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ABSTRACT: This paper describes a cohesive zone modeling of fracture in three-dimensional irregular
lattices. Lattice geometry is based on a Voronoi discretization of the material domain. In addition to being
an effective means for discretization, the Voronoi diagram provides scaling rules for the elemental stiffness
relations and fracture criteria. The lattice model provides an elastically uniform representation of the
material. The cohesive zone representation of fracture is implemented using a crack band approach and is
objective with respect to the irregular geometry of the lattice. Model performance is demonstrated through
simulated fracture testing of a notched concrete beam.
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1 INTRODUCTION

Lattice models have been used to study fracture in
a variety of materials, including concrete
(Schlangen & van Mier 1992, Schlangen &
Garboczi 1997, Cusatis et al. 2001, Lilliu & van
Mier 2003). A lattice model is a collection of
simple one-dimensional elements that interconnect
at lattice sites, which are regularly or irregularly
positioned in space. The computational degrees of
freedom are defined at the lattice sites (or nodes).
The lattice modeling of concrete materials is
attractive, due to the discrete structure of the
lattice. However, discrete networks have difficulty
modeling some basic aspects of homogeneous
systems, such as their elastic uniformity during
uniform straining (Schlangen & Garboczi 1997).
Regular lattice models generally satisfy this
requirement due to site symmetry of the lattice.
Irregular lattice models generally exhibit artificial
heterogeneity, which has strong implications
toward their ability to model fracture.

Based on the concept of a rigid-body-spring
model (Kawai 1978), elastically uniform irregular
lattices have been developed and applied to
modeling structural concrete (Bolander & Saito
1998, Bolander et al. 2001, Bolander & Hong
2002). A key feature of this lattice model, which
separates it from an ordinary rigid-body-spring

model, is the scaling of the elemental stiffness and
fracture properties according to a Voronoi
discretization of the material domain. A crack band
modeling of fracture (Bazant & Oh 1983)
conserves fracture energy and is objective for mode
I type openings within irregular lattices. When
modeling cracking in homogeneous phases of
materials, fracture localizes into the narrowest band
permitted by the mesh size and, therefore, the
model can be regarded as a cohesive zone
representation of fracture. The previous references
to this Rigid-Body-Spring Network (RBSN)
approach have been for planar analyses. This paper
describes the extension of the RBSN fracture
models to three-dimensions, with an application to
modeling fracture of a concrete beam specimen.

2 MODEL CONSTRUCTION

2.1 Domain discretization

As noted in the introduction, the RBSN is defined
by a Voronoi discretization of the material domain
based on an irregular set of points, which serve as
computational nodes.  Discretization starts with the
specification of coordinates for the bounding box
that encloses the three-dimensional domain (Fig.
1).  Thereafter, the following steps are taken during
the discretization process:



Figure 1. Voronoi discretization of material: a) element ij within
a cubic domain; and b) domain with spherical inclusions.

�  quasi-random insertion of points until the
three-dimensional domain is saturated with
such points (i.e. computational nodes);

�  placement of an auxiliary point set related to
boundary construction (Bolander & Saito
1998); and

�  construction of the Voronoi tessellation
(Sugihara et al. 1985) of the complete point
set.

By strategically introducing interior and auxiliary
points, various other geometries can be discretized,
including domains with inclusions (Fig. 1b) and
non-convex domains. There are a number of
procedures for constructing the Voronoi diagram
directly from the generated point set. Here, the
Voronoi diagram is constructed from its dual, the
Delaunay tessellation, since the latter is generally
easier to construct and a robust program was
available for doing so (Taniguchi et al. 2002).

2.2 Elastic material relations

Each pair of contiguous Voronoi cells forms a
lattice element, as shown in Figure 1a and in detail

in Figure 2. The element is composed of a zero-size
spring set, located at the area centroid (point C) of
the Voronoi facet common to nodes i and j, and
rigid arm constraints that link the spring set with
the nodal degrees of freedom. The spring set
consists of three lineal springs, oriented normal and
tangential to the facet, and three rotational springs
about the same local axes.  This notion of a rigid-
body-spring model was developed by Kawai
(1978) and refined through Voronoi scaling of the
spring constants (Bolander & Saito 1998, Bolander
et al. 2001).  For the lineal springs:

and for the rotational springs:

where Aij is the facet area; hij is the element length
(i.e. the distance between i and j); E is the elastic
modulus; Jp is the polar moment of inertia; and I11

and I22 are the two principal moments of inertia of
the facet area. Berton (2003) provides additional
details of the three-dimensional RBSN formulation.
Although the approach is unconventional, the
elemental stiffness relations are similar to those of
an ordinary beam-column element.  For this reason,
and others, we categorize the approach as a lattice
model. By virtue of the Voronoi scaling of the
spring constants (Eq. 1), the lattice is elastically
uniform during uniform straining (Bolander &
Saito 1998, Bolander et al. 2001).

Figure 2. Basic element ij of the Rigid-Body-Spring Network.

2.3 Fracture criteria

The RBSN modeling of fracture is based on the
crack band concept (Bazant & Oh 1983).  Previous
applications of the RBSN fracture model have been
limited to planar analyses (Bolander et al. 2001,
Bolander & Hong 2002). To discuss the three-



dimensional fracture formulation, consider an
element formed by cells i and j, as described in the
previous section (Fig. 2). In general, loading of an
element will be skew to the element axis ij and the
cells tend to separate accordingly; the normal and
tangential springs are activated with the normal
spring in tension (Fig. 3a).  The fracture criterion is
based on a measure of stress σR, which is defined
as:

where F R  is the resultant force acting on the
element facet and AP

ij is the projection of the facet
area on a plane perpendicular to the direction of the
resultant (Fig. 3a). At every step of the simulation,
the ratio σ R/σ(w ) is computed for all of the
elements. Here, the cohesive stress σ(w ) is a
bilinear function of the crack opening displacement
w (Fig. 4). For the element with max (σR/σ(w)) > 1,
a prismatic crack zone initiates (or continues to
develop) within the element as shown in Figure 3b.

Figure 3. a) Resultant force on element facet; and b) elemental
crack band volume.

Figure 4. Bilinear softening relation.

The width of this zone (which corresponds to
crack band width in the two-dimensional case) is hij

cosθ, where θ is the angle that the resultant force
F R forms with the normal to the facet. Crack
opening displacement w  is related to the fracture
strain εR over the crack zone:

For a critical element, fracture involves an
isotropic reduction of the spring stiffnesses and an
associated release of spring forces, so that σR

follows the material softening relation. The release
of spring forces causes an imbalance between the
external and internal nodal force vectors, which is
corrected through conventional equilibrium
iterations. A maximum of one element spring set is
modified per iteration cycle. While this approach is
computationally demanding, it is stable in that
zero-energy modes of deformation do not occur.

3 BEND TEST SIMULATION

The ability of the three-dimensional RBSN to
represent a uniform strain field has been
demonstrated elsewhere (Bolander et al. 2001).
Here, a three-point bend test of a notched concrete
beam is simulated to show the fracture properties
of the irregular lattice network. The beam test was
part of a series of round robin tests, which were
performed to evaluate a method for determining the
tension softening properties of concrete (Kitsutaka
et al. 2001).

3.1 Test specimen

Figure 5 shows a Voronoi discretization of the
typical configuration for the test series. Here, the
batch C test carried out at Gifu University is used
for the comparison (Kitsutaka et al. 2001). The
characteristics of the concrete are as follows: fc =
40.9 MPa; ft = 3.46 MPa; E = 31.6 GPa; slump =
6.3 cm; and air content = 3.4%. The dimensions of
the specimen are 100 x 100 x 400 mm with a span



Figure 5. Voronoi discretization of three-point bend test.

of 300 mm. The notch has a depth of half the
height of the beam (50 mm).

3.2 Softening parameters through inverse analysis

The four parameters defining the bilinear softening
relation (Fig. 4) were determined using an inverse
analysis procedure, based on a Levenberg-
Marquardt minimization algorithm (Thomure et al.
2001). Starting with an assumed softening curve,
the softening curve parameters are gradually
adjusted to reduce the error between each
successive computed load-CMOD curve and the
experimental load-CMOD curve. To speed up this
process, a planar RBSN model of the three-point
bend test was used for the inverse analyses. Based
on the experimental load-CMOD curve shown in
Figure 6, the inverse procedure gave the following
values for the softening parameters: ft = 4.119 MPa,
σ1 = 1.018 MPa, w1 = 0.0182 mm and wc = 0.1540
mm.

3.3 Model description

Two different meshes are used to model the three-
point bend test of the notched-beam specimen. The
models are similar in terms of number of nodes and
elements. However, a different approach has been
used to discretize the ligament zone above the
notch. In the first model, shown in Figure 5, a
random procedure has been employed to generate
the entire mesh. For the other case, a semi-random
discretization is used, such that a predefined planar
surface is created above the notch. Because of the
imposed load applied to the specimen during the
simulated test, the crack is likely to develop and
propagate along this predefined flat surface.
During the generation of both meshes, several
nodes were prepositioned to accurately model the
locations for supports and imposing displacements.
The prenotch was modeled by assigning zero
stiffness values to the elements crossing the
prenotch area.

3.4 Simulation results

The analyses are carried out by imposing, in small
increments, a downward displacement at the top
mid-span nodes to simulate the action of the
loading device (Fig. 5).  For each mesh type
described above, the resulting load-CMOD curves
and fracture energy distributions are compared with
experiment and theory in the following sections.

3.4.1 Load-CMOD response
Figure 6 compares the load-CMOD curves
obtained from the simulations with the
experimental curve. The two simulated curves
agree well with the experimental result. The higher
load capacity of the numerical models in the tail
region of the curves is due to the rather coarse
discretization of the ligament region. The
uppermost elements in that region remain in
compression and therefore limit the advance of the
fracture process zone.  A forward analysis using
the planar RBSN model (used for the inverse
analysis in section 3.2) provides a better fit over the
length of the curve, partly due to a finer
discretization of the ligament region.

3.4.2 Distribution of fracture energy density
At each step of the numerical simulation, the
energy consumed by a fracturing element can be
derived as the difference between the work done by
the external loads and the internal strain energy.
Since only one element is allowed to fracture
during each computational cycle, the difference
between the incremental values of external work
and strain energy must be equal to the energy
consumed by that critical element. Therefore, at
any stage during the numerical simulation, the total
energy consumed by one element can be
determined by summing all its contributions up to
that point. By dividing this energy by the projected
area of the element facet on the cracking plane, the
corresponding energy density is calculated.  If an

Figure 6. Load-CMOD response.



Figure 7. Normalized energy consumption for: a) semi-random
and b) random discretization of ligament length.

element fractures completely (i.e. w > wc), the total
energy consumed by that element should be equal
to the fracture energy GF, which is the area under
the softening curve given in Figure 4.

Figures 7a and 8a show plots of the energy
consumed by the fractured elements for the semi-
random mesh simulation. The three-dimensional
representations of the energy consumption are
plotted alongside the cracked surface on the
corresponding mesh view. Here, the local energy
consumption, gF, is normalized with respect to the
fracture energy GF = 115.9 N/m, calculated from
the bilinear softening relation shown in Figure 4.
The lateral view of the plot shows that gF/GF  is
approximately equal to unity for the fully fractured
elements (i.e. the elements located in the bottom
part of the ligament zone). For these elements, the
differences between gF and GF are within 1.9%. In
the upper part of the ligament, the values of energy
consumption decrease since the elements in that
location have only partially fractured prior to
reaching the final CMOD value of 0.45 mm (Fig.
6).

Figures 7b and 8b show plots of the fracture
energy density obtained from the random mesh
simulation. The profile of the energy density plot
exhibits more variation relative to that of the semi-
random mesh model due, in part, to the various
facet inclinations with respect to the vertical plane.
(In the figures, the values of the energy density are
plotted only for elements with AP

ij > 0.1 mm2 and
angle θ smaller than 70 degrees.)  Although the

maximum value of the normalized energy density
is about 45% larger than GF, the average value for
the fully fractured elements is 118.6 N/m, which is
only 2.3% greater than GF. As for the semi-random
mesh case, the normalized energy consumption is
fairly uniform and around unity for the elements in
the lower part of the ligament. The energy values
decrease in the upper part where the elements have
not completely fractured by the end of the loading
history.

4 CONCLUSION

There are significant advantages to the irregular
discretization of materials and structures, including
the potential for highly automated model
construction, effective gradations of nodal point
density, and the explicit representation of material
features. In general, however, irregular lattice
models exhibit artificial heterogeneity that strongly
affects their accuracy when simulating fracture.

The Rigid-Body-Spring Network (RBSN)
approach is elastically homogeneous during
uniform straining, by virtue of the Voronoi scaling
of the lattice geometry and elemental stiffness
coefficients. A cohesive zone representation of
fracture was implemented in the RBSN using the
crack band concept of Bazant & Oh (1983). This
paper describes the extension of the RBSN fracture
routines to three dimensions. Accuracy of the
fracture model is demonstrated through simulations
of a three-point bend test.  The analysis results
indicate that the RBSN modeling of mode I type
fracture is objective with respect to irregular mesh
geometry. Current work involves the explicit
modeling of heterogeneous features, including
fibers, in the concrete and the development of
efficient strategies for solving larger systems.

Figure 8. Normalized energy consumption for: a) semi-random
and b) random discretization of the ligament length.
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