
1 INTRODUCTION 

The application of discrete or smeared crack 
models in numerical analyses of concrete structures 
requires the usage of the appropriate fracture 
mechanics material parameters, as are the tensile 
strength, the fracture energy and the shape of the 
strain softening curve. Following the discrete crack 
approach, the softening curve describes the strength 
degradation as a function of the local crack 
opening. While the fracture energy may be easily 
obtained from fracture mechanics experiments by 
measuring the total work done by the test loads and 
dividing it by the ligament area, the determination 
of tensile strength and softening curve appears to 
be technically difficult.  

In uniaxial tension tests, tensile strength and 
softening parameters may be determined directly 
on the basis of the experimental results. However, 
these tests are expensive and time consuming. The 
problem of strain gradients in the ligament due to 
non-uniform cracking causes additional problems. 
Therefore, uniaxial tension tests are not an 
appropriate method for practical materials testing 
and may be performed for research purposes in 
specialized laboratories only. 

Wedge splitting tests (Brühwiler & Wittmann 
1990) and under certain conditions bending tests 
(RILEM 1985) have proved to be suitable technical 
means for determining the fracture energy of 
concrete. Especially the wedge splitting test is a 
very efficient and reliable experimental method. It 
is characterized by a relatively large ligament 
length to concrete volume ratio and a comparably 
small influence of the specimen self weight on the 
test results. In Figure 1 the experimental setup is 
shown. Wedges are pressed between roller bearings 
imposing a splitting force on the notched specimen. 
The crack mouth opening displacement in the 
loading line and the applied vertical load are 
measured. The latter allows to calculate the applied 
splitting force for the given wedge angle. Usually, 
the test is run under crack mouth opening control.  

On the basis of the experimental results from 
wedge splitting or bending tests, only the fracture 
energy may be determined in a direct way. Tensile 
strength and softening parameters need to be 
obtained by backward analyses (Roelfstra & 
Wittmann 1986). In these analyses, finite element 
simulations of the experiments are undertaken by 
using the discrete or smeared crack approach of 
non-linear fracture mechanics. In the beginning, a 
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softening curve is assumed and the load-
displacement curve obtained by the numerical 
simulation is compared to the one determined 
experimentally in a fracture test. Subsequently, the 
numerical results are fitted to the experimental ones 
by updating the assumed softening curve and re-
analyzing in several iterations. When the best fit of 
the numerical and the experimental results is 
obtained, the assumed softening curve is 
considered to be the one characterizing the 
behavior of the material investigated in this 
particular test. 

The iterative fitting process described above may 
be undertaken manually. This kind of fitting is 
certainly more work intensive than using an 
automatic algorithm. Nevertheless, using 
appropriate software tools, even in this way an 
acceptable result for one individual experiment 
may be obtained within a few minutes. It can be 
shown that from the mathematical point of view 
several possible solutions for the softening curve 
exist. However, on the basis of experimental 
observations made in direct tension tests and by 
considering analogies between related materials, 
the physically sound and realistic solution may be 
identified.  

In the past, optimization methods have been 
proposed for an automatic softening curve fitting. 
Roelfstra & Wittmann (1986) were the first to 
present a corresponding algorithm and the software 
tool SOFTFIT. The algorithm is based on the 
discrete crack approach and a bilinear softening 
curve. Experience has shown that the performance 
of SOFTFIT does not allow a considerably more 
efficient determination of the softening curve as 
compared to the method of manual fitting, although 
the program has been successfully used in 
numerous investigations (Slowik 1995). The 
algorithm requires a "first guess" of the input 
parameters which is quite close to the iteration 
results. 

The Japan Concrete Institute (2001) proposes an 
algorithm for the determination of the softening 
behavior based on a completely different concept. 
A poly-linear softening curve is assumed and the 
individual slopes are determined successively by 
adjusting a corresponding increment of the 
calculated load-displacement curve to the 
experimental one. In this way, the softening curve 
is formed step by step while the crack is 
propagating in the simulated experiment. This 
poly-linear approximation allows a high 
performance of the optimization procedure. The 
algorithm, however, should be comparably 
sensitive to variations in the fracture properties 

along the crack path. The individual slopes of the 
poly-linear softening curve depend only on certain 
limited regions of the experimentally determined 
load-displacement curve. For that reason and 
because of the problems related to the required 
assumption of the initial cohesive stress as the 
starting point for the poly-linear approximation, the 
algorithm presented here is not based on this 
concept. 

The intention was to find an appropriate 
optimization method for performing an automatic 
approximation of the softening curve. In each of 
the individual iterations of the optimization 
process, the complete experiment is numerically 
simulated using a certain softening curve. Hence, 
the error estimation is based on a pair of complete 
load-displacement curves determined experimen-
tally and numerically. 

2 PROPOSED ALGORITHM 

2.1 Numerical simulation of the experiments 

The mechanical analysis is based on the Finite 
Element method. Since the optimization algorithm 
outlined below might require a comparably large 
number of individual iterations, possibly several 
thousand, a major precondition was the high speed 
of the numerical fracture simulation. Special 
attention had to be given to this aspect of the 
mechanical modeling. The high speed has been 

Figure 1. Wedge splitting test. 



achieved by using a pre-analyzed elastic "macro-
element" representing one half of the structure, for 
instance a wedge splitting specimen (Fig. 2). In this 
way, the number of degrees of freedom is reduced 
significantly as compared to a two-dimensional 
"full" model. The material non-linearity resulting 
from the softening is limited to the axis of 
symmetry. Unfortunately, the increase in efficiency 
is accompanied by a major limitation of the 
algorithm. The specimen geometry has to be 
known before and the corresponding stiffness 
relations for this particular geometry need to be 
calculated in an elastic pre-analysis. However, 
since the dimensions of actual test samples exhibit 
the same regularity because of existing formwork, 
this limitation of the algorithm is acceptable. 
Figure 2 also shows a Finite Element mesh used for 
determining the elastic behavior of an undamaged 
half-model. Since this pre-analysis has to be 
performed only once for the corresponding 
geometry it was suitable to use a comparably fine 
mesh along the crack path and at the loading point. 
Bending tests may be simulated by applying a 
similar procedure. 

 

Figure 2. Finite Element model of a wedge splitting specimen 
with degrees of freedom used for the simulation of crack 
propagation. 

The simulation of the crack propagation is based 
on a discrete crack approach. Starting from the 
notch, the crack tip is moved incrementally along 
the crack path and the corresponding external load 
and displacement values are determined. In each 

analysis step, the stress at the crack tip is equal to 
the tensile strength. The specimen self weight may 
be taken into account. 

The algorithm works for any type of softening 
function. But so far, the optimization method has 
been tested for functions having up to six 
independent parameters only. In addition to strain 
softening, the hardening behavior of new high-
performance fiber reinforced materials may be 
considered. 

2.2 Optimization method 

The parameter optimization of the softening 
function for a given data set is highly non-trivial. 
In fact, the manual optimization requires a lot of 
fine tuning and experience. Therefore, a more 
adequate procedure is requested. Unfortunately, the 
underlying model does not allow a gradient descent 
on a cost function due to mathematical reasons and 
difficulties.  

Evolutionary algorithms (EAs) provide a general 
alternative to these problems (Schwefel 1981). EAs 
are biologically motivated iterative stochastic 
optimization methods, the roots of which point to 
biological genetics as described by Mendel's laws 
of heredity and Darwin’s evolution model by 
natural selection. (We summarize by the concept of 
"evolutionary algorithms" both genetic algorithms 
(GA) as well as evolutionary strategies which are 
sometimes handled in a more separate way in the 
literature.) The key idea in EAs is to separate the 
variation of the object to be optimized from its 
evaluation as we find it in nature (geno-/pheno-
type). 

In the following, the basics of EAs are shortly 
summarized and a special version to be applied 
here is described. For a more general overview we 
refer to Bäck (1996) and Michalewicz (2002). 

2.2.1 Basic EA scheme 
Let M be a model to be optimized and c = [c1,…,cm] 
a string or vector of model parameters of potential 
problem solutions. Let f be a semi-positive evalua-
tion function (a map from m dimensional space 
onto the positive real axis) of the model, called 
fitness function. For a given parameter vector c, the 
fitness of the model is f (c) and we further assume 
without loss of generality that minimizing f (c) is 
equivalent to optimizing the model. An instance of 
c is called individual. Hence, the task is to find an 
individual c* which minimizes the fitness function. 

In EAs, in each time step t, called generation t, a 
set C(t)={c

1
(t),…,c

µ
(t)} of possible parameter con-

figurations is considered. The fittest individual of a 
generation C(t) is the currently found solution of 



the EA. Thereby, the initial generation C(0) is ran-
domly given. In each time step, from the current 
generation C(t) an intermediate generation (off-
spring) of λ µ>  new individuals is created by 
certain genetic operations applied to the individuals 
of C(t). Genetic operations are formal manipula-
tions of the strings (individuals) c closely related to 
the biological origin. The main types are mutations 
(random variation of string position values) and 
crossovers by randomly cutting two strings and 
“gluing” them together in a crossed way (combi-
nation of strings). There exists a broad variety of 
such operations, we refer to Bäck (1996), 
Michalewicz (2002), Beyer & Schwefel (2002) for 
an overview. After application of the genetic opera-
tions, all offspring individuals are evaluated 
according to the given fitness function. In this way 
the manipulation of the objects is separated from 
their evaluation.  

After the evaluation follows a selection 
procedure in order to obtain µ  individuals for the 
new generation C(t+1). Two basic selection 
schemes are known: the [µ , λ]-strategy replaces the 
µ  individuals of C(t) by the µ  best individuals of 
the offspring. In case of the [µ + λ]-strategy the µ  
best individuals of both C(t) and offspring are 
selected to survive in C(t+1). The [µ , λ]-strategy 
exhibits a higher diversity within a generation and 
is therefore preferred during the convergence phase 
(fine tuning) whereas the [µ + λ]-strategy has 
advantages in the initial generations of the 
adaptation process (Bäck 1996). We prefer a 
combination of both approaches, called [µ * λ]-
strategy, which allows a smoothed transition 
between both strategies combining their advantages 
(Villmann 2002). 

2.2.2 Extension of the basic EA scheme – the 
neighborhood attraction approach 
There exist several extensions of the basic EA 
scheme to improve the convergence or/and to adapt 
it for special problems. Thereby, hybrid approaches 
which also incorporate other optimization strategies 
play an important role (Villmann 2001). Here we 
extend the EAs by local search mechanisms. The 
resulting approach is called memetic algorithm 
(Moscato 1989). In particular, a special local search 
procedure is applied which takes the similarity of 
parameter vectors into account and is named 
neighborhood attraction according to a neural 
network learning strategy (Huhse et al. 2002). In 
general, neighborhood attraction improves the 
convergence rate. Moreover, the neighborhood 
attraction reduces the risk of getting caught by non-
attractive local minima of the fitness landscape 
(Huhse et al. 2003, Villmann et al. 2004).  

Neighborhood attraction is applied after the 
offspring generation but before the selection. For a 
given individual c, taken now as an usual vector, 
the geometric neighbors according to the vector 
distance are identified by comparing their fitness. If 
one or more of the fitness values are better than the 
fitness of the selected individual, it is shifted by a 
small increment towards the fittest neighbor 
(vector shift). Otherwise, if all neighbors of an 
individual have a weaker fitness, these individuals 
are shifted towards the considered one, i.e. the 
individuals swarm around the (local) best. 
Therefore, we may regard this type of local search 
as a special kind of particle swarm optimization 
(PSO) (Krink & Løvbjerg 2002). As outlined 
above, the neighborhood attraction is a special type 
of neighborhood cooperativeness which also plays 
a fundamental role in nature (Hyvärinen 2002).  

3 APPLICATION OF THE ALGORITHM 

3.1 Real experiments 

For testing the proposed algorithm the softening 
behavior of five different cement mortar 
compositions has been evaluated. The actual 
samples, the mix design and the results of strength 
testing have been kindly provided by 
Ma, Schneider & Wu (2003). The intention of the 
test series was to investigate the fracture behavior 
of high-strength mortar. Mix design and strength 
values are given in Table 1. The splitting strength 
results from Brazilian tests. 

For determining the fracture mechanics material 
properties wedge splitting tests were carried out 
under crack mouth opening displacement (CMOD) 
control by means of a hydraulic testing machine. 
The specimens had the dimensions of 
300 x 300 x 100 mm³ and a notch length of 
142 mm.  

Although three wedge splitting tests were 
performed for each of the five mortars, the 
following determination of the softening behavior 
is based on five characteristic load-displacement 
curves (Fig. 3) which were chosen from the 
available tests. This procedure of selecting 
representative curves for further processing is more 
suitable than averaging the results which would 
lead to curves with wider peaks and, consequently, 
to misleading results of backward analyses. 

As expected, the maximum splitting force 
increases with the compressive strength, i.e. from 
mixture M20 to M180. Whereas the difference 
between normal-strength mortar, M20, and the 
high-strength mortars is significant, only small 



variations among the different high-strength 
mortars could be observed. 

Before the algorithm for determining the 
softening curves was applied, the experimentally 
determined splitting force-CMOD curves were 
smoothed in order to reduce the number of data 
points and to allow more efficient error detection 
during the optimization. 

3.2 Numerical Approximation 

For the automatic fitting process, the following 
error criteria have so far been proved to be suitable. 
The first criterion is the relative error:  
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where xn = experimental splitting force at the 
calculated CMOD value; an = corresponding calcu-

lated splitting force; n = number of calculated data 
points. For curves with a narrow peak, this 
criterion does not always lead to satisfying results. 
For such cases a different criterion, a weighted 
error, appeared to be more suitable: 
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where w = weighting factor; xmax = maximum split-
ting force of the experimental load-displacement 
curve. Additionally, a criterion based on the frac-
ture energy GF was applied in order to obtain a 
good fit also at the tail of the load-displacement 
curve:  
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The multi-parametric error function appears to be 
cliffy and during the optimization local minima 
might prevent the finding of the optimum. 
Therefore, the parameter optimization does not 
necessarily lead to an unique solution. In order to 
avoid misleading results, the variation range for 
each of the parameters needs to be predefined on 
the basis of background information and 
experience (see section 1).  

Because of the stochastic character of the 
optimization method, the choice of the starting 
parameters has no significant influence on the 
results. It was found however, that the influence of 
the Finite Element size in the mesh used for the 
elastic pre-analysis (see section 2.1) might be 
significant especially in the case of very brittle 
high-strength cementitious materials. In further 
investigations, this effect will be quantified and 
recommendations for an appropriate elastic pre-
analyses will be formulated in order to provide 
objectivity of the results. 

As far as the performance of the proposed 
algorithm is concerned, obtaining the softening 
curve on the basis of a single load-displacement 
curve takes about 30 min by using a personal 
computer. 

3.3 Results 

In the following, the results of a first application of 
the algorithm are presented. Because of the limited 

Table 1. Mix design and strength properties of the 
tested materials (Ma, Schneider & Wu 2003). 

 M20 M60 M100 M140 M180 

CEM I 42.5R  1.0 1.0 1.0 1.0 

Silica fume (dry), sf --- --- 0.08 0.30 

Low calcium fly ash, fa 0.25 0.2 0.15 --- 

Quartz powder --- --- --- 0.428 

Water 0.695 0.374 0.327 0.268 

Superplasticizer (dry), 

related to cement mass 
1.3% 1.5% 1.5% 1.7% 

Sand (0-2 mm) 3.555 2.279 2.107 --- 

Sand (0.3-0.8 mm) --- --- --- 1.532 

Water-binder ratio 

w/(c+0.4fa+sf) 
0.632 0.346 0.287 0.206 

Density of hardened 

concrete [kg/m³] 
2235 2305 2383 2320 2415 

Compressive strength 

[N/mm²] 
40.0 81.2 106.6 149.1 196.3 

Splitting strength 

[N/mm²] 
3.5 6.8 8.9 10.5 13.2 

Modulus of elasticity 

[GPa] 
25.5 35.0 43.0 45.9 52.0 

Component ratios given per mass. For M20, M60 and M100 a viscosity 

agent was used in order to prevent bleeding and segmentation. 
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Figure 3. Load-displacement curves determined in wedge split-
ting tests. 



number of individual wedge splitting tests, the 
analyses were intended to prove the applicability of 
the algorithm but not to draw final conclusions 
concerning the fracture properties of the 
investigated materials. 

Before the optimization was carried out the 
influence of the specimen self-weight on the 
simulation results was evaluated. This effect 
appeared to be insignificant for the specimen 
dimensions used here and was neglected in the 
following analyses. 

An exponential softening function proposed by 
Hordijk (1991) has been adopted: 
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where σ = softening stress and w = crack opening. 
The four parameters c1 to c4 need to be determined 
in the optimization.  
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Figure 4. Comparison of the experimental and the calculated 
load-displacement-curves for the mortar M60. 

Figure 4 shows an example for the best fit 
obtained in the approximation of the 
experimentally determined load-displacement 
curve. A nearly perfect match was achieved which 
would have been almost impossible by manual 
approximation. 

In Figure 5 the obtained softening curves for the 
investigated high-strength mortar samples are 
shown. A significant increase of tensile strength 
and initial slope of the softening curve with 
increasing compressive strength (Table 1) was 
observed. The directly measured fracture energy 
and the one calculated from the softening 
parameters are in good accordance. The values 

vary from about 50 N/m for M20 to about 60 N/m 
for all the other mortar batches.  
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Figure 5. Calculated softening curves for the different mortar 
compositions. 

For evaluating the deviations between the three 
wedge splitting tests performed for one mortar 
composition, the proposed algorithm was applied 
to all of the three corresponding curves for M60. 
Figure 6 shows load-displacement curves 
determined experimentally and Figure 7 the 
obtained softening curves. Only minor deviations 
may be observed. 
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Figure 6. Load-displacement-curves for three samples of the 
mortar M60. 
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Figure 7: Obtained softening curves for three samples of the 
mortar M60 (Fig. 6). 



Finally, four different shapes for softening 
functions were applied for approximating an 
experimental load-displacement curve. Figure 8 
shows the obtained results. The optimization 
yielded softening parameters resulting in 
approximately the same fracture energy of about 
60 N/m. With the exception of the linear function, 
the shapes of the different curves appear to be quite 
similar. 
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Figure 8. Comparison of various types of functions used for 
determining the softening curves for the mortar M60. 

4 CONCLUSION 

A new method for determining softening curves of 
cementitious materials based on an evolutionary 
algorithm has been proposed and tested. The 
algorithm and the corresponding software tool 
proved to be applicable in practical materials 
research and evaluation. However, in order to 
identify physically sound solutions, the application 
of the method requires some experience as far as 
the fracture behavior of cementitious or related 
materials is concerned. Further investigations into 
the mesh dependency of the simulation results as 
well as into the reliability of the optimization 
algorithm are under way. 
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