
1 INTRODUCTION 

Concrete normally contains early-age micro-
cracks due to thermal expansion and restrained 
shrinkage. Under certain loading condition, these 
micro-cracks may localize to a major macro crack 
and may result in failure of concrete. The softening 
behavior of concrete can be characterized as load 
resistant capacity after peak and localized strain. A 
numerical application of the strain softening makes 
loss of ellipticity of governing equation and 
boundary value problem becomes ill-posed. 
Consequently, a numerical drawback such as mesh 
sensitivity is appeared in the finite element 
analysis. Recently, various models have been 
proposed to solve these problems. As a model for 
progressive fracture analysis of concrete using 
finite element method, the so-called embedded 
crack model that introduces the internal 
discontinuity surface in an element is introduced by 
Wan et al. (1990). In strain localization problem, 
Oliver (2000) proposed discontinuity model that 
presumes fracture of concrete as phenomenon of 
discontinuity. 

Multi-axial compressive fracture of concrete 
shows more complicated behavior than tensional 
failure behavior due to confining effect. In case of 
biaxial and triaxial compressive loading condition, 
the failure behavior of concrete is different from 
that of uniaxial and it shows more complex 
behavior (van Mier, 1984). Generally, it is known 
that the compressive failure behavior can be 
characterized by inclined shear-band crack fracture 
under uniaxial, biaxial and triaxial compression. 

In this study, the so-called homogenized crack 
model is proposed for the finite element analysis of 
concrete fracture. Three-dimensional finite element 
analysis program has been developed for the 
analysis using the models which adopt softening 
type constitutive laws. Numerical results show that 
the mesh sensitivity problem can be overcome by 
using the model, and concrete fracture behavior 
under various load condition can be simulated 
comparably well with developed program. 
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ABSTRACT: Since quasi-brittle materials like concrete show strain localization behavior accompanied by 
strain softening, a numerical drawback such as mesh sensitivity is appeared in the finite element analysis. 
In this study, the so-called homogenized crack model is introduced for three dimensional finite element 
analysis of fracture in concrete both under tension and under multi-axial compression. A homogenization 
technique for a homogenized crack element having a velocity discontinuity is employed to remove the 
mesh sensitivity in finite element analysis of concrete fracture. A conventional elasto-plastic algorithm 
with an exponential softening rule in which the thickness of the crack is implicitly retained is applied for 
the constitutive model of tensile fracture and a Drucker-Prager type model with an exponential type of 
softening parameter is also applied for the constitutive model for compressive fracture of concrete under 
low confining pressure. Numerical examples show that softening behavior of concrete fracture is 
successfully predicted without mesh sensitivity using the homogenized crack model. 
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2 FAILURE BEHAVIORS OF CONCRETE 

2.1 Uniaxial Compressive Strain Softening 
Behavior 

Based on experimental observations for uniaxial 
compressive concrete fracture, the softening stress-
strain relationship may be depicted as in Figure 1.  
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Figure 1. Stress-strain relationship under uniaxial compression. 

In the post peak regime, strain distribution is not 
continuous and it is not easy to capture strain 
distribution exactly for the analysis of concrete 
fracture. Generally, the softening part of stress-
strain curve shows structural properties due to the 
dependency of size of specimens rather than 
material property. From the results of compression 
test for the specimens of different heights (van 
Mier, 1984), the softening part of stress-strain 
curve shows size effect (Fig. 2a). But, the stress-
displacement curve shows unique softening curve 
regardless of the specimen size (Fig. 2b). 

2.2 Biaxial Failure Behavior 

The failure behavior of concrete under confined 
stresses shows different behavior from that under 
uniaxial compressive behavior. Fig. 3a shows a 
typical stress-strain relationship for concrete 
subjected to biaxial loading (Kupfer et al. 1969). 
Due to confining effect, axial and lateral strains at 
maximum or ultimate point increase with the 
increment of confining pressure and concrete under 
compressive loading with confining pressure shows 
more ductile behavior before crushing.  

Fig. 3b shows the volume dilatation behavior. 
When unstable crack propagation begins, 
volumetric strain increases due to considerable 
growth of micro cracks in mortar. 
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(a) Stress-strain curve 
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 (b) Stress-displacement curve 
Figure 2. Influence of slenderness of concrete specimens (van 
Mier, 1984). 
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 (b) stress versus volumetric strain 

Figure 3. Stress-strain response for concrete subjected to biaxial 
loading (Kupfer et al. 1969). 



2.3 Tensile Localized Failure Behavior 

Stress-strain curve of concrete under uniaxial 
tensile loading shows similar softening behavior as 
for the compressive stress-strain relationship. 
Strain localization also occurs for tensile behavior.  

Softening (B region in Fig. 4) is shown in the 
localization region and unloading is shown at the 
other regions (A region in Fig. 4). The stress versus 
crack opening displacement relationship can be 
more adequate to represent the characteristics of 
concrete under tension than the stress versus strain 
relationship. 
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Figure 4. stress versus strain relationship under uniaxial tensile 
load. 

3 HOMOGENIZED CRACK MODEL AND 
ANALYTICAL IMPLEMENTATION 

3.1 Homogenized Crack Model 

In this section, the so-called homogenized crack 
model is discussed in the frame of three-
dimensional finite element formulation. A 
regularization technique for a continuum having 
velocity discontinuity is applied as a crack smeared 
into concrete. 

Stress rate and strain rate of concrete and of 
crack within a representative elementary volume 
(REV) (Fig. 5) are denoted by iσ& , iε&  and jσ& , jε& , 
respectively, and following mixture rule can be 
established: 
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where, µi and µj are the volume fraction of concrete 
and crack, which satisfy Equation (2). The 
thickness of the crack in the REV is denoted by t in 
Fig. 5. 
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Figure 5. Representative elementary volume. 

The equilibrium equations as well as 
compatibility conditions in the interface between 
concrete and crack surface can be established by 
assuming that the crack has finite material 
properties such as normal and shear stiffnesses. In 
local coordinate system, these equations are as 
follows: 
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It is noted that these relationships are similar to 
those introduced in the modified Voigt-Reuss 
model (Yamaguchi & Chen, 1990). The thickness 
of a crack inside concrete is negligibly small 
compared to the size of the finite element and the 
following velocity discontinuities in the normal 
and shear direction of the crack can be introduced: 

T},,{ zxy ggg &&&& =g  (5) 

Then, a constitutive equation for the crack is 
denoted by: 

g&& ][][ Kj =σδ  (6) 

where, [δ] is a 3×6 matrix and [K] is the crack 
stiffness matrix defined as follows: 
















=

010000
001000
000010

][δ















=

333231

232221

131211

][
KKK
KKK
KKK

K (7) 

Meanwhile, constitutive equation of the concrete 
can be modeled with a constitutive matrix [D] as: 

ii D εσ && ][=  (8) 

By assuming the crack thickness t ≪ H and 
jt ε&& ][: δ=g , Equation 1b becomes 

g&&& µδδ +≈ iεε ][][  (9) 



where, µ=t/H in Figure 5. It should be noted that this 
assumption is different from the formulation of strong 
discontinuity (Wells & Sluys, 2001), where the width 
of the localization band tends to zero. In this case, the 
homogenization technique with two different 
components is introduced. Equations 3, 6 and 8 can be 
rearranged as follows for an equation for the strain 
rate of concrete: 

g&&& ][][][ BAi += εεδ  (10) 

where,  
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and,  
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Using Equations 9 and 10, we obtain 
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where 
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Thus, constitutive equation for the crack can be 
obtained from Equations 9 and 16, i.e. 
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where, 
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Finally, an averaged constitutive equation of the 
concrete having a crack inside can be derived from 
Equations 1, 8 and 16 as,  

εσ && ][ eqD= , ][][][ 1SDDeq =  (20) 

3.2 Initiation and Propagation of Crack 

Assuming that crack occurs when determinant of 
acoustic tensor becomes zero initiation and 
propagation of crack be satisfied the bifurcation 
condition as below: 
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Where, directional vectors n and m, expressed as 
fourth order polynomial equation in two-
dimension, determine the shape of localization. In 
case of three-dimension, the solution can be 
determined using the Lagrangian equation (Leroy 
& Ortiz, 1989). In order to determine initiation and 
direction of crack in concrete using Equation 21, a 
calculation using spherical coordination as shown 
in Figure 6 is used with Equation 22 as, 
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First approximated minimum value can be 
determined through iterative calculations per each 
incremental angle. 
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 Figure 6. Spherical coordination. 



For compressive failure analysis of concrete, 
yield criterion for compressive softening behavior 
is represented with two parameters, α and κ, in the 
Drucker-Prager model (Fig. 7) as below: 

021 =−+= )ε,σκ(JαIF p  (23) 

where I1 and J2 represents first invariant of stress 
and second invariant of deviatoric stress, 
respectively, and α is a constant and the 

)ε,σκ( p expressed by effective stress, σ and 
effective plastic strain, pε . 
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Figure 7. Failure criteria of Drucker-Prager. 

In this study, a exponential type softening rule for 
isotropic softening is used as in Equation 24: 

rpεσβp eκεσκ
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where κ0 is initial softening constant, β and γ are 
the constants of material properties.  

For the case of tensile fracture, a crack occurs 
perpendicular to the direction of principal stress 
when principal stress σ1 exceeds tensile strength ft, 
another softening rule as in Equation 25 is used: 
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where κ, η and λ are material properties and p
yg&  

the amount of accumulated velocity discontinuity 
at crack surface. Once crack occurrence is 
perceived, the constitutive equation (Equation 20) 
is introduced at the element level. During this 
process, the crack stiffness in Equation 7 is updated 
according to the evolution law without considering 
interaction between normal stiffness and shear 
stiffness of crack surface, i.e.; 
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where, KN
ep is modified normal stiffness and Ks1

ep 
and Ks2

ep are modified shear stiffness. Once the 
crack is perceived at Gauss points of element level, 
the proposed homogenized crack element is 
substituted and the elastic prediction and plastic 
correction algorithm is introduced for the 
integration of the constitutive equation. Three 
dimensional solid elements with 20 nodal points 
are used for finite element discretization. 

4 NUMERICAL ANALYSIS 

4.1 Uniaxial Compressive Failure 

For the verification of proposed model, a 
numerical analysis is carried out and compared 
with the experimental data (van Mier et al. 1997). 
A 10×10×20cm rectangular concrete specimen is 
discretized with 875 nodes and 144 elements as in 
Figure 8.  

 
Figure 8. Modeling of concrete specimen. 

The bifurcation analysis result shows that the 
direction of crack surface inclines about 27 degrees 
to the direction of compressive stress, which shows 
that shear failure occurs in concrete, as shown in 
Figure 9. 
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Figure 9. Determination of crack surface direction. 

The result also shows that compressive strength 
and softening behavior is comparably well 
simulated with experimental result (Fig. 10). In the 
analysis, compressive strength of normal concrete, 
210kgf/cm2, is used and normal stiffness and shear 



stiffness of crack surface, 260,000kg/cm2/cm and 
93,000kg/cm2/cm are used, respectively. Localized 
deformation during the fracture of the concrete 
specimen is captured as shown in Figure 11. The 
mesh objectivity using the proposed model for 
different mesh designs is obtained as Figure 12. 
Since the stiffness of crack surface and velocity 
discontinuity in the homogenized crack model 
proposed in this study play a role as a characteristic 
length, the mesh sensitivity problem can be solved. 
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Figure 10. Stress-strain curve. 

 
Figure 11. Shape of localized deformation during fracture. 
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Figure 12. Stress-displacement curve according to different 
mesh designs. 

4.2 Multi-axial compressive failure 

Multi-axial compressive failure analysis is also 
carried out for concrete specimen subjected to 
different confinement as shown in Figure 13. The 
proposed model can simulated softening behavior 
during the failure. 
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Figure 13. Multi-axial loading conditions. 

Figure 14 shows the result of numerical analysis 
illustrated on the biaxial principal plane along with 
the experimental result of Kupfer et al. (1969) for 
comparison. The comparison shows that 
homogenized crack model can simulate the 
confinement effect. However, there is a little 
discrepancy between analytical result and 
experimental result due to different specimen sizes 
used in analysis and experiment, and no applied 
hardening rule in the analysis. 
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Figure 14. Normalized biaxial stress. 

Strain variations in each direction and 
volumetric strain under different biaxial confining 
pressures are illustrated in Figure 15 and Figure 16, 
respectively. Figure 15 shows the confining effect 



of concrete under biaxial compression and Figure 
16 shows that the volume change decreases with 
the increase of confining pressure and it increases 
after peak strength. 
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Figure 15. Normalized axial stress vs Strain. 
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Figure 16. Volume strain relationship. 

For the case of triaxial stresses, the increase of 
compressive strength due to the confinement can be 
simulated as shown in Figure 17. It is shown that 
more confinement effecet for triaxial state is 
obtained than for the biaxial stresses. 
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Figure 17. Tri-axial stress state. 

4.3 Uniaxial Tensile Failure 

Tensile failure analysis using the homogenized 
crack model is carried out for a plain concrete 
specimen with double notches (Figure 18) and the 
result is compared with an experimental data 
(Gopalaratnam & Shah 1985).  
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Figure 18. Model specimen with double notches. 

As shown in Figure 19, the axial stress-axial 
deformation shows softening behavior with a small 
discrepancy in peak strength.  
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Figure 19. Axial stress-displacement relationship. 

The mesh objectivity obtained using the 
proposed model is shown in Figure 20.  
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Figure 20. Stress-displacement relationship for different mesh 
designs. 



5 CONCLUSIONS 

Since concrete show strain localization behavior 
accompanied by strain softening, a pathological 
phenomenon such as mesh sensitivity is appeared 
in the numerical analysis. In this study, the so-
called homogenized crack model, which considers 
velocity discontinuity in a constitutive equation, is 
proposed for a cracking and its propagation in 
strain softening regime of concrete. A constitutive 
equation for the proposed crack model is derived in 
the general three-dimensional space and finite 
element analysis is carried out for fracture analysis 
of concrete subjected to various loading conditions. 
Results from the numerical analysis are compared 
with experimental data. The comparison shows that 
the mesh sensitivity in the analysis is successfully 
overcome and failure behaviors of concrete are 
well simulated. 
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