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ABSTRACT: A higher-order continuum model is derived from a discrete medium. The discrete medium
is constructed such that isotropy of the second-order continuum can be obtained. A new continualization
method is applied in which the kinematic coupling between discrete and continuous variables is relaxed.
As a result, not only higher-order stiffness terms but also higher-order inertia terms enter the continuum.
The dispersive behavior of the model is set by an internal length scale and an internal time scale. Energy
considerations show that the model is unconditionally stable, in contrast to most other second-order models
derived from a discrete medium. A comparison with other second-order models is given as well.
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1 INTRODUCTION

Several scales of observation exist in engineering
and sciences, and in many applications they inter-
act. Thus, multiple length scales may be relevant
and must be taken into account. Since a detailed
modeling on the lowest level of observation is nor-
mally not feasible, alternative strategies must be
taken. For instance, homogenization or continual-
ization approaches can be used to translate micro-
scopic representations of materials into a homoge-
neous macroscopic continuum description.

In this paper, a continualization approach is taken
in which a discrete medium (consisting of masses
and springs) is translated into a continuum via Tay-
lor series expansions. The truncation of the series
determines how much information from the lower
scale is included. So-called classical continua are
obtained when the minimum number of terms in the
series are incorporated, but these continua do not
contain any material parameter that represents the
micro-structural heterogeneity. Therefore, higher-
order terms are included as well, and as a result
the equations of motion include up to fourth-order
derivatives of the displacements.

Below, a novel continualization procedure as de-
veloped in (Metrikine and Askes 2002) is used for
a two-dimensional discrete medium. The strict kine-
matic coupling between discrete and continuous dis-

placements (that is commonly employed in contin-
ualization procedures) is relaxed. Instead, a dimen-
sionless weighting constant is introduced to account
for the nonlocal interaction between the various par-
ticles of the discrete medium. In the resulting contin-
uum equations the stiffness terms are always accom-
panied by inertia terms of the same order. Hence,
the continuum is denoted as dynamically consistent
(Metrikine and Askes 2002; Askes and Metrikine
2002). As a consequence of the dynamical consis-
tency, not only an internal length scale but also an
internal time scale enters the model. The dispersive
behavior of the model is set by the internal length
and time scales.

After the derivation of the equations of motion in
Section 2, the stability of the model is confirmed in
Section 3 via energy considerations as well as via
a dispersion analysis. In both cases, a critical (mini-
mum) value for the newly introduced weighting con-
stant is determined. In Section 4, the comparison
with other models from the literature is treated, and
it is shown that the model developed here can be re-
duced to the other models via a specific selection
of parameters. Section 5 demonstrates the presence
of an internal time scale in the constitutive relations
and in Section 6 some closing remarks are given.
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Figure 1: Extended hexagonal lattice

2 DERIVATION OF EQUATIONS OF MOTION

Various discrete representations of the material can
be taken as the starting point of the continualiza-
tion procedure. Furthermore, different types of inter-
particle contact (normal, transversal, rotational) can
be accounted for (Suiker, de Borst, and Chang 2001;
Suiker, Metrikine, and de Borst 2001). Below, the
restriction is made to normal contact, which is repre-
sented by longitudinal springs between the particles.
A hexagonal lattice has the advantage that the result-
ing classical continuum is isotropic without further
assumptions. However, the corresponding second-
order continuum is not isotropic, therefore the ex-
tended hexagonal lattice as depicted in Figure 1 is
considered.

2.1 Equations of motion of the discrete medium

All particles depicted in Figure 1 are assumed to
have the same mass M. The stiffness of the inner
and outer ring of springs is denoted by K1 and K2,
respectively. Then, the equations of motion can be
written as
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for the x-direction and
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for the y-direction. A subscript variable following a
comma denotes a derivative. It is emphasized that
the response of the discrete lattice is inherently
anisotropic.

2.2 Continualization procedure

Next, Equations (1) and (2) are continualized via
assumed relations between the discrete degrees of
freedom x and y and the continuum degrees of free-
dom ux and uy. These relations consist normally
of one-to-one links between the two sets of vari-
ables at the central particle � m � n � . However, as has
been shown in (Askes, Suiker, and Sluys 2002;
Metrikine and Askes 2002; Askes and Metrikine
2002) this leads to higher-order gradient models of
which the second-order truncation is unstable and of
which the fourth-order truncation exhibits infinitely
high velocities of waves and energy. Thus, this ap-
proach (refered to as the standard continualization
approach) is intrinsically deficient, and alternative
strategies must be pursued.

For a one-dimensional context a relaxed relation
between the discrete and continuous degrees of free-
dom has been proposed in (Metrikine and Askes
2002). The one-to-one link at the central particle is
dropped; instead, a weighted average is taken that



also involves the neighboring particles. For the con-
sidered extended hexagonal lattice of Figure 1, this
alternative continualization is written as
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for the x-direction, and
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for the y-direction. These relations can be consid-
ered as an average whereby the inner ring of parti-
cles are weighted by a factor a1 and the outer ring of
particles by a factor a2. The factor � 1 � 6a1

�
6a2 �

serves as a normalizing factor.
In the above Equations the continuum variables

ux and uy are expressed in terms of the various dis-
crete variables. However, when the discrete equa-
tions of motion are to be rewritten, the discrete vari-
ables have to be expressed in terms of ux and uy.
To this end, ux and uy are developed in power series
in terms of the inter-particle distance l, and Taylor
series are used for the neighboring particles — see
(Metrikine and Askes 2002) for a detailed discus-
sion. With these amendments, the discrete equations
of motion (1) and (2) can be transformed into equa-
tions of motion for a second-order continuum, i.e.
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� � 48A � 4 � u j � i j

� � kk
(5)

where index notation has been used (i, j and k are
indices related to the spatial directions x and y). Fur-
thermore, A � a1 � 3a2

1 � 6a1 � 6a2
, while ρ and E denote the

classical mass density and Young’s modulus, respec-
tively. A few observations can be made with respect
to the above Equation:� Both the inertia contributions (in terms of ρ)

and the stiffness contributions (in terms of E)
consist of a classical part of order l0 and a
second-order part of order l2. Thus, the iner-
tia terms always appear one-to-one with the
stiffness terms of the same order. Hence, this
model is denoted as being dynamically con-
sistent (Metrikine and Askes 2002; Askes and
Metrikine 2002).� The second-order parts can be written as the
Laplacian of the classical parts.� The Poisson’s ratio that can be retrieved from
the classical stiffness term equals ν � 1

4 .� The mass density ρ and the Young’s modu-
lus E are linked to the discrete parameters via
M � ρ l2h � 3 � 2 and K1 � 2Eh � 3 � 5, where h
is the dimension in the third direction. With the
requirement that K2 � 1

9 K1, both the classical
parts and the second-order parts of the equa-
tions of motion are isotropic.� The standard continualization approach is re-
trieved by setting A � 0. This would lead to a
vanishing higher-order inertia contribution and
a switched sign of the higher-order stiffness
contribution.

3 STABILITY CONSIDERATIONS

The stability of the derived model can be verified via
either an investigation of the energy functional or by
means of a dispersion analysis. Both lead to certain
requirements for the weighting parameter A.

3.1 Energy functional

The energy densities that correspond to the equa-
tions of motion derived above can be written in a
quadratic form as� kin � 1
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for the potential energy. Since all terms have been
expressed as quadratic forms, it is easily seen that
the kinetic energy is always positive definite. Also
the classical contributions to the potential energy
are always positive definite. However, restrictions
on A should be applied for unconditional positive-
definiteness of the higher-order contributions to the
potential energy. In particular, the critical term in
Equation (7) is preceded by � 48A � 4 � , from which
it follows that

48A � 4 � 0 ��� A � 1
12 (8)

3.2 Dispersion analysis

Alternatively, the propagation of harmonic waves
can be analysed. The dispersive properties of the
medium are set by the dependence of the phase ve-
locity on the wave number, therefore this is equally
known as dispersion analysis. For a wave that prop-
agates in the direction set by α , with α the angle as
measured from the x-axis, a plane harmonic wave is
described by

ux � Âx exp � ik � ct � x cosα � y sinα �	� (9)

and

uy � Ây exp � ik � ct � x cosα � y sinα �
� (10)

where Âi is the amplitude in the i-direction, i is the
imaginary unit, c is the phase velocity and k is the
wave number. A compression wave is obtained by
taking Ây � 0 with α � 0 or Âx � 0 with α � 1

2 π .
Conversely, a shear wave is simulated via Âx � 0
with α � 0 or via Ây � 0 with α � 1

2 π .
When these values are substituted into Equation

(5), for the compression wave it is found that
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Figure 2: Dispersion curves: phase velocity versus
wave number

and for the shear wave
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Imaginary phase velocities may lead to instabil-
ities, see for instance (Askes, Suiker, and Sluys
2002). For c2 to be positive in the limit case kl � ∞,
the compression wave appears to be critical, from
which it follows that
3
2 A � 5

48 � 0 �� A � 5
72 (13)

which yields a slightly lower value compared to
Equation (8). This can be understood as follows:
in the derivation of expression (8) it was required
that every individual term of the energy functional is
strictly non-negative, whereas in the dispersion anal-
ysis positiveness of a conjunction of contributions
is required. Thus, in the dispersion analysis, certain
destabilising terms are compensated by other stabil-
ising terms, which leads to a lower critical value for
A.

In Figure 2 dispersion curves are plotted for the
compression wave. The phase velocity c (normal-
ized with respect to the classical compression wave
velocity � 6E � 5ρ) is plotted versus the wave num-
ber (normalized with respect to the inter-particle dis-
tance l). A range of values for A is taken, includ-
ing the critical values derived via energy consider-
ations, cf. Equation (8), and via dispersion analy-
sis, cf. Equation (13). Also, the dispersion curve for
A � 0 is plotted, which is also obtained in the above-
mentioned standard continualization approach. This
value leads to imaginary phase velocities and, thus,
instabilities for kl ��� 48 � 5 � 3 � 1.

For sufficiently large values of A, the model
of Equation (5) is unconditionally stable. Further-
more, the phase velocity is a monotonically de-
creasing function of the wave number. Thus, the



high-frequency waves always travel slower than the
low-frequency waves, and the phase velocity of the
classical continuum is never exceeded. A horizontal
asymptote is reached for kl � ∞, the level of which
is set by the value of A.

4 COMPARISON WITH OTHER MODELS

The stability of the model of Equation (5) becomes
manifest through the different signs with which the
classical and higher-order stiffness contributions en-
ter the model. This bears resemblance to the gradi-
ent elasticity model proposed earlier by Aifantis and
coworkers (Triantafyllidis and Aifantis 1986; Ru
and Aifantis 1993; Altan and Aifantis 1997; Aifantis
1999; Gutkin and Aifantis 1999), which is normally
written in the format of a constitutive relation as

σi j � Di jkl
� εkl � c ∇2εkl � (14)

where σ and ε denote the stress and the strain, re-
spectively, and D contains the linear elastic moduli.
Furthermore, c is a (positive) constant with the di-
mension of length, which plays a role similar to that
of l2 in Equation (5). It has been proven in many oc-
casions that the gradient term in Equation (14) can
be used effectively to remove singularities from the
strain field, see for instance (Aifantis 1999). How-
ever, since this model is formulated solely in terms
of constitutive relations, higher-order inertia contri-
butions are lacking. As a result, while the model
of Equation (14) is unconditionally stable, infinitely
high phase velocities occur which are unrealistic
(Askes, Suiker, and Sluys 2002).

Higher-order inertia terms have been proposed
earlier, either phenomenologically (Vardoulakis and
Aifantis 1994) or by applying Padé approxima-
tions (Rubin, Rosenau, and Gottlieb 1995; Chen and
Fish 2001; Andrianov, Awrejcewicz, and Barantsev
2003). In the latter methodology, higher-order stiff-
ness terms can be replaced by higher-order inertia
terms, e.g.

ρui � tt � � 1 � c∇2 � E � ui � j j
�

2u j � i j
	

� 1
1 � c∇2 E � ui � j j

�
2u j � i j

	 (15)
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�
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However, the higher-order stiffness contributions
have vanished in this approach. This would corre-
spond to taking A � 5

72 in Equation (11). Stability is
guaranteed and the higher-order inertia ensures that
the phase velocities remain bounded.

The model developed here and given in Equation
(5) combines the advantages of higher-order stiff-
ness with the advantages of higher-order inertia: un-
conditional stability, smoothing of strain singulari-
ties in statics and finite phase velocities in dynamics.

5 INTERNAL TIME SCALE

Expression (5) shows the equations of motion in
terms of displacement derivatives. It is equally pos-
sible to express the equations of motion in terms of
a divergence of a Cauchy stress tensor, e.g.

ρui � tt � σ ji � j (17)

in which the Cauchy stresses σi j are defined as
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Remark 1 The formal derivation of the standard
stresses σi j and the higher-order stresses τi jk via the
Hamilton-Ostrogradsky principle is not treated here
— see (Metrikine and Askes 2002) for details on the
one-dimensional case.



Remark 2 Note that symmetry of the stress tensor
σi j is lost: σxy �� σyx. However, this only holds for
the contributions related to A. The difference σxy �
σyx has a contribution with time derivatives, which
indicates an angular momentum.

In equivalence with Equation (14), the stresses are
not only related to the strains (i.e. the first deriva-
tives of the displacements), but also to the second
gradients of the strains. However, in addition the
stresses are related also to the second time deriva-
tives of the strains. Whereas the second spatial strain
gradients are preceded by an internal length scale
squared (in terms of the inter-particle distance l and
the weighting parameter A), the second time deriva-
tives of the strains are preceded by an internal time
scale ζ squared given by

ζ 2 � 15ρ l2A
4E

(22)

The dependence of the stresses on the second time
derivative of the strains should not be understood as
viscosity, since this latter property would be related
to the first time derivative of the strains. Hence, the
internal time scale ζ is not related to a relaxation
time, but rather to the wave propagation characteris-
tics of the high-frequency waves.

6 CLOSURE

In this study, a dispersive gradient elastiticy model
has been derived within a two-dimensional context.
The equations of motion have been derived from a
discrete lattice representation of the material; hence,
the macroscopic mechanical parameters can be re-
lated to the microstructural properties. A new con-
tinualization method has been applied in which the
discrete degrees of freedom and the continuum dis-
placements are linked in an averaged sense. To this
end, a dimensionless weighting constant is intro-
duced. The resulting equations of motion for the
continuum are dynamically consistent: every iner-
tia term is accompanied one-to-one by a correspond-
ing stiffness term. Thus, not only higher-order stiff-
ness terms but also higher-order inertia terms have
appeared. These higher-order inertia terms are cru-
cial for the stability of the model, as has been shown
by energy considerations and by a dispersion analy-
sis. Furthermore, the higher-order inertia terms guar-
antee that the phase and group velocities remain
bounded.

In a next study, the stresses and boundary con-
ditions (both classical and higher-order ones) will
be derived by means of the Hamilton-Ostrogradsky
principle. Moreover, an interpretation of the higher-
order boundary conditions will be given.
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