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1 INTRODUCTION 

Realistic failure characterisation, in terms of 
damage initiation and propagation, is a 
fundamental property of any sound model. A 
wrong prediction of the correct location or moment 
of initiation may lead to a misrepresentation of the 
failure mode and therefore of the failure load. 
Failure propagation is as important as failure 
initiation and, in a continuous failure 
representation, gives an indication of the failure 
mechanism. Aim of this contribution is to show 
that the choice of a non-local quantity as damage-
driving quantity produces non-physical damage 
initiation away from the crack tip in mode I 
problems and a wrong failure pattern in shear band 
problems. In contrast, when a viscous 
regularisation is considered, realistic failure 
characterisations can be obtained.  

2 REGULARISED MEDIA 

Non-local and viscous regularisations were 
employed in this study. The reader is referred to 
Pijaudier-Cabot & Bažant (1987) for details on the 
non-local model and to Simone & Sluys (2003) for 

details on the viscous model. Next, a brief 
description of the employed regularisations is 
given. 
In the non-local damage model considered here, 
damage initiation is driven by a non-local scalar 
measure e of the strain tensor defined as  
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where ψ  is a homogeneous and isotropic weight 
function for the non-local averaging. The 
normalised Gaussian function 
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where l sets how ψ  decays away from 0ρ =  and 
ρ is defined as the distance between the points y 
and x, is usually taken as the weight function in 
integral non-local models. An approximated 
differential version of this non-local model 
(implicit gradient-enhanced damage model) has 
been proposed by Peerlings et al. (1996). 
The viscous regularisation is provided by a rate-
dependent elastoplastic-damage model which is 
based  on the Perzyna viscoplastic  model (Perzyna  
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Figure 1. Compact tension specimen: (a) geometry and 
boundary conditions and (b) local ( ) and non-local (e e ) 
equivalent strain field along the crack line ab . 
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Figure 2. Linear elastic crack problem in an infinite domain. 
 
1966) formulated in an effective stress space (Ju 
1989). The basic relation reads  

(1 )ω= −σ σ , (3) 

where the plastically induced damage ω ( 0 1ω≤ ≤ ) 
is updated through 

( )1 e βκω α −= −  (4) 

with α  and β  parameters influencing the 
asymptotic value of damage and the slope of the 
damage evolution law, respectively, and κ  the 
equivalent plastic strain in the effective space for 
the elastoplastic problem. In the presence of plastic 
flow, the viscoplastic strain rate for the Perzyna 
model is expressed in the associative form 
according to 

vp 1φ
τ

= σε f , (5) 

where τ  is the relaxation time, /f= ∂ ∂σ σf  with 
f  the yield function in the effective stress space 

and σ  the effective stress tensor, and the 
overstress function φ  is given by the following 
power-law form 
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with 0σ  the initial yield stress and N ( ) a real 
number. The softening rule governing the cohesion 
capacity of the material is given in an exponential 
form according to  
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with a and b model parameters. 

3 MODE I PROBLEMS 

Experimental analyses of failure initiation in quasi-
brittle materials indicate that, in notched specimen, 
cracks initiate at the notch (van Mier 1997). 
Numerical investigation of crack initiation has 
been conducted by analysing the compact tension 
specimen with a pre-existing crack of length h 
depicted in Figure 1a. The outcome of the 
numerical analyses showed that the elastic contour 
plots of the non-local damage-driving quantity e is 
maximum at some distance from the crack tip, as 
qualitatively depicted in Figure 1b, and not at the 
crack tip. As a consequence, damage initiation is 
predicted inside the specimen, rather than at the 
crack tip. 
Note that the crack is discretised as a set of zero 
measure in this example and, as such, along line 
ab , it does not influence the integral in the 
denominator in (1)−the denominator in (1) is the 
normalising factor in the non-local averaging near 
free boundaries. In other words, for all points along 
line ab  that are reasonably far from the edges of 
the specimen, the denominator of (1) yields the 
same value, therefore the shift of maximum from 

 to  is not the result of a varying averaging 
volume. The shift of the maximum of the non-local 
equivalent strain e  from the crack tip is a 
phenomenon which is independent of the stress 
situation (plane stress/plane strain) and of the 

le e



choice of the local equivalent strain definition. 
Indeed, this phenomenon can be explained by 
considering that non-local averaging of the 
unsymmetrical local strain field  is performed 
through a symmetric function 

le
ψ . Next, an 

analytical consideration is presented. 
For a planar crack in an infinite plate loaded in 
mode I, such as the one depicted in Figure 2, the 
linear elastic stress field is singular at the crack tip. 
Under the assumption of a plane stress situation, 
and after some analytical manipulations, the local 
von Mises equivalent strain 

2
1 3

1le
ν

= −
+

J , (8) 

where 2J  is the invariant of the strain tensor, reads 
(Peerlings 1999; Simone et al. 2003) 
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where E is the Young’s modulus, ν  is the 
Poisson’s ratio and IK  is the mode I stress 
intensity factor. Following Peerlings et al.(2001), it 
can be demonstrated that the non-local equivalent 
strain (1) has a finite value at the crack tip. 
However, this value is not the maximum, as it will 
be demonstrated next.  
The search for larger values of the non-local 
equivalent strain is restricted to the points along the 
crack line ab  (see Figure 1b). A point p is 
considered along line ab  whereby R denotes the 
distance from the crack tip to p. The weight 
function in (2) is written for a point p as 
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and with this expression the non-local equivalent 
strain at a distance R from the crack tip along the 
crack line reads 
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for which a closed form solution could not be 
obtained. Numerical evaluation of the integral in 
(11), for a given R, indicates that the maximum of 
the non-local equivalent strain is not positioned at 
the crack tip  (see Figure 3). Only for mm,  i.e.  0l =
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Figure 3. Non-local equivalent strain at distance R from the tip 
for 1l =  mm and unit values of E and IK . 
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Figure 4. Contour plot of the non-local equivalent strain for the 
differential non-local damage model at the onset of damage 
initiation, i.e. in the elastic stage (measures in mm; crack tip at 

0.5x =  mm). 
 
for a local damage model, the non-local equivalent 
strain in (1) is maximum at the crack tip. These 
results extend to a finite specimen width if the 
effect of a finite geometry is reflected in the stress 
intensity factor IK . In general, the use of non-local 
averaging of field quantities with isotropic weight 
functions results in a modification of failure 
characterisation. In the class of non-local elasticity 
models proposed by Eringen et al. (1977), the 
stress field value at the crack tip is finite but, 
similar to the non-local damage model considered 
here, its maximum occurs at some distance from 
the crack tip along the crack line. 
The compact tension specimen depicted in Figure 
1a has been numerically analysed by using a 
differential non-local damage model with the 
finite-element method. In the numerical 
simulations only the upper part of the specimen has 
been discretised due  to symmetry, and the load has  
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Figure 5. Contour plot of the damage field for the differential 
non-local damage model close to failure (measures in mm; crack 
tip at  mm). 0.5x =
 

P, v

 
 
Figure 6. Geometry and boundary conditions for the specimen in 
biaxial compression; the shaded part indicates the imperfection 
(specimen size is h ; imperfection size is h× /10 / 20h h× ; 

 mm). 60h =
 
been applied via an imposed displacement. The 
following have been adopted for the simulation: 
Young's modulus E=1000 MPa; Poisson's ratio 

0ν = ; exponential damage evolution law  

( )0( )0
01 1 e  if β κ κκω α α κ κ

κ
− −= − − + > , (12) 

where  is a history parameter related to the non-
local equivalent strain, with the threshold of 
damage initiation 

κ

0 0.0003κ =  and softening 
parameters 0.99α =  and 1000β = , length scale 

 mm and the equivalent strain definition 
according to Mazars (1984): 
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with ( ) / 2i i iε ε ε= +  and iε  the principal strains. 
The height of the specimen has been taken as 4h = 
2 mm. The mesh used for the simulations has been 
chosen such that a sufficient resolution of the non-
local field is obtained. More details on the finite-
element implementation of the differential non-
local model can be found in Peerlings et al. (1996). 
The non-local equivalent strain at the onset of 
damage initiation is reported in Figure 4. Clearly, 
the maximum of the non-local equivalent strain has 
shifted. Due to the shifting, damage is expected to 
initiate, wrongly, away from the crack tip. 
However, as depicted in Figure 5, the damage 
contour plot close to global failure of the specimen 
gives no indication of the incorrect damage 
initiation. Experience with the differential version 
of the non-local damage model indicates that this is 
a common situation in mode I problems and that 
failure characterisation close to failure is quite 
similar to the ones obtained with other constitutive 
models. Consequently, the shift of the maximum of 
the non-local equivalent strain away from the crack 
tip can be considered `harmless' as long as the final 
failure characterisation is concerned. However, it 
must be realised that the use of a non-local 
dissipation-driving variable leads to a non-physical 
damage initiation. The shift of the maximum of the 
non-local equivalent strain away from the crack tip 
is present, although less evident, also in case of 
cracks or notches modelled as strongly non-convex 
entities with non-zero volume, i.e. when there are 
no strain singularities. Similar analyses were 
performed with a rate-dependent elastoplastic-
damage model and damage initiation was correctly 
predicted at the crack tip. 

4 SHEAR BAND PROBLEMS 

The correct determination of shear bands is of 
prime interest and it is directly linked to the 
occurrence of possible collapse mechanisms in 
many engineering problems. Specimens under 
compressive loading are usually characterised by 
the formation of shear bands whose inclination can 
be determined analytically. Results obtained within 
the flow theory of plasticity (Runesson et al. 1991) 
have been extended to scalar damage models by 
Rizzi et al. (1995) and Carol & Willam (1997) and 
apply to an infinite geometry for a standard (i.e. not 
regularised) medium. Their results have been 
derived for a specific choice of the equivalent 
strain definition and their generalisation to other 
equivalent  strain  definitions, although possible  in 
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Figure 7. Shear band evolution: contour plots of the non-local 
equivalent strain field.  
 
principle, is not within the scope of this study and 
is therefore not considered here. In what follows, it 
is illustrated how non-local regularisation 
techniques significantly alter failure propagation 
during strain localisation.  
To illustrate the problem, shear band simulations 
under a plane stress and a plane strain 
configuration have been performed with the 
gradient-enhanced continuum damage model 
proposed by Peerlings et al. (1996) for the two-
dimensional specimen depicted in Figure 6. In 
numerical simulations of quasi-static shear band 
formation under compressive loading, shear bands 
are usually triggered by an imperfection 
(positioned at the left bottom corner of the 
specimen in Figure 6). After the shear band has 
been initiated, expansion of the plastic zone and 
further localisation within the plastic zone is 
observed (Zervos et al. 2001). Shear bands are 
characterised by their stationary nature in the sense 
that their position is more or less fixed after their 
formation (see Nemat-Nasser & Okada (2001) and 
references herein for experimental shear bands and 
Tvergaard et al. (1981), Ortiz et al. (1987), Sluys 
(1992), Garaizar & Trangenstein (1998), Zervos et 
al. (2001), Borja (2000) and Wells at al. (2002) for 
numerical results). The inclination angle that the 
shear band forms with the horizontal axis is 
determined mainly by assumptions related to the 
constitutive model, to the Poisson's ratio and to the 
plane stress or plane strain condition (Runesson et 
al.  1991;  Sluys  1992;  Rizzi  et  al. 1995; Carol &  
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Figure 8. Shear band evolution: contour plots of the damage 
evolution. 
 
Willam 1997) while the width of the shear band is 
dictated by the length scale (i.e. the larger the 
length scale, the wider the band width).  
In the numerical analyses, the material has been 
given the Young's modulus E = 20000 MPa, the 
Poisson's ratio ν  = 0.2, the exponential softening 
law (12) with 0 0.0001κ = , 0.99α =  and 300β =  
and the von Mises equivalent strain (8). The load 
has been applied via displacement control. The 
imperfection has been given a reduced value of 0κ  
( 0 0.00005κ = ) and the mesh density has been 
chosen to ensure a sufficient resolution of the non-
local field. To begin with, the evolution of the 
shear band, in terms of non-local equivalent strain 
and damage fields has been analysed for the 
specimen in Figure 6 with a length scale  mm 
under a plane strain condition. Results are depicted 
in Figures 7 and 8. In the contour plots in Figures 7 
and 8, only values larger than the threshold in the 
respective legends have been plotted. It is clear that 
the shear band “migrates” from the weak spot, 
where it was initiated, to the opposite side of the 
specimen along the horizontal boundary. Similar 
results are reported by Engelen et al. (2003) and 
Pamin et al. (2003). This failure mode is due to a 
wrong prediction of the positioning of localised 
shearing and has the same nature of the shift of the 
maximum of the non-local equivalent strain in 
mode I problems. The effect of a larger length scale 
is reported in Figure 9 together with a comparison 
between  plane  stress and  plane  strain  conditions  

2l =
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Figure 9. Shear band close to failure: contour plots of the 
damage field for  mm (left) and  mm (right) for plane 
stress (top) and plane strain (bottom). 

1l = 2l =

 
close to failure. Similar to shear bands in a 
plasticity context (Runesson et al. 1991) and as 
reported by Carol & Willam (1997), the only 
noticeable difference between plane stress and 
plane strain resides in a different inclination of the 
shear band with respect to the horizontal axis 
which does not correspond to the numerical results 
in Figure 9 where the shear band has moved from 
the left hand side to the right end side with the shift 
being more pronounced in the plane stress 
situation. Further, with an increasing non-local 
effect a wider shear band width is expected, while 
it is also noted that a more pronounced shift (to the 
right hand side of the specimen) of the shear band 
takes place.  
The shear band problem was also analysed with a 
rate-dependent elastoplastic-damage model. The 
simulations were performed with a von Mises plane 
stress rate-dependent damage-elastoplasticity 
model for two values of the relaxation time τ  in 
(5). Other model parameters are: Young's modulus 

 MPa, Poisson's ratio 20000E = 0.2ν = , 1N = in 
(6), softening parameters  and  in (7) 
and 

1a = − 200b =
0.99α =  300β =  in (4) and yield stress equal 

to 2 MPa with a reduction of 10% in the weak 
region. The total displacement was applied at 
constant displacement rate (for 4τ =  s the final 
displacement (0.08 mm) was applied in 160 equal 
steps with  mm while for 0.0005v∆ = 8τ =  s the 
final  displacement (0.2  mm)   was  applied in  400   
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Figure 10. Shear band evolution: contour plots of the damage 
field with the rate-dependent elastoplastic-damage model for 

4τ =  s (top) and 8τ =  s (bottom) at the beginning of the 
localisation process (left) and close to failure (right). 
 
equal steps with 0.0005v∆ =  mm). Results are 
reported in Figure 10. The shear band evolves 
correctly, is stationary and its width is set by the 
relaxation time. The  slight  shift  of  the  shear  
band  is  due to  the rectangular geometry of the 
imperfection and is not influenced by the relaxation 
time (see Section 3). 

5 CONCLUDING REMARKS 

When non-local averaging is considered as a 
regularisation technique, the use of a non-local 
variable as degradation-driving variable induces 
incorrect failure initiation in mode I problems and 
incorrect failure propagation in shear band 
problems. Although the shift of the maximum of 
the dissipation-driving variable may not alter the 
final failure representation in mode I dominated 
problems, it does affect the transition from 
continuous to continuous-discontinuous failure in a 
gradient-enhanced damage model as discussed in 
Simone et al. (2003). The numerical study of a 
shear band problem illustrated that the non-local 
averaging is responsible for a non-stationary−like 
shear band which results in an unrealistic failure 
pattern. This has been studied for various length 
scale values under plane stress and plane strain 
conditions. The shear band problem was also 
analysed with a rate-dependent elastoplastic-
damage model which gave correct results. To 



summarise, constitutive models based on a non-
local dissipation-driving variable may lead to 
incorrect failure initiation and propagation in 
arbitrary loading scenarios due to a fundamental 
flaw in damage characterisation. Their use is 
acceptable with some reserve only in mode I 
problems. These findings are not limited to damage 
mechanics but extend easily to other dissipation 
mechanisms, e.g. plasticity (Engelen et al. 2003; 
Pamin et al. 2003), if a similar form of 
regularisation is employed. 
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