
1 INTRODUCTION

In quasi-brittle materials, fracture exhibits a finite
size process zone. Macro-cracking is the result of
progressive material damage in which micro-cracks
appear first in a rather diffuse way and then
coalescence occurs in order to form the crack. The
size of the resulting fracture process zone (FPZ) is
not dependent on the structural size, provided it
does not interfere with the boundaries of the
considered body. It is controlled by local
heterogeneity, and by the state of stress as well.
From the modelling point of view, the description
of the FPZ has to involve the introduction of an
internal length in the governing equations. It can be
in the form of a characteristic length which is
related to the length of the process zone, or in the
form of an internal length in non local constitutive
relations.

In most existing proposals, the internal length
is a constant parameter. Still, there are some
theoretical indications that suggest that the internal
length should change in the course of the fracture
process: with the help of micromechanics, Bazant
(1994) arrived at the conclusion that when the
interactions between cracks and voids develops in
the course of failure, the weight function entering
in the calculation of the non local variable
controlling damage should change as well. Recent

experiments carried out at R&DO on model
cementitious materials with controlled initial
porosity, i.e. initial damage, have shown that the
size of the fracture process zone changes with the
amount of voids in the material. Acoustic emission
(AE) analyses exhibit clearly an increase of the
fracture process zone with initial damage.

The aim of this contribution is firstly to
examine the correlation between the width of the
fracture process zone observed with AE and the
internal length in non local constitutive relations.
Secondly our purpose is to consolidate these
experimental observations in a modified non local
damage model with evolving internal length. The
correlation between the width of the FPZ and the
internal length of the material obtained from
inverse analysis of size effect tests is discussed.
The consequences on the inception of strain
localisation are also considered. The width of the
localisation zone increases with damage and is
stabilised, as opposed to the original model where
it decreases.

Finally, extensions of this model to ageing
resulting from an increase of material porosity, to
creep-damage interaction, and to hydromechanical
effects are discussed.
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2 EXPERIMENTS ON MODEL MATERIALS

The experimental program has been designed in
order to measure the mechanical characteristics of
mortar specimens with a controlled microstructure
(Haidar et al., 2003). This control was achieved by
adding inclusions of weak mechanical
characteristics (polystyrene beads) in a mortar
matrix.

All test specimens were made with a mix
which consists of ordinary Portland cement CPA-
CEMI 52.5, polystyrene beads, normal density fine
sand with a maximum size of 2 mm, a
superplasticizing agent (Glenium 51) and water.
Expanded polystyrene spheres of 3 – 7 mm mean
diameter were used as aggregate in the mix design.
Expanded polystyrene consists essentially of air.
Four different mixes of densities 2.0 – 1.8 – 1.6
and 1.4, having polystyrene content g of 13 -  22 -
31 and 39 % respectively, were achieved in
addition to the reference material (mortar without
inclusions). All mixes have a cement/sand ratio of
0.46 and a water/cement ratio of 0.4. For the
bending tests, four different sizes of geometrically
notched concrete specimens were used. The depths
were D = 40 , 80 , 160 and 320 mm while the
thickness was kept constant for all the specimens b
= 40 mm. The length to depth ratio was L/D = 8:3
and the span to depth ratio was l/D = 2.5 for all
specimens. One notch of depth D/6 and thickness
1.5 mm (same for all dimensions) was placed in
each bending specimen by putting steel plates in
the moulds before casting.

2.1 Size effect tests

The size effect tests followed the guidelines
established by RILEM (1990). The tests were
notch opening controlled with a constant CMOD
rate of 0.1 µm/s for D = 40 – 80 mm, 0.20 µm/s for
D = 160 mm, and 0.25 µm/s for D = 320 mm.
Figure 1 shows the response of medium size
specimens (D=40mm) for each material density.
Note that the deflection at peak is almost
independent from the density of the material. The
material density influences still the mechanical
behaviour of beams; the lower the density, the
lower the stiffness and the peak load.

These data are going to be interpreted with the
help of Bazant’s size effect law (Bazant and
Planas, 1998). This theory is here restricted to the
dependence of the nominal stress at failure σN on
the characteristic dimension D of 2D geometrically
similar specimens. This dependence is described by
the approximate formula:
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where ft  is the tensile strength of the material, a0 is
a characteristic size that corresponds to a change of
mechanisms between plasticity phenomena and
fracture mechanics, and B is a material parameter
which is a function of the geometry of the
specimen and applied load.

Figure 1. Influence of density on structural behavior, average
load-deflection curves for different material density on 40 × 40
× 107 mm3 beams.

σN is calculated according to the classical formula
for a beam of unit thickness :
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whereF is the maximal load and L is the length
between supports. The fracture energy Gf, defined
as the energy release rate required for crack growth
in an infinitely large specimen, is also calculated
(see Bazant and Planas, 1998).

It is found that the fracture energy Gf shifts
from the value 88.5 N/m for the reference material
to 52.30 N/m for the material density 1.4, a
decrease of 41%. In figure 2, size effect results are
presented in a log-log diagram only for the two
extreme densities (1.4 and 2.3) for more clarity.
The larger the beam, the lower the relative
strength. It can be noticed that the failure of the
beams with polystyrene (density = 1.4) tends to
adhere more to strength of material than to fracture
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mechanics, since the corresponding data shift right
on the size effect plot. It means that the material
becomes more ductile as the density decreases
(increasing porosity).

Figure 2. Bazant’s size effect curve: calibration for material
density 2.3 and 1.4.

2.2 Acoustic emission analysis

AE analysis was performed on specimens of size
(40×160×428 mm3) and for three different material
densities (2.3, 2.0 and 1.8). Three piezoelectric
transducers (resonant frequency of 150 kHz) were
used. Transducers were placed around the expected
location of the process zone to minimize errors in
the AE event localisation program. The accuracy of
the technique ranged from 4± mm for the reference
mortar to 10± mm for the lighter material tested
(density 1.8).

The cumulated locations of acoustic events
throughout a test are shown in Figure 3: the plotted
points indicate the detected AE sources over a
window of observation, centered at the notch, of
width 130 mm and covering the beam depth. In the
same figure, we have plotted the observed crack
path that appeared after the test on the lateral
surface of the specimen.

The major aim of the AE analysis is to obtain
an experimental characterisation of the FPZ. More
specifically, it is the width of the FPZ which is the
quantity of interest since it is related to the internal
length in continuum models (see e.g. Mazars and
Pijaudier-Cabot 1996) and to the parameter d0

obtained from Bazant’s size effect analysis (Le
Bellégo et al. 2003). An useful approach, well
suited to measure the crack band width, is to divide
the specimen into an array of rectangular elements
and to count the AE events located within each
element. A grid of size 1×1 cm is used here. The

cumulative number of events, i.e. the sum over the
entire record during the experiment, is plotted as a
function of its horizontal position x for various
vertical positions y over the depth of the specimen.
Then, the crack band width is defined as the length
of the segment of a horizontal straight line placed
at 20% of the maximum number of counts (Nbmax),
which intersects the average distribution of AE
events (see Haidar et al. 2003 for more details).
These values are about 50, 67 and 85 mm for the
material densities 2.3, 2.0 and 1.8 respectively.

Figure 3. Cumulative location of AE events (material density
2.3).

We have also studied the case where the horizontal
straight line intersects the vertical axis at the value
= 10 % of Nbmax, and we have observed that the
evolution of the width of the FPZ, as a function of
the polystyrene content g, is the same.

Figure 4. Evolution of fracture properties with polystyrene
content.
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Figure 4 shows the evolution of the width of the
FPZ defined according to this criterion with the
mass density of the specimens. On the same graph,
the evolution of d0, of the fracture energy Gf, of the
tensile strength ft, and of the Young’s modulus E
are also plotted. Note that there is a very good
agreement between the evolution of d0 and the
evolution of the width of the FPZ.

This technique allows the determination of the
shape of fracture process zone in its final stage, but
incremental counts (in between two loading stages)
provide also the evolution of the FPZ as the failure
process develops. Such an evolution of the width of
the FPZ is shown in figure 5. The width of the FPZ
enlarges in the course of damage progression.
Furthermore, the width is larger for the porous
material compared to the reference one (without
inclusions).

Figure 5. Evolution of the width of the fracture process zone v.s.
the applied load for the two material densities. The load on the
horizontal axis is increasing and then decreasing in the post
peak regime.

2.3 Correlation with the internal length

We are going now to compare the experimental
quantities determined in the previous section,
namely the width of the FPZ and the parameter d0,
with the internal length in a continuum model. The
non local version of the isotropic damage model is
used (see for instance Mazars and Pijaudier-Cabot,
1996). cl  is the internal length of the non local
continuum.

This internal length is obtained with the help
of inverse finite element analysis, following the
procedure described by Le Bellégo et al. (2003).
The calibration procedure is based on a

simultaneous fit of the numerical and experimental
load deflection curves for the four sizes of
specimens.

Figure 6. Prediction of the response of mortar beam with the
material density 2.3.

Figure 6 shows the fits obtained for the reference
material. The internal lengths and the others model
parameters obtained as a result of these fits are
reported in Table 1 for all the mass densities.

density lc (mm) κ0 At Bt
2.3 34.4 4.61 10-5 0.79 9836
1.8 51.5 4.66 10-5 0.65 9220
1.4 64.2 4.79 10-5 0.52 7893

Table 1. Set of model parameters resulting from optimised fits.

Figure 7. Evolution of d0, FPZ (experimental), FPZ (numerical)
and lc with polystyrene content.

Deflexion (mm)

0

200

400

600

800

1000

0 0.04 0.08 0.12 0.16

0.3 0.7 peak
load

Width of FPZ (mm)

0.30.7

Polystyrene content g : vol. %

V
ar

ia
tio

n

0,5

1,0

1,5

2,0

2,5

0,0 0,1 0,2 0,3 0,4 0,5

d0

FPZ (exp.)

FPZ (num.)

lc



Same as for the acoustic emission tests we also
measured the width of the FPZ obtained in the
numerical analyses. It is 75 mm for the reference
material, 120 mm for material density 1.8, and 139
mm for the lowest material density. These values
are 40 percent greater than the experimental ones
but the ratio between the computed and measured
widths of the FPZ is constant whatever the mass
density of the material as shown in Fig. 7. In the
same figure, we have plotted also the evolution of
Bazant’s size effect parameter d0 and of the
internal length with the mass density of the
specimens. The respective variations of these
parameters are very similar, which is quite
remarkable. This is also in good agreement with
the result obtained by Bazant and Pijaudier-Cabot
(1988), where the width of the zone of localized
damage was shown to be proportional to the
internal length of the material.

3 SIMPLIFIED MICROMECHANICS

The objective of the foregoing simplified analysis
is to obtain qualitative expressions of non local
effects induced by the presence of cracks in an
elastic, homogeneous material (for more details see
Pijaudier-Cabot et al. 2003).

Consider an infinite isotropic two-dimensional
solid subjected to a remote uniform stress field σ∞.
Our purpose is qualitative and we shall consider for
more simplicity σ∞ as isotropic. Under this
simplification, the considered problem is
essentially one-dimensional, the strain and stress
being volumetric. This solid contains microcracks
caused by the loading history that are distributed in
the material arbitrarily. Each crack induces a
modification of the local stress and strain fields. In
order to evaluate this perturbation, we assume that
the microcracks are far enough from each others.
Under this assumption, the induced remote stress
and strain fields due to a crack are similar to those
generated by a circular void. Therefore, cracks are
going to be replaced by circular voids in the
foregoing derivations. The calculation of the
perturbation stresses and strains between the voids
uses the superposition theorem. Note that cracks or
voids are far from each others and that the
perturbation stresses are computed far from them.
We look at a material that has been slightly
damaged only.

We may decompose this problem into two
sub-problems:
• Sub-problem I: the solid is considered without

any inclusion. It is subjected to the remote
tensile volumetric stress σ∞.

• Sub-problem II: inside each void, a
distribution of normal pressures is applied.

Superposition of these two sub-problems
provides the distribution of the stress inside the
medium containing voids. In the n problems of a
circular void Si (i = 1 – n) of diameter ai in an
elastic matrix, the remote traction σ∞ is
transformed into distributed normal forces Pi = -
(σ∞ . ni) acting inside each void where ni is the
outward normal vector to the inner void surface Γi.
The effect of the pressure inside the voids Sj on
void Si is written as the sum of the pij  (i ≠ j), where
pij represents the normal pressure at the imaginary
location of Si produced by Sj:
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ijr being the distance between the centers of void i
and void j. Since the voids are sufficiently far from
each others, we have:
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On each contour Γi of each voids we define:

ii P−=σ  (5)

where iσ  is the volumetric stress that equilibrates
the normal pressure applied inside void i, to which
the effect of interaction is added in order to
equilibrate the remote stress∞σ on the void surface.
Let us now evaluate the stress acting in the
material, between the voids. According to the
superposition scheme, the resulting local stress
field at each point kx  of the isotropic medium is
the sum of the contributions due to each internal
pressure inside each void plus the remote field:
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This equation is typically non local and the voids
produce a stress amplification. At each material
point, this amplification depends on the distance to
the void considered, on the remote stress, and on
the square of the radius of the void ai. Eq. (6) is
very similar to the one derived by Bazant (1994),
with a more simple influence function here.



We are going now to derive the local strain
field with a view to the expression that controls the
growth of damage locally. Because the material in
between the voids is elastic, we have:
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where K is the bulk stiffness of the isotropic elastic
medium. We can see here that the strain in the
material is modified due to the voids. Same as for
the stress, there is a non local amplification.
Our goal is to recover an expression of the strain
that is similar to the quantity that controls damage
in continuum relations. For this, we need first to
define such a constitutive relation. We use again
the isotropic damage model:
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Substitution in Eq. (7) yields:
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It may be interesting to further modify Eq. (9) in
order to exhibit the correction to the remote strain
due to the presence of the voids. For this, we divide
Eq. (9) by )1( d− , which is possible because
damage is small. We obtain after some
simplifications:

( )( )
� ∞

∞
∞ +=

i
i

ik

i
kk x

r

xf
xx )()()(

2
εεεε (10)

Non local effects appear only when voids are
present. They should grow when the number of
voids increases. Function f(ε∝) is a monotonically
increasing function of the local strain, or on the
local value of damage (see Pijaudier-Cabot et al.
2003).

4 MODIFIED NON LOCAL MODEL

In the original non local damage model, the width
of the FPZ is related to the internal length.
According to bifurcation analyses (see e.g. Mazars
and Pijaudier-Cabot, 1996) it is proportional to the
internal length. The experimental data presented in

section 2 show that the internal length should
increase in the course of damage. Furthermore,
micromechanics shows that non local effects
increase with damage. That can be captured
considering that the internal length should increase
in a non local model. Before modifying the
original non local damage model accordingly, let
us first recall the main equations. The stress –
strain relation is:

klijklij d εσ Λ−= )1(  (11)

where σij and ijε  are the components of the stress
and strain tensors respectively (i, j, k, l ∈ [1, 3]),

ijklΛ  are the initial stiffness moduli, and d  is the
scalar damage variable. For the purpose of defining
damage growth, the equivalent strain is introduced:
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where +.  is the Macauley bracket and iε  are the
principal strains. In the non-local damage model,
the variable ε  which enters in the equations
governing damage growth is:
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where Ω  is the volume of the structure, )(xVr  is
the representative volume at point x, and )( sx −ψ  is
the weight function:
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cl is the internal length of the non local continuum.
We look now for an enhancement of this model
which accounts for the main characteristics of
Eq.(10) of the micromechanical model. According
to Eq. (10) and at a given point x, the non local
influence of a void located in its neighbourhood at
coordinate z depends on the value of the scalar
function ))(( zf ε . It vanishes if there is no void,
when damage is zero and ))(( zf ε = 0, and it
increases afterwards. In a continuum model, the



non local contribution to the equivalent strain )(xε
of the local equivalent strain )(~ zε  at point z in Eq.
(13) should be weighted following the same
principle. There are several possibilities for
capturing such an effect in the above non local
model. One is to modify the value of the internal
length in the weight function directly in order to
capture the increase of the weight:
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with:

0)~(.)~( cc lfl += εαε  (16)

A one dimensional bifurcation analysis has
been performed taking into account this
modification of the non local model. The variation
of the wavelength of localised modes is shown in
Fig. 8.

Figure 8. Variation of the admissible wavelength (mm) of the
localised modes according to the original and enhanced damage
models.

On this plot, it can be observed that the width of
the localised modes is increasing, at least in a first
regime where the damage zone forms. This is
consistent with the experimental observations in
Fig. 5, as opposed to the results obtained with the
original model with fixed internal length.

5 CLOSURE - APPLICATIONS TO COUPLED
PROBLEMS

A first application to coupled problems deals with
the chemo-mechanical case. More precisely, we
intend to investigate the case of calcium leaching
which produces an increase of porosity of the

material, assuming that it is homogeneous, made of
a single phase, which is a rather crude
simplification of cement paste and mortar. The
micromechanical model can be adapted in order to
account for the initial porosity of the material. Eq.
(6) becomes:

)(

)()()(

j 

2

2

jjk

i
i

ikkk

xl

xlxx

�

�

∞

∞∞ ++≈

σ

σσσ

(17)

where the last term is the perturbation stress due to
each initial void j. The derivation of the continuum
model follows the same steps as in section 3, under
the same assumptions and considering that the
initial voids in the model material are sufficiently
far from each others. The continuum constitutive
relation which accounts for the initial porosity is
chosen as εσ KVd )1)(1( −−=  where V is damage due
to the initial porosity. This model is similar to the
one devised by Gérard et al. (1998) among others,
for chemo-mechanical damage. The strain
governing damage growth (Eq. 10) becomes:
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An enhanced non local model can again be devised
for materials with an initial distribution of voids
such as those used in the experiments in section 2.
One possibility is a subsequent modification of the
weight function:

0)~(.),~( cc lVfVl ++= βεαε   (19)

where β  is an additional constant which accounts
for the variation of internal length due to the initial
material porosity. We can see here that an increase
of the internal length is expected. This is consistent
with experimental observations on model materials
with controlled porosity (Fig. 7).

A second application is hydro-mechanical
problems. Here, the voids or cracks are assumed to
be filled with water. The water pressure is
superimposed to the stress inside the voids and the
interaction between voids is modified. Eq. (6) may
be rewritten as:
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Note that the stress 'σ  is now the effective stress.
The fluid pressure contributes to a part of the total
applied stress and, in addition, it increases the
interactions between voids. Eq.(10) becomes
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and one can devise a corresponding non local
continuum model in which the internal length is a
function of internal pressure:

0)()~(.),~( cc lpgfpl ++= βεαε   (22)

Function g(p) is positive and increases with
increasing pressure.

A third application is the case of creep-damage
interaction. Eq. (6) remains unchanged but the
local constitutive relation is time dependent:
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The bulk modulus K(t) is a secant modulus that can
be computed from visco-elastic relations. Eq. (10)
becomes
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and one can see that the interactions depends on the
ratio between the secant moduli at each point. If
the rate of loading is larger at point xk than at point
xi, then it is expected that this ratio is less than 1
and the interaction decreases. Consequently, an
apparent decrease of the internal length is
expected. The corresponding non local model with
evolving internal length remains to be devised. One
may think about a rate effect on the evolution of lc
as suggested by size effect tests (see Bazant and
Planas, 1998).

Finally, let us stress that the above qualitative
discussion about the influence of porosity, internal
pressure, and creep on the internal length has to be

correlated with experimental results and probably
with a less simplistic micromechanical analysis
before a proper evolution of the internal length is
implemented. Experimental data for the chemo-
mechanical case are available from the
experiments presented in this paper, with a model
material only. Other type of experiments exhibiting
the variation of the FPZ due to creep, internal fluid
pressure, or chemo-mechanical effects remain to
be performed.
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