
 

 

1 INTRODUCTION 

Considerable effort has been applied to develop 
robust numerical algorithms to describe tensile 
fracture in concrete and other quasibrittle materials. 

The elder approaches to the finite element 
modeling of fracture, the smeared crack and the 
discrete crack, have been in the past years 
successfully complemented by the application of 
the so-called strong discontinuity approach (SDA) 
(Simo et al. 1993) . In contrast to the smeared crack 
model, in the SDA the fracture zone is represented 
as a discontinuous displacement surface.  In 
contrast to the discrete crack approach, in the SDA 
the crack geometry is not restricted to inter-element 
lines, as the displacement jumps are embedded in 
the corresponding finite element displacement field.  

For a comparative study of the various 
approaches to the embedded crack concept 
proposed in the literature the reader is addressed to 
Jirásek (2000).   

Embedding discontinuous displacements in the 
element formulation is not the only way to 
implement the SDA in the finite element method. 
Recently the so called extended finite element 
method, based on nodal enrichment and the 
partition of unity concept, have opened a very 
fruitful way to the modeling of  fracture.  

However, extended finite elements require a 
greater implementation effort as compared to 
elements with embedded discontinuities. The 

advantages and disadvantages of both strategies 
can be found in Jirásek & Belytschko (2002) and in 
Wells (2001). 

The objective of this paper is to show how, by 
means of simple considerations, using finite 
elements with embedded cohesive crack still 
remains an efficient option to model concrete 
fracture.  

A consistent derivation of finite element with 
embedded  discontinuities can be done in the frame 
of the enhanced assumed strain method (EAS) 
proposed by Simo & Rifai (1990). The strain 
induced for the displacement jumps are then 
tackled as additional incompatible modes. A 
problem of this approach is that, as the additional 
modes are determined at the element level, the 
progress of the crack may lock because of  
kinematical incompatibility between the cracks in 
neighboring elements.    

One solution to avoid this problem is to use an 
algorithm to reestablish the geometric continuity of 
the crack line across the elements, a procedure 
known as crack tracking (Oliver et al. 2002). Most 
practical implementations use tracking to avoid 
crack locking. Moreover, some implementations 
further require establishing exclusion zones defined 
to avoid the formation of new cracks in the 
neighborhood of existing cracks.     

This kind of algorithms constitute an 
inconvenient to the implementation of the 
embedded crack elements in standard finite 
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element programs, and is therefore of the greater 
interest to develop a method that circumvents the 
need of the crack path enforcement.  

The SDA provides a consistent framework to 
transform a weak discontinuity in which the 
displacement is continuous but the strain is 
discontinuous at the boundaries of a band of a 
certain width h, into a strong discontinuity in which 
the displacement is discontinuous at a surface. 
Thus, the strong discontinuity (displacement jump) 
is obtained as the limit of a weak discontinuity 
band when the bandwidth h tends to zero. In this 
way the discrete constitutive model for the 
discontinuity naturally arises induced by the 
continuum model. This is an elegant and sound 
standpoint for the study of shear bands in soils and 
metals. However in the fracture of concrete, it is 
simpler and  more effective to use  a discrete 
constitutive model that relates the tractions and 
displacement jumps at the discontinuity line. This 
approach is used in the present work.  

2 A SIMPLE COHESIVE CRACK MODEL 

Previous works (Cendón et al. 2000, Gálvez et al. 
2002) showed that for most experiments described 
in the literature, cohesive crack growth takes place 
under predominantly local mode I, which implies 
that the overall behavior is dominated by mode I 
parameters. In consequence, in this work, a simple 
generalization of the cohesive crack to mixed mode 
is used which assumes that the traction vector t 
transmitted across the crack faces is parallel to 
crack displacement vector w (central forces model). 
It is further assumed that the cohesive crack 
unloads to the origin (Figure 1) and write the 
equation as: 

( ) wt
w
wf

~
~

=  with ( )wmax~ =w  (1) 

where ( )wf ~ is the classical softening function for 
pure opening mode, and w~  is an equivalent crack 
opening defined as the historical maximum of the 
norm of the crack displacement vector. 

3 FINITE ELEMENT MODELLING 

The basic aim of the modeling is to be able to 
describe concrete cracking in 2D. The crack is 
numerically implemented as a discontinuity 
embedded in a classical finite element. 
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Figure 1: Sketch of the softening curve for the cohesive crack 
model. 
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Figure 2: Finite element with a crack with uniform opening: (a) 
generic element with nodes and crack line; (b) displacement 
jump across the crack line. 

3.1 Finite element formulation 

Consider an arbitrary classical finite element 
defined by a node layout as shown in Figure 2a. 
Assume that a straight crack is embedded in it. 
Take one of the faces of the crack as the reference, 
the normal n to it as the positive normal. Let w be 
the displacement jump across the crack of the 
opposite side of the crack with respect to the 
reference side (see Figure 2b). The crack splits the 
element in two sub-domains A+ and A-. Following 
the strong discontinuity approach (e.g., Oliver 
1996), the approximated displacement field within 
the element can be written as: 

( ) ( ) ( ) ( )[ ]wxxuxxu +

∈
−+= ∑ NHN

Aα
αα  (2) 

where α is the element node index, Nα(x) the 
traditional shape function for node α, uα the 
corresponding nodal displacement, H(x) the 
Heaviside jump function across the crack plane 
[i.e., H(x)=0 for x∈A-, H(x)=1 for x∈A+], and 
N+(x)=Σ α∈A+ Nα(x).  

The strain tensor is obtained from the 
displacement field as a continuous part εεεεc plus a 
Dirac's δ function on the crack line. The continuous 
part, which determines the stress field on the 
element on both sides of the crack, is given by 

( ) ( ) ( )[ ]Sac wxbxεxε ⊗−= +  (3) 

where aε  and +b  are given by 
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with bα(x)=gradNα(x) and superscript S indicating 
symmetric part of a tensor. Obviously, ε ε ε εa is the 
apparent strain tensor of the element computed 
from the nodal displacements. 

3.2 Crack tractions 

Along the cohesive crack line, the jump vector w 
and the traction vector t are to be related by 
Equation 1. For the exact solution, the traction 
vector is computed locally as t=σσσσn. For the finite 
element, however, we must deal with approximate 
tractions and crack jump vectors, and there is not a 
single way to determine the relationship between 
the approximate stress field and the tractions. To 
simplify the reasoning, we approximate the traction 
field along the crack line by a constant traction t . 
The determination of t  is approximate, and can be 
done in two different ways: 1) as an average along 
the crack line of the local traction vector σσσσn, or (2) 
by forcing the global equilibrium of either A+ or A- 
(which is equivalent, in this case, to using the 
principle of virtual work). The corresponding 
equations read: 

∫=
L

dl
L

σnt 1  (6) 

∫ +=
A

dA
L

σbt 1  (7) 

in which the stress tensor is that corresponding to 
the classical FE approximation based on the 
continuous strain in Equation 3. In general, the two 
equations do not coincide, as shown next for 
constant strain triangles with an embedded crack. 

3.3 Constant strain triangle 

Consider a constant strain triangle with a strong 
discontinuity line (crack) such as shown in Figure 
3a, and select the positive normal pointing towards 
the solitary node. Then it is easy to show that 

++ = nb
h
1  (8) 

where h is the height of the triangle over the side 
opposite to the solitary node and n+ the unit normal 
to that side. With this, and the fact that the stresses 
are uniform, Equations 6 and 7 reduce to 

σnt =  for local equilibrium (9) 

+= σnt
hL
A  for global equilibrium (10) 

where A is the area of the element and L the length 
of the crack. This shows that for local and global 
equilibrium to hold, it is required that n+ = n and 
hL = A. This reduces to the following two 
conditions: (1) the discontinuity (crack) line must 
be parallel to one of the sides of the triangle, and 
(2) the discontinuity line must be located at mid 
height. Thus the potential crack lines satisfying 
both local and global equilibrium are those 
indicated by dashed lines in Figure 3b. 

In our approach the local equilibrium Equation 9 
is used in conjunction with the strain approximant 
Equation 3. This leads to a nonsymmetric 
formulation (SKON, according to the nomenclature 
in Jirásek 2000). If Equation 10 is used then a 
symmetric formulation is obtained (Jirásek's KOS 
formulations). Note, however, that both 
formulations tend to coincide when the crack runs 
parallel to one side of the element and at mid 
height (not through the centroid). 
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Figure 3: Constant stress triangle: (a) geometrical definitions; 
(b) potential crack path satisfying both local and global 
equilibrium (dashed lines) 

 

4 NUMERICAL IMPLEMENTATION 

The implementation assumes linear elastic 
behavior of the material outside the crack. The 
crack displacement vector w is handled as two 
internal degrees of freedom which are solved at the 
level of the crack within the element.    

4.1 Basic equations 

One of the main tasks of the implementation is to 
compute the stress tensor in the element, which 
follows an algorithm similar to plasticity, since the 
stress tensor is given, from Equation 3 and the 
hypothesis of elastic bulk material behavior, as 

( )[ ]Sa wbεEσ ⊗−= +  (11) 



 

 

where E is the tensor of elastic moduli. Before 
computing the result for the stress, the crack 
displacement must be solved for, which is done 
from Equation 9 and the cohesive crack Equation 1, 
which lead to the condition 

( ) [ ] ( )[ ]nwbεEnEεw
Saa

w
wf ⊗−−= +

~
~

 (12) 

This equation is solved for w using Newton-
Raphson's method  given the nodal displacements 
(and so aε ) once the crack is formed and thus n and 
b+ are also given. One of the key points in the 
proposed method is how the crack is introduced in 
the element, i.e., how n and b+ are determined. 

4.2 Crack initiation 

Initially, w = 0 in the element, and n and b+ are 
undefined. Thus, the element loads elastically and 

aEεσ =  until the maximum principal stress 
exceeds the tensile strength. Then a crack is 
introduced perpendicular to the direction of the 
maximum principal stress, and n is computed as a 
unit eigenvector of σσσσ.  
Next, the solitary node and the vector b+ are 
determined by requiring that the angle between n 
and b+ be the smallest possible (see Figure 3). This 
is equivalent to selecting the solitary node so that 
the side opposite to it be as parallel as possible to 
the crack. This procedure was devised based on the 
observation of Borja (2000) that the behavior of 
this type of element is best when the crack meets 
such condition, and also based on the analysis in 
the previous section showing that the local and 
global equilibrium are simultaneously met only 
when n is parallel to b+. 

4.3 Crack adaptation 

The foregoing procedure is done at the element 
level, and is strictly local: no crack continuity is 
enforced or crack exclusion zone defined. This 
leads in many circumstances to locking after a 
certain crack growth. Such locking seems to be due 
to a bad prediction of the cracking direction in the 
element ahead of the pre-existing crack, as 
sketched in Figure 4.  

To overcome this problem without introducing 
global algorithms (crack tracing and exclusion 
zones), we just introduce a certain amount of crack 
adaptability within each element. The rationale 
behind the method is that the estimation of the 
principal directions in a triangular element is 
specially bad at crack initiation due to the high 

stress gradients in the crack tip zone where the new 
cracked element is usually located; after the crack 
grows further, the estimation of the principal stress 
directions usually improves substantially. 
Therefore we allow the crack to adapt itself to the 
later variations in principal stress direction while its 
opening is small. 

 
Figure 4: Sketch of crack locking: the prediction of cracking 
direction in the shaded element is wrong. 
 

This crack adaptation is implemented very easily 
by stating that while the equivalent crack opening 
at any particular element w~  is less than a threshold 
value thw~ ,  the crack direction is recomputed at 
each step as if the crack were freshly created. After 
w~ > thw~ , no further adaptation is allowed and the 
crack direction becomes fixed. Threshold values 
must be related to the softening properties of the 
material, and values of the order of 0.1GF/ft are 
usually satisfactory. Here, GF is the fracture energy 
and ft the tensile strength.  

This simple expedient has proved to be 
extremely effective as shown in the examples 
presented next, and bears some resemblance with 
other approaches used to avoid crack locking. For 
example, Tano et al (1988) used a rotating crack 
model to avoid locking and Jirásek and 
Zimmermann (2001) in which a smeared rotating 
crack model was introduced at the beginning of 
cracking. In our approach the crack adaptation  is 
introduced to circumvent the numerical deficiency 
in predicting accurately the principal stress 
directions, and has not to be taken as a material 
property. 

5 NUMERICAL EXPERIMENTS 

5.1 Programs used 

The model described in the preceding section has 
been introduced in two finite element programs: 
FEAP and ABAQUS. 

In FEAP the model has been implemented as a 
user element subroutine (Taylor 2003). 
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Figure 5: Three point bending test. 

 
In ABAQUS, the model has been introduced as a 

user material model using the subroutine UMAT. 
An auxiliary external file containing the nodal 
coordinates and mesh element connectivity is also 
used.  This is necessary to compute the vector b+  
as explained in section 4.2. This file would not be 
needed if the model were implemented as a user 
element in a UEL subroutine. 

As a reference, the program Splitting-Lab, based 
on a highly accurate boundary integral approach 
(smeared tip method; see Bazant & Planas 1998), 
was used to compute the results for the bending 
beam. 

5.2 Experiments 

In this section the results obtained for two 
different bending tests are presented.  

In both examples a quasi-static analysis is 
performed. ,and an exponential softening curve is 
adopted, both for simplicity and due to a lack of 
direct experimental information. With this, the 
relationship between the normal and shear 
components of strain and crack opening are 
obtained from equation (1) as 


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where tn and tt are the normal and shear tractions, 
respectively, wn the crack opening displacement 
and wt the crack sliding displacement; GF is the 
fracture energy, ft the tensile strength and w~ is 
obtained as 

( )22max~
tn www +=  (15) 

5.2.1 Three point bending test 

The three point bending beam test was analyzed 
using different meshes. Two aspects are of interest: 

first to check  the ability of the proposed model to 
trace a straight vertical crack without crack 
tracking, even in an unstructured mesh;  second, to 
check whether or not the computations depend 
spuriously on the mesh size. 

The beam dimensions were: length = 2000 mm, 
thickness = 100 mm, and depth = 500 mm. A 
single notch 200 mm in depth and 5 mm in width is 
introduced as shown in Figure 5.  

The material parameters were taken to be as 
follows: tensile strength ft = 2.5 MPa, Young 
modulus  E= 20 GPa, Poisson’s ratio ν = 0.15 
fracture energy GF = 0.1 N/mm. 

The computations were run under control of the 
displacement at the upper midpoint. 

Three different meshes were used as shown in 
Figure 6: 

a. Fine, structured, 3664 elements 
b. Coarse, structured, 1110 elements 
c. Coarse unstructured, 1166 elements. 

As can bee seen in the figure, the external zones 
of the mesh have been kept the same, and the 
deformed meshes at the end of the loading (1 mm 
deflection) look quasi identical. Note that in the 
structured meshes one of the side of the elements 
cracked is parallel to the vertical crack, so the 
vectors n  and  b+ have the same direction, and thus 
the crack propagates perfectly vertical. 

 
a) 

 
b) 

 
c) 

 
Figure 6: Deformed meshes of: a) fine structured mesh; b) 
coarse structured mesh; c) coarse unstructured mesh. 

 



 

 

Figure 7 shows the load-displacement curves 
computed using the three meshes and a reference 
curve computed using the smeared tip 
superposition method. The agreement of all the 
curves is excellent: the coarse unstructured mesh 
slightly overestimates the peak load, and the coarse 
structured mesh strengthens the tail. The coarse 
unstructured mesh follows the tail with surprising 
accuracy. There is no trace of spurious mesh 
sensitivity. 

As shown in Figure 8, the result obtained with 
the unstructured mesh is an excellent proof of the 
ability of the proposed model to trace the correct 
direction of the crack across elements with the 
sides not aligned along the macroscopic crack 
direction even in a so coarse mesh. The crack is 
therefore able to propagate independently of the 
mesh alignment and again the predicted load-
displacement curve is essentially correct. 
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Figure 7: Numerical results for the TPB test with the three 
different meshes used. 

  
Figure 8: Crack path for the coarse unstructured mesh. 
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Figure 9: Single notched beam subjected to shear. 

5.2.2 Shear test beam 

The second test analyzed here corresponds to a 
single edge notched beam subjected to four-point 
shear as shown in Figure 9. 

A series of tests on this type of beam were 
reported by Schlangen (1993) and Schlangen & 
van Mier (1993). Various authors have used this 
beam as a benchmark for numerical models. It was 
observed experimentally that a crack appears at the 
right side of the notch propagating downwards to 
the right support in a curved pattern. 

An analysis of this test using embedded crack 
elements with enforced crack path continuity can 
be found in Alfaiate et al. (2002). For simulations 
using the partition of unity formulation, the reader 
is addressed to  the work of Wells (2001). 

Similar analyses were performed by Rots (1988) 
using the smeared crack approach which put into 
evidence the difficulties in  correctly  representing 
the curved geometry of the crack. 

The material properties adopted in our 
simulation were based on the values used by other 
authors (e.g., Alfaiate et al. 2002): Young modulus 
E = 35 GPa, Poisson’s ratio ν = 0.15, tensile 
strength ft = 2.8 MPa, and fracture energy GF = 
0.1 N/mm. 

An indirect displacement control procedure was 
used and the crack mouth opening and sliding 
displacements (CMOD, and CMSD respectively) 
were recorded.  

The results for a coarse mesh with 461 elements, 
as shown in Figure 10, are presented.  

 
Figure 10: Deformed mesh for the single notched beam 
subjected to four-point shear. 

 
Figure 11: Crack path for the single notched beam subjected to 
shear. 

 



 

 

As shown in Figure 11, the model is able to 
reproduce the curved character of the crack in 
excellent agreement with the experimental results.  

Figure 12 shows the load versus CMOD and 
CMSD compared with the quantities measured by 
Schlangen. No locking occurs, and the peak load 
and initial part of the curve are correctly predicted 
by the model. The prediction of the tail could be 
improved by selecting a softening curve with a 
steeper initial descent and a stronger tail. 

6 CONCLUSIONS 

In this paper embedded strong discontinuities are 
used to model concrete fracture. The strong 
discontinuity is not approximated as the limit case 
of a weak discontinuity. Instead, the deformation is 
localized on a line using the concept of the 
cohesive crack. A discrete constitutive relation is 
adopted by means of a generalization of the 
cohesive crack to mixed mode. 
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Figure 12: Numerical results for Schlangen’s test; a) Load 
versus CMOD; b) Load versus CMSD. 

 

A triangular constant strain finite element is 
formulated and implemented in standard codes. 
The algorithm used to obtain the crack 
displacement vector can be formulated at the crack 
level and therefore the static condensation of the 
stiffness matrix at the element level is avoided. The 
choice of the solitary node is done in a way that 
leads to the automatic propagation of the crack 
without tracking algorithm or exclusion zones. The 
stress locking effects are solved by letting the 
embedded crack in the finite element to adapt itself 
to the stress field while the crack opening does not 
exceed a small threshold value.  

Finally numerical simulations of relevant tests 
are presented showing that the embedded crack 
approach is yet an effective and simpler alternative 
to other more sophisticated methods for the 
simulation of the concrete fracture.       
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