
1.  INTRODUCTION

We aim to model static multi-cracking processes in
a quasi-brittle materials like concrete. In the
literature, the viability of cohesive theories of
fracture applied to the dynamic regime has been
demonstrated by Ortiz and his coworkers
(Camacho 1996, Pandolfi 1999, Ruiz 2000, Ruiz
2001). Multi-cracking processes were modeled by
inserting cohesive surfaces between the elements
defining the original mesh. The crack propagation
was led by a fragmentation algorithm that was able
to modify the topology of the mesh at each
iteration. However, the modeling of crack
propagation within static regime has been
hindered by the difficulties to find efficient and
stable numerical algorithms which are able to deal
with high geometric and material nonlinearities.

One feasible way to solve non-linear static
problems is based on the steady-state conditions of
a critically damped transient solution, often termed
as dynamic relaxation (DR). In searching the

solution, the DR method sets an artificial
dynamic system of equations, with added fictitious
inertia and damping terms, and lets it “relax”
itself to the real solution of the physical problem.
This simple and effective way of dealing non-
linear problems has been used for some time in
general structural applications (Otter 1965, Brew
1971, Pica 1980, Papadrakakis 1981, Sauve 1995),
in rolling (Chen 1989), bending with wrinkling
(Zhang 1989) as well as creep (Sauvé 1993), since
Day first introduced the method in 1960s (Day
1965). Siddiquee (Siddiquee 1995) also used DR
to trace the equilibrium path in materially non-
linear problems. Essentially, the DR method is
used to maintain the advantages of an explicit
method compared to an otherwise implicit
approach. In principle, if the physical problem has
a solution, it will be reached sooner or later, then
the difficulties are passed on to efficiently enhance
the relaxation process.

Besides the use of parallel computing, different
aspects in the effectiveness of DR have been
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investigated by a series of authors, including the
adaptive adjustment of the loading rate (Rericha
1986), the use of adaptive damping (Sauvé 1996),
and the effectiveness of constraints and mesh
transitions on the convergence rate (Metzger
1997). Along the time, a general procedure for DR
has been formulated to solve a wide range of
problems, this includes a lumped mass matrix, a
mass proportional damping matrix and a standard
way called Rayleigh's quotient to estimate the
damping coefficient based on the participating
frequency of the structural response. Following
this line, Oakley and Knight (Oakley 1995a,b,c)
have given detailed implementations for single
processors as well as parallel processor computers.
However, the performance of DR is highly
dependent on the properties of the problem
(Metzger 2003). 

In particular, our model to study cpmplex
fracture processes in concrete is very non-linear.
This non-linearity stems both from the cohesive
laws governing the opening of the crack and the
from the constant insertion of new elements.
The standard estimation of the critical damping
coefficient is done through Rayleigh's coefficient,
which damps the system from higher frequency
mode to lower frequency mode. When there is
cracking, the estimation gives a higher frequency
mode, which actually stalls the motion and makes
the convergence rate unacceptably slow. We have
found out that by damping the system in two
successive steps through two criteria, the
calculations could be greatly enhanced. During the
first stage, after loading, with the added inertia and
damping terms, the system is artificially set in
motion, and this motion is necessarily to be kept as
strong as possible in order to be felt by the whole
system; this can only be realized through “under-
damping”, i.e., adopting a damping coefficient
smaller than the one given by the Rayleigh
estimation. Once the motion has reached the
whole system, in the second step, the critical
damping is adopted so that the system could reach
its steady state in the fastest possible rate. By so
doing, the convergence of solution could be
increased by a magnitude of ten or more; therefore
makes the solution procedure acceptable to the
scale of the problem considered.  

The organization of the paper is as the
following. Next comes a brief review of the
cohesive model. The formulation of the explicit
dynamic relaxation method is presented afterwards
and the simulation results as well as the
comparisons with the experiments are discussed at
the end.

2. THE COHESIVE MODEL

For completeness, we summarize here the main
features of the cohesive model used in the
calculations. A complete account of the theory and
its finite-element implementation may be found
elsewhere (Camacho 1996b, Ortiz 1999). A
variety of mixed-mode cohesive laws accounting
for tension-shear coupling, is obtained by the
introduction of an effective opening displacement
δ, which assigns different weights to the normal δn

and sliding δs opening displacements.
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Assuming  that   the  cohesive  free-energy  density
depends on the opening displacements only
through the effective opening displacement δ, a
reduced cohesive law, which relates δ to an
effective cohesive traction t.

t
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where ts and tn being the amplitude of the shear
and the normal tractions, respectively, can be
obtained (Camacho 1996b, Ortiz 1999). The
weighting coefficient β defines the ratio between
the shear and the normal critical tractions. We
assume the existence of a loading envelope
defining a relation between t and δ under the
conditions of monotonic loading and irreversible
unloading. A simple and convenient type of
irreversible cohesive law, typical of concrete and
recommended by the Model Code, is furnished by
the bi-linearly decreasing envelope, characterized
by  Equation 3.
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where δa and  δc are determined through the
following equations�

a � 2 � 0.15 � F G F � f ts�
c � � F G F � f ts

 (4)

In which, fts is the static tensile strength, Gc is the
material fracture energy, βF is related to the
maximum aggregate size dm, for the case of dm =
5 mm, βF can be taken roughly to be 8.4 (Ruiz
1998), which is used in the simulations later on.

Cohesive theories introduce a well-defined
length scale into the material description and, in
consequence, are sensitive to the size of the
specimen (see, for example, Planas 1998). The
characteristic length of the material may be
expressed as 

l ch � EG c � f ts ² (5)

where E is the material elastic modulus. 
In the calculation, only decohesion along

element boundaries is allowed to occur. When the
critical cohesive traction is attained at the interface
between two volume elements, a cohesive element
is inserted at that location using a fragmentation
algorithm (Pandolfi 2002). This cohesive element
governs  the opening of the cohesive surface.

3. THE EXPLICIT DYNAMIC RELAXATION
METHOD

As we mentioned before, in calculations, the
fracture surface is confined to inter-element
boundaries and, consequently, the structural cracks
predicted by the analysis are necessarily rough.
Even though this numerical roughness in concrete
can be made to correspond to the physical

roughness by simply choosing the element size to
resolve the cohesive zone size (Ruiz 2001), the
nonlinearity of the solution thus induced plus the
material nonlinearity is difficult to handle in static
regime for traditional solvers. We choose explicit
dynamic relaxation method as an alternative to
tackle this situation, the standard formulation of
this methodology is summarized below.

Consider the system equations for a static
problem at a certain load step n

F i � un  "! Fn
e (6) 

where un is the solution array (displacements), Fi

and Fe
n  are the internal and external force vectors. 

Following the ideas of dynamic relaxation,
Equation 6 is transformed to a dynamic system by
adding both artificial inertia and damping terms.

M an # C vn # F i $ un % � F n
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where M and C are the fictitious mass and
damping matrices, an and vn are acceleration and
velocity vectors respectively at load step n. The
solution of Equation (7) can be obtained by the
explicit time integration method using the standard
central difference integration scheme in two steps. 

First the displacements and predictor velocities
are obtained
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Second  the internal force vector is updated and the
accelerations and corrected velocities are obtained.
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Both fictitious mass M and damping C matrices
are set to be diagonal to preserve the explicit form
of the time-stepping integrator. At the same time,



the damping matrix is set to be proportional to the
mass matrix through the damping coefficient ξ.
 

C 243 M (10)

 
To ensure that the mode associated with the
applied loading condition is critically damped, ξ is
generally set to be 
 576

2 8 (11)

where ω is the undamped natural frequency
corresponding to the participating mode of
loading.  

Since both the inertia and damping terms are
artificial, the dynamic relaxation parameters,
including the mass matrix M, the damping
coefficient ξ and time step dt, can be selected to
produce faster and more stable convergence to the
static solution of the real physical system.

Owing to the explicit formulation, the time step
must satisfy the stability condition

dt 9 h m : c d
(12)

  
where hm is the size of the smallest element, cd is
the speed of a dilatational wave, which in turn, can
be related to ωm, the highest undamped frequency
of the discretized system through

;
m < 2 c d = h m

(13)

For an elastic material, the dilatational wave speed
is calculated as 

c d > ?A@�B 2 CEDGFAH (14)

where λ and µ are Lamé constants, while ρ is the
material density.

Equations 12, 13 and 14 provide a relation
between the maximum admissible time step, dtcr=
2/ωm and the fictitious mass matrix.
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In the implementation, the density is adjusted for
each element so that the time for the elastic wave
to travel through every element is the same.

The current value of ω is estimated at each
iteration t using Rayleigh quotient

W t X Y u t Z T K u t []\ u t ^ T M u t (16)

 
where ut stands for the displacement vector at the
tth iteration (index n has been ommitted) and M is
the mass matrix. For nonlinear problems, K
represents a diagonal estimate of the tangent
stiffness matrix at the tth iteration and is given by
 

K t _ F i ` u t aTb F i c u t d 1 e
u t f u t g 1

(17)

4. THE MODIFIED DR METHOD

As we mentioned before, one of the common
difficulties of DR method is its slow convergence
rate when non-monotonic spectral response is
involved. The standard estimation of the critical
damping coefficient is through Rayleigh's
coefficient, which damps the system from higher
frequency mode to lower frequency mode. During
the calculations for non-linear problems, when the
estimation gives a higher frequency mode, the
damping coefficient adopted will overdamp the
global motion and actually stalls the system and
makes the convergence rate unacceptably slow. In
dealing with this difficulty, instead of critically
damping the system equations from the beginning
as suggested by all the standard DR procedures,
we intend to keep the motion as strong as
possible, so that the local movement excited at the
loading area could be fastly spreaded to the rest;
this can only be done through ``under-damping'',
i.e., adopt a damping coefficient smaller than the
one estimated by the current Rayleigh estimation.
Simply no-damping or low damping may keep a
noisy response persist. We found out that by
setting the damping coefficient close to half of the
undamaged system (which was obtained through
the Rayleigh quotient estimation in the trial run),



the motion can be kept strong so that the system
could move faster toward its external force
equilibrium without carrying persisting noisy
response. Once the external force equilibrium is
achieved, in the next stage, the system is critically
damped to its steady state to obtain the static
solution. Taking into account the aforementioned
considerations, we implement two combined
convergence criteria to be used successively during
the two steps of the iteration process. One is the
ratio between the sum of external imposed forces
and reaction forces and the estimated maximum
external forces, the measure that says to what
extent the motion has spreaded to the whole
system; the other is the relative global kinetic
energy, which measures whether the system is
approaching static or not. This combined criteria
is characterized by the following inequalities

F rt h F ip 2

F e 2
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where || ||2 denotes the Euclidean norm, Frt are the
reaction forces at the supports, F

ip
are the imposed

forces at the loading point; m is the nodal mass; K0

is a constant used to normalize the kinetic energy,
whose value varies according to the size of the
problem and is chosen to avoid unproductive
iteration cycles. The tolerances ftol and ketol are
taken as 0.001 and 10-8 respectively. For the
problems we have considered, these tolerances
provide a good balance of accuracy and efficiency.
A damping coefficient ξ0 is computed after the
first insertion of the cohesive element takes place,
or when the nonlinearity of the material started to
emerge. By setting the damping coefficient to this
value when the solution is far away from the
equilibrium, while using the critical damping
coefficient computed when the solution is near
static, the global convergence rate is remarkably
enhanced.  

 

5. NUMERICAL APPLICATIONS -- THREE
POINT BENDING NOTCHED BEAMS

We apply the modified dynamic relaxation
method to solve the static propagation of a crack
through a notched concrete beam subjected to
three point bending, see Figure 1.  

In previous studies, Camacho and Ortiz
(Camacho 1996) have noted that the accurate
description of fracture processes by means of
cohesive elements requires the resolution of the
characteristic cohesive length of the material.
Further studies (Ruiz 2001) showed that in
concrete, the element size can be made to be
comparable to the maximum aggregate size, which
is 5 mm in our case. So all specimens are
discretized into ten-node quadratic tetrahedral
elements and have element size of 6 mm near the
middle surface. The material parameters for the
concrete given in Table 1 are taken from the
experiments of Ruiz (Ruiz 1998).

Table 1. Concrete mechanical properties 
fts (MPa)   E(GPa)   Gc(N/m)   lch(mm)

3.8         30.5         62.5          130.

Figure 1. The notched concrete beam subjected to three
point bending, where B=50 mm, D=75, 150 or 300 mm.

5.1 Initial damping coefficient

In this section, we choose one loading step within
the calculation for the small specimen to show the
improved convergence rate using the modified DR
method. During the loading processes, in searching
the solution, we divide the process into two, first
the specimen is loaded with a small increase of



displacements; then the program checks the
traction of all the element interfaces, if the opening
criterion is satisfied, a cohesive element would be
inserted there, and consequently, before moving to
the next load increment, an iteration loop would be
carried out to adjust the solutions because of the
stress release coming from the crack propagation.

Figure 2. Damping forces and kinetic energy
comparisons for the normal and modified damping
procedures in the case of the specimen a.  

In Figure 2, we compare the modified dynamic
relaxation procedure with the standard one for the
small specimen at loading displacement 0.0224
mm, during which two new cohesive elements
were inserted. The figure depicts the evolution of
damping forces and kinetic energies according to
the iteration number. Since the dynamic
equilibrium has been enhanced by previous
iterations during the loading step, the two methods
give the same damping forces and kinetic energy
until at some point, the system realize that it is
going away from its equilibrium. The standard
dynamic relaxation tries to critically damp the
system all the time, even though the damping force
is decreasing dramatically and the kinetic energy
goes to almost zero, the motion is actually stalled.
Whereas the modified dynamic relaxation, when it
is away from its equilibrium, instead of critically
damping the fast motion, it under-damps the high
frequency motion, so instead of being damped, the
system actually regains its movement, therefore
moves faster to its equilibrium state; once the force
equilibrium is achieved, the critical damping is
adopted to bring the kinetic energy quickly to zero.

In the example shown, where the nonlinearity is
not so strong, for the standard DR method, it takes
the 25785 iterations, while for the modified DR
method, only 3625 iterations are needed for the
same convergence criteria adopted. This means a
gain of more than 7 times regarding to the rate
convergence. While in the situation of higher non-
linearity (the post-peak), the comparison is not
possible, simply because the normal DR method
would take unacceptable time to the arrive the
solution of the static system. 

5.2 The load-displacement curve comparison

The modified concept is applied to three
specimens of different size. The cohesive law
adopted in the calculation is the one suggested in
the Model Code for concrete, Equation 3. The load
versus displacement curves for all specimens,
compared with the experimental results, are shown
in Figure 3. The calculated maximum load only
differs 0.4% from the experimental one for the
small specimen, 3.0% for the intermediate  one and
10.0% for the large specimen. The experimentally
observed size effect comes naturally from the
simulations.

Figure 3. The peak load comparison for three specimens
of depth 75, 150 and 300 mm.  
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Figure 4. Sanp shots of the fracture patterns (at the
middle surface for the small specimen with depth
75mm) developed loading displacement (1) 0.05 mm
(b) 0.07 mm (c) 0.11 mm.

5.3 Fracture patterns

Three snapshots of the fracture patterns on mid-
plane for the small specimen are shown in Figure
4, where the displacements have been magnified
100 times to aid visualization. Figure 4a is the
point of peak load, Figure 4c is the moment where
the beam is almost completely crushed, while
Figure 4b is a point in between which shows how
the fracture zone has developed. Also shown in the
figures are the level contours of damage, defined
as the fraction of expended fracture energy to total
fracture energy per unit surface, or critical energy
release rate. Thus, a damage density of zero
denotes an uncracked surface, whereas a damage
density of one is indicative of a fully cracked or
free surface. The transition zone wherein the
damage variable takes intermediate values may be
regarded as the cohesive zone, and the crack front
may conventionally be identified with the level
contour of 1/2. It can be noticed that in the peak
load, Figure 4a, the fracture zone has developed to
some degree, only that the crack surfaces are not
fully open yet; later on in Figure 4b, the same zone
is more developed while new surfaces are open
and the crack front propagates in a nonuniform
way, which can only be observed in a full three-
dimensional modeling. It is interesting to note that
the crack front is convex in the direction of
propagation, a feature which is characteristic of
mode-I crack growth, the exterior of the crack
front ostensibly lags behind the interior points. In

Figure 4c, the crack continues to grow till the
specimen is almost completely crushed and loses
its strength. 

6. SUMMARY AND CONCLUSIONS

We have put together an modified explicit
dynamic relaxation method in conjunction with
the cohesive theory to solve the static multi-
cracking fracture process notched concrete beams
loaded at three points. In calculations, the fracture
surface is confined to inter-element boundary
elements and, consequently, the structural cracks
predicted by the analysis are necessarily rough.
Even though this numerical roughness in concrete
can be made to correspond to the physical
roughness by choosing the element size
comparable to the aggregate size, the thus-induced
geometrical nonlinearity and the material
nonlinearity inherent to concrete are hard to handle
for traditional static solvers. The explicit DR
method is chosen as an alternative, to approach
this problem. We have followed the ideas of
Underwood (Underwood 1983) and Oakley
(Oakley 1995b) for fictitious mass and damping
matrices but implemented the method with a
concept that is distinct from the standard one. An
initial damping coefficient estimated from the
system is adopted to enhance the motion instead of
critically damping it from the beginning. A
criterion that measures the force balance is used to
control the iterations in this stage; while the global
kinetic energy is chosen to control the balance of
accuracy and efficiency of the solution for the
static system. Three sizes of concrete beams with
different depth were modeled to validate against
the experimental results of Ruiz (Ruiz 1998). The
results show that the model captures the peak load
accurately, the load-displacement curve follows
closely the experimental results before and after
the peak load. A comparison of convergence rate
between the standard and modified DR method
reveals the modified concept eliminates the stalling
part of the traditional DR method and makes it a
feasible and efficient solution technique for the
problem considered.
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