 
mechanical and chemical bond properties in C-S 
interfaces. 

Figure 19. Normal behavior of 2-D interface element under 
tension-compression cycles. 

 

Figure 20. Cyclic shear behavior of 2-D interface element. 

 
The nonlinear push-over test with interfaces is 
performed in 2-D and the deformed mesh and load-
deflection responses are shown in Figures 21 and 
22. Several horizontal cracks develop even in the 
footing, but the major crack localizes in the first 
floor wall which agrees with the experimental 
observations better than the elasto-plastic results of 
the 3-D simulation shown in Figure 14. In that case, 
the tensile crack developed at the interface with the 
wall footing partly because the footing was 
assumed to remain elastic. The interface damage 
results agree quite closely with the in-plane 
ultimate moment capacity of the shear wall 
obtained from elementary beam theory assuming 
perfectly plastic behavior of steel and concrete in 
tension and in compression. 
 



 
 

Figure 21. Deformed mesh:  In-plane response of interface 
damage model. 
 

Figure 22. Comparison of in-plane Push-Over response: 3-D 
plastic and 2-D interface damage models. 

7 CONCLUSIONS 

The dynamic investigation of a five-story shear-
wall structure illustrates the performance and 
shortcomings of progressive damage simulations 
under increasing levels of excitation. Additional 
research is required to examine the interaction of 
elastic damage and plastic dissipation on hysteretic 
versus viscous material damping. 
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