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ABSTRACT: Quasi-brittle materials are usually heterogeneous and are characterised by the prersence
of a large fracture process zone (FPZ) where much of the energy supplied by external sources is
dissipated before any real crack proporgation can take place. For their description it is therefore
essential to know how the energy is dissipated and how the stresses are redistributed in the FPZ. This in
turn is dependent on the microstructure of the material. Thus the coarser the microstructure the larger
the extent of FPZ, and vice versa. Current test procedures produce results which show a marked
dependence of the specific fracture energy on the shape and size of the test specimen because of
specimen boundary effects which make the energy dissipation non-uniform in the FPZ. The authors
have recently shown how to take this boundary effect into account in order to obtain a size-independent
specific fracture energy of a quasi-brittle material, and the corresponding tension-softening diagram.

The failure strength of structures made from quasi-brittle materials seems to decrease as the size of
the structure is increased. This apparent size effect is claimed not to be of the statistical nature but as a
result of high stress gradients introduced by cracks. In this paper it will be shown that this claim is
strictly true for cracks of moderate size relative to the size of structure. For very small cracks (again
relative to the structural size) the strength size effect is only slightly different from the Weibull
statistical size effect. A theoretical explanation of strength size effect will be provided over the size
range 1:80. It is interesting to point out that this explanation needs the above-mentioned size-
independent specific fracture energy and the corresponding tension-softening relationship.

The computational results have been fitted by a simple strength size effect formula with appropriate
asymptotic behaviour at both size extremes. The three unknown coefficients in this formula depend
only on the size of the crack and they can be obtained by conducting tests on geometrically similar
specimens of any shape but of varying sizes that can be conveniently handled in a laboratory. The three
material properties of the concrete mix appearing in this formula, namely the Young modulus E, the
direct tensile strength £, and the size-independent specific fracture energy G must be independently
measured.
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1. INTRODUCTION large structures can this size be regarded as small
in comparison with the characteristic dimensions.
In quasi-brittle materials, any crack or notch tips The redistribution of stresses and dissipation of

are blunted by the formation of a process zone  energy in the FPZ was accounted for by Bazant
ahead them. In this process zone the stresses are  (1984) who derived the formula

redistributed and energy dissipated which is thus A, (1)
not available for crack propagation. The size of this (o N )n =
fracture process zone (FPZ) can be commensurate (1+W / Bz)Z

with that of most structural elements. Only in very



where 4, and B, are positive coefficients. Formula
(1) reduces to the linear elastic fracture mechanics
as W — oo when the size of the FPZ is very small
in comparison with W. In fact formula (1) can be
established by Taylor’s expansion from this
asymptotic limit (Karihaloo 1995). Since its
appearance in the literature in 1984, formula (1)
has been rederived from energy considerations and
asymptotic matching techniques (see, e.g. Bazant
1997, Bazant & Chen 1997). The positive
coefficients 4, and B, are related to the specific
fracture energy Grand the FPZ size ¢, measured on
a very large specimen (/' — o), as well as the non-
dimensional geometry factor g(o) and its first
derivative g’(ar). The geometry factor g(or) depends
on the notch to depth ratio oo = a/W and is different
for different test specimen shapes
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It has been argued that the relationships between
the coefficients 4, and B, and the material
properties Gy and ¢, (2) can be exploited to
determine the latter from tests on notched
specimens of various sizes with two-dimensional
similarity. For example, tests can be conducted on
notched three-point bend (TPB) beams with a fixed
o and span to depth ratio for several depth values.
The coefficients 4, and B, are determined by a
linear regression analysis, after rewriting (1) in the
standard form Y = AX + B, where
Y=1/(cy . X=W,A4=1/(B,42) and B=1/42 .

Another approach to capturing the FPZ within a
nonlinear theory of fracture for quasi-brittle
materials is the so-called fictitious crack model
(FCM) of Hillerborg et al. (1976). In this model,
the FPZ ahead of a real crack is replaced with a
fictitious crack in which the material exhibits
softening with a residual stress transfer capability
across the crack faces dependent on the crack
opening displacement (COD), o(w). The faces of
the fictitious crack are assumed to close smoothly
near the tips so that the stress is finite at the
fictitious crack tip and equal to the tensile strength
f; of the quasi-brittle material. Thus the net stress
intensity factor (SIF) (i.e. the SIF due to external
loading less the factor due to the closure pressure
in the FPZ) vanishes at the fictitious crack tip.

This approach was adopted by Karihaloo (1999)
who arrived at the formula

R
[ B 3
(0,), A{] WJ 3)

where

1, d@
=l e 4

27 gla)

Here, /,., and (Oy)... refer to the size of the FPZ
in a very large specimen (/' — o0) and its nominal
strength. It was argued by Karihaloo (1999) that /..
and (oy),.. can be obtained by considering only the
singular term of the stress field ahead of a pre-
existing crack, whereas for normal size structures
higher order terms need to be considered to take
into account the relatively large size of the FPZ in
the FCM.

In the derivation of formula (3) several
approximations and assumptions were made, as a
result of which its predictions for small values of W
were suspect. This was pointed out by Planas et al.
(2001) and by Karihaloo et al. (2003b). The latter
authors also made a tentative attempt at dispensing
with some of the approximations and assumptions
in its derivations. Apart from these drawbacks, it is
not clear how the asymptotic properties Gy and /..
can be used for the analysis of real structures.
Moreover, it transpires that both Gyand /.. (or ¢yin
formula (1)) cannot be regarded as material
properties because they vary with a, # and the
shape of the test specimen. That brings us to the
essential question that we shall attempt to answer
in this paper. How much of the size effect in the
strength of a quasi-brittle structure predicted by
formula (3) (or formula (1)) is a result of the
intrinsic size effect in the G itself? In other words,
if the specific fracture energy of a quasi-brittle
material that did not depend on the shape and size
of the test specimen could be independently
determined, would a structure made of such a
material still exhibit a strong size effect in
strength?

In this paper we shall revisit the formulation of
formula (3) with a view to predicting the observed
nominal strengths of TPB and wedge splitting
(WS) specimens made from normal and high
strength concretes. Both these specimen geometries
belong to the so-called type 2 geometry, i.e. g (o) >
0, g() > 0. We shall propose an improved
formula for predicting the strength size effect over
a large size range of 1:80.

A4; = (O-N )uw , B;

2. TEST RESULTS, G» AND o(W)

Tests were conducted on TPB and WS specimens
(for full details, see Abdalla & Karihaloo 2003).
Notched beams of different depths W (100, 200,
300 and 400 mm) with a constant span to depth
ratio of 4 were tested in three point bending (Fig.



1). The notch to depth ratios a/W were selected to
be 0.05, 0.10, 0.30 and 0.50.
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Figure 1. Specimen shapes, dimensions and
arrangements (a) beam specimen; (b) wedge specimen.

loading

WS tests were carried out on normal and high
strength concretes. Their average compressive
strengths were 60 and 100 MPa, respectively.
Ninety-six specimens of different sizes W (100,
200 and 300 mm) were tested (Fig. 1). The notch to
depth ratios ay/(W-h) were selected to be 0.20,
0.30, 0.40 and 0.50 (the corresponding a/W" ratios
are 0.16, 0.26, 0.36 and 0.46, see Fig. 1).

The value of the specific fracture energy so
determined varies with the size and the notch to
depth ratio a. This value is therefore designated
Gfa, W). It decreases with increasing o but
increases with increasing W (for details, see
Abdalla & Karihaloo 2003).

Table 1. Size-independent specific fracture energy
Gr.

. Wmm 100 200 300 400
TPB specimens G
of NSC (55 N/Fm 140 144 137 143
MPa)

a mm 54 104 117 149

WS specimens W mm 100 200 300
Gr

NSC (60 MPa) N/m 123 135 136
amm 79 136 166

HSC (100 gjm 125 122 123

MPa)

a mm 74 128 187

The application of the boundary effect concept
(Duan et al. 2003) to the test results GAo, W)
indeed gives a specific fracture energy value Gy
that is independent of the size (o, ) and shape of

the test specimen. This may be judged by the
values reported in Table 1.

For both the TPB and WS specimens the size-
independent specific fracture energy G (Table 1)
was estimated from three or four sizes with four
notch to depth ratios. However, Abdalla &
Karihaloo (2003) also observed that the same value
of G for a concrete mix could also be obtained by
testing specimens of a single size, one half of them
containing a very shallow starter crack (o0 < 0.10
for TPB and o < 0.16 for WS) and the other half a
deep starter crack (a0 > 0.50 for TPB and WS). This
observation was confirmed recently (Karihaloo et
al., 2003a) by re-evaluation of a large body of test
data on measured GAo, W) of concrete mixes
available in the literature. This conformation paved
a way for a simple and practical means of
determining G of concrete. They also provided
guidance for the selection of the specimen
dimensions based on the maximum size of
aggregate in the concrete mix.

In the context of the FCM (Hillerborg et al.
1976) the true specific fracture energy obtained
above is exactly equal to the area under the
cohesive stress-separation diagram o(w) (i.e. the
tension softening diagram) in the fictitious crack
(i.e. the FPZ)

G, = [ 0”'“ o(w) dw (5)

where w, is the critical opening of the real crack tip
when it begins to grow.

As the tension softening region (i.e. the fictitious
crack) is generally discontinuous, a direct
determination of o(w) is an impossible task. It is
therefore often determined using an inverse
identification procedure. Many such procedures
have been proposed (Roelfstra & Wittmann 1986,
Ulfkjaer et al. 1995, Olesen 2001). In each of these
procedures, the shape of the tension softening
diagram is assumed a priori and the parameters
describing it identified in such a way that the
global load-deformation response of the test
specimen is reproduced with a desired degree of
accuracy. By far the most popular approximation
of the o(w) diagram is the bilinear one shown in
Fig. 2, so that (5) reduces to

Gy :%(frwl +flwc) (6)

where wy, f; and w, are to be identified. In this
work, the simple inverse identification procedure
of Olesen (2001) based on a nonlinear hinge model
for the real and fictitious crack was used to identify
these three parameters for the three concrete mixes
tested using the TPB and WS specimens. The



global load-CMOD response of the specimens was
reproduced for all /¥ and o. The average values of
the parameters w;, f; and w, were scaled to
correspond to the size-independent Gy of concrete
mixes (Table 1). The resulting parameters of the
bilinear o(w) diagram for the three mixes are given
in Table 2.
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Figure 2. Bilinear tension softening diagram c(w).

Table 2. Elastic properties and parameters of 6(w)
diagram for the three test concrete mixes.

Mix fe I Gr E wi A We Ly
(MPa) (MPa) (N/m) (GPa) (mm) (MPa) (mm) (mm)

NSC

SR 55 267 141 369 0.049 0457 0333 7298
NSC 60 280 155 383 0051 0524 0318 7572
for WS : 3 0.0510.524°0. :
HSC

IS 100 400 123 430 0017 136 0.132 3306

The direct tensile strength was assumed to be f; =
0.65 f;, where f;, is the indirect tensile strength,
namely the split cylinder strength.

3. THEORETICAL PREDICTIONS

In the derivation of formula (3) (Karihaloo 1999) it
was recognised that quasi-brittle materials develop
a diffuse FPZ before the formation of a traction-
free crack whose size can be commensurate with
that of a small test specimen. Within this zone the
stresses are redistributed so that it is necessary to
consider not only the singular term in the
asymptotic crack tip field but also higher order,
nonsingular terms. In the derivation, Karihaloo
(1999) used approximations for the higher order
terms, as well as the weight (Green's) functions for
a semi-infinite crack in an infinite plane instead of
a finite size crack in a finite TPB or WS specimen.
These approximations have now been eliminated
by taking into account accurate higher order terms
of the crack tip asymptotic field, as well as by

using accurate weight functions for a finite crack.
Some preliminary results have been previously
reported (Karihaloo et al. 2003b).
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Figure 3. Decomposition of a traction free crack with a FPZ of
length /, (a) into the traction free crack with stress o, (r) ahead
of crack tip (b) and the FPZ with stress [o(s) - co(/, - s)] and
displacement w(s)(c). As the faces close smoothly the stress
intensity factor at 0 will vanish. £(s) is the stress intensity factor
due to unit concentrate loads at s, g(s, 7) is the corresponding
displacement at location 7 (d) (From Karihaloo 1995).

In common with the earlier derivation (Karihaloo
1999), the traction-free crack with a FPZ of length
1, at its tip is decomposed into a traction-free crack
(Fig. 3) with the following stress field at its tip

3
ay(r)zao(r)=i+3a3«/;+5a5r2 (7
Jr

and the FPZ with the stress [6(s) - Go(/,-5)] and the
displacement w(s) across its faces. In (7), a; is
related to the mode I SIF K; via a, = K, / V(27).
The coefficients a;, a; and as depend on the crack
length, applied load o and size and geometry of the
body.

For a TPB with a span to depth ratio B of 4
considered in the current study, the coefficients a;,
as, as are (Karihaloo & Xiao 2001)

a4 ZO-‘/W]Q(Q)

a= &) ®



k, (0{): \/Elh (0!)
2z (1-a)” (1+3a)
p(@)=1.9+041a +0.51a” —0.17a°
2. (@) =—14873a" +233.48a* —153.97a°
+49.5150% — 9.2406c +0.6534
2. (@) =27652a° - 5869.40° + 4919 3"

—2084.40° + 468.48a° — 52.998«x

+2.1491

and 6 = 6P/W and the subscript 4 refers to the span
to depth ratio = 4. P is the applied point load per
unit thickness (m). The dimensions of ¢ and ¥ are
MPa and m, respectively. For brevity, we shall not
report the theoretical/computational results for WS
geometry.

The opening displacement of the cohesive crack
faces w(?) (representing the FPZ) can be expressed
as the following singular integral equation (see Fig.
3)

f;”g(s, ta)lo(s)- o, (1, —s)]ds=—w(e) (10)

The finite tensile strength of concrete requires that
SIF vanishes at the FPZ tip. This in turn requires
that the faces of FPZ close smoothly, i.e.

J.I()Pk(SQC’)[O'(S)—O'O (11, —s)lds=0 )

Of course, it is not always necessary to impose
the condition that the SIF vanishes at the FPZ tip
(see e.g. Elices et al. 2002). In normal strength
concrete, the FPZ is often surrounded by a zone of
microcracks (corresponding to the pre-peak
nonlinearity), so that the SIF is finite at the FPZ
tip. However, this has been shown to have a
negligible effect on the results (Alaece & Karihaloo
2003).

The weight functions g(s,t;a) and k(s;a) are the
respective COD at the location ¢ and the SIF at the
crack tip of a single edge cracked specimen of
finite size due to a pair of unit normal forces at s on
the crack faces (Fig. 3d). Both k(s;a) and g(s,t;a)
have been derived by Xiao & Karihaloo (2002).

In the earlier formulation leading to eqn (3)
(Karihaloo  1999) the following  crucial
approximations were made: (i) the higher order
coefficient a; was inferred indirectly and a; was
not included; (ii) only the first terms in the weight

(€))

functions (10) and (11) were used. These terms
correspond to a semi-infinite crack in an infinite
body and not the finite TPB or WS specimens
considered; (iii) with these approximations, the two
singular integral equations (10) and (11) were
solved analytically in an indirect manner. The
COD, w(s), in the FPZ 0 = s =< [/, was
approximated by a polynomial in s, and O () and
1, were solved analytically from (10) and (11) for
prescribed o (i.e. K;). The distance s was then
eliminated from the assumed w(s) and the
calculated o(s) to establish the tension softening
relationship o(w).

As a result of the above approximations, the
o(w) relationship so obtained became dependent on
the geometry of the structure and external loading
(i.e. on o and a;) and no longer reflected a true
material property, as it should. Additionally, the
nominal strength formula (3) predicted an arbitrary
lower limit on the structural size W > Bs in order
for it to have a physical meaning,

The above exact formulation has overcome these
drawbacks. However, it is now necessary to
prescribe the actual o(w) diagram for the concrete
used for making the TPB beams and WS
specimens and to solve the singular integral
equations (10) and (11) numerically for the
prescribed o(w) diagram (Table 2).
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Figure 4. Distribution of the cohesive stress in the FPZ for TPB
specimens with oo = 0.30 and various .

To solve the singular integral equations (10) and
(11), the FPZ is divided into segments as is usually
done in the boundary element analysis. The
cohesive stress o(s) is interpolated by its values at
the two end points and assumed to vary linearly
within each segment. Equation (10) is discretized
at all nodes except the FPZ tip, where the value of
cohesive stress equals f. From the discretized
system of equations, we can solve the unknown
cohesive stresses and external applied stress o (or
1,) for given [, (or o0). The typical distribution of
the cohesive stress in the FPZ at peak load is



shown in Fig. 4, for TPB specimens with o = 0.30
and various W values. The distributions are very
similar for all values of o, and for all o and 7, the
residual stress is always above the level of f; (Table
2).

4. DISCUSSION

It can be seen that when the crucial simplifying
assumptions made in the derivation of formula (3)
are removed, the predictions of the resulting
formulation based on the FCM are in good
agreement with the test results for TPB specimens
(Fig. 5). (The same procedure can be followed for
WS specimens. However, for brevity, calculations
for WS specimens are not included here). This
good agreement is a result of using G and c(w) in
the FCM that are independent of the shape and size
of the test specimen (Tables 1 and 2).
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Figure 5. The variation of the measured nominal strength with
the characteristic dimension, # of the TPB specimen compared
with the theoretical prediction.

It is of some interest to study the weakening in
the strength size effect as the size of the notch
decreases with a view to judging whether or not
there is a deterministic fracture mechanical size
effect (over and above the statistical Weibull size
effect) in unnotched quasi-brittle structures. For
this the test results for the TPB specimens with a
very small initial notch (o = 0.05) are again plotted
in Fig. 6 on a log-log scale, together with the
Weibull line which on the same scale has a slope
close to —1/6 (Zech & Wittmann 1978). Note that it
is not possible to test WS specimens with very
small o (smaller than around o = 0.15) because
they tend to fail prematurely at the re-entrant
corners (Fig. 1). From Fig. 6 it is clear that there is
a (small) size effect in the failure strength over and
above the statistical Weibull size effect, but it is
difficult to say with any degree of certainty as to
whether this small difference is solely due to the

deterministic fracture mechanical size effect. This
is because casting and curing of concrete
specimens induce their own size effects. Van Vliet
& Van Mier (1999) also noticed that uniaxial
tension test strength data on unnotched specimens
could be accurately described by Weibull statistics
(apart from the very small test specimen) but
cautioned against drawing any definitive
conclusions on strength size effect from this
fortuitous agreement because of the size effects
induced by casting and curing of specimens.
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Figure 6. The variation of the measured nominal strength of
TPB specimen with a very small starter notch (oo = 0.05) with
the specimen depth 7 compared with the Weibull statistical size
effect for concrete.

In view of the fact that the theoretical model
based on the FCM and the use of size-independent
Grand o(w) of a concrete mix is able to predict the
strength size effect accurately in the range of sizes
of TPB specimens tested in the laboratory, the
model has been used to predict the nominal failure
strength outside of this range. The size of TPB
beams, made from the same normal strength
concrete mix from which the test beams were
made, was varied between W = 25mm and W =
2000mm keeping the span to depth ratio constant at
4. This gave a size range of 1:80. Three notch to
depth ratios were considered, o= 0.1, 0.3 and 0.5.
The results of this prediction are shown in Fig. 7,
together with the test results. The relative size of
the FPZ (/,/W) is shown in Fig. 8 from which it is
clear that //W decreases significantly as W
increases. For example, it drops from 0.64 to 0.107,
as W increases from 25 to 2000mm for a= 0.10.
This confirms conclusively that nonlinear theory of
fracture is essential for structures of small size but
that large concrete structures with cracks can be
analysed by linear elastic fracture theory.
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Figure 7. The variation of the nominal strength with the
characteristic dimension, /¥ of the TPB geometry as predicted
by the theoretical model in the extended size range from 25 to
2000mm.

TPB-NSC

Figure 8. The variation of the relative size of the FPZ with the
characteristic dimension, /' of the TPB geometry for the size
range from 25 to 2000mm.

5. IMPROVED FORMULA (3)

We have seen above that the theoretical model
based on the FCM is able to predict accurately not
only the test results in the narrow range of sizes
tested in the laboratory but also outside of it (Fig.
7). However, these predictions are only available to
those who can perform the computations. For this
reason, it would be most helpful to have the
computational results available in a simple
analytical form, as e.g. formula (3) but without its
drawbacks. This analytical formula would replace
the inadequate (3).

With this aim in mind, we shall assume, based
on the expected asymptotic behaviour that

(O—N)u _ Dl D3 (12)

= ; +
/i WY [y D,
D, wil,

where, D,...., D, are coefficients to be determined
by fitting the test results.

The choice of (12) is dictated by the fact that the
strength attains finite asymptotic values at both size
extremes, i.e. when /' — 0 and W — . However,
for (oy), to tend to a finite value as W — 0, we
must have additionally that d(oy)/dW — 0 as W —
0. For this it is necessary and sufficient that

DD,

D, = (13)
2D,
As D > D, it follows from (13) that
D,/D, <2 (14)
Equation (12) can therefore be rewritten as
o Wi, Y
( N)“=D1(0!) 1+ /ch
fi D, (@) (15)
-1
L, D@ w(, Wi,
2D,(@) 1, | D,(@)

The coefficients D(o), D) and D,(or) are
obtained by nonlinear regression of the test results
and are given in Table 3, together with Ds(c)
obtained using eqn (13). Note that the inequality
(14) is satisfied for all o and all three mixes.

Table 3. Coefficients Dy,....., D, in (12) and (15)

for the three concrete mixes.

Mix J((CMPa) o D) Dxo) Di() g ;](3‘213))
0.05 0263 0493 0.081 0.022

NC 55 0.10 0211 0481 0.001 0.0003

for TPB 030 0.156 0.254 0.029 0.009
0.50 0.066 0371 0.194 0.007
0.16 0.161 0.084 0.055 0.053

NC 60 026 0.177 0.013 0.088 0.054

for WS 036  0.090 0.029 0.026 0.040
046 0.051 0407 0.079 0.005
0.16 0.177 1412 0.382 0.024

HSC 100 026 0.158 0401 0.109 0.021

for WS 036 0.096 0901 0.054 0.003

046  0.104 0.064 0.024 0.020

The formula (15) is plotted on Figs 9-11 for the
three concrete mixes, together with formula (1). It
will be seen that eqn (15) fits the experimental data
well. The predictions of the size effect formula (1)
are also in good agreement with the test results.
However, when the relationships (2) between the
coefficients A, and B, appearing in this formula
and the material properties Gyand cyare exploited,
the resulting material properties are found to vary



significantly with the shape and size of the test
specimen,

Equation (15) does have the correct asymptotic
behaviour, although the coefficients D;(c), D,()
and Dy(o) were determined from test data in a
limited size range. In order to check whether or not
it can be used outside of this narrow range, we
shall compare its prediction with those of the
theoretical/computational model (Fig. 7) for the
NSC using TPB geometry for o= 0.10, 0.30 and
0.50.
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Figure 9. The variation of the measured nominal strength with
the characteristic dimension, # of the TPB specimen compared
with formula (15) and formula (1).
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Figure 10. The variation of the measured nominal strength with
the characteristic dimension, W of the WS specimen for NSC
compared with formula (15) and formula (1).

The comparison of predictions is shown in Fig.
12, from which it is clear that formula (15) can
indeed be used in the size range 1:80 for shallow to
moderate notches. The theoretical/computational
predictions deviate from those of formula (15) for
o = 0.50. However, we believe this is a result of
the fact that the test results were only available for
two depths for this ratio of notch to depth.

Formula (15) therefore replaces the inadequate
formula (3). The coefficients in this formula are
established from specimens of a range of sizes and
a range of notch to depth ratios that can be

conveniently tested in a laboratory. The formula
can then be used in a much larger size range (1:80)
with confidence.
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Figure 11. The variation of the measured nominal strength with
the characteristic dimension, ¥ of the WS specimen for HSC
compared with formula (15) and formula (1).
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Figure 12. Comparison of theoretical/computational predictions
with those of formula (15) in the size range 1:80.

As a matter of interest, we have plotted formula
(15) in a still larger size range (1:10% in Fig. 13 of
TPB geometry for two notch to depth ratios,
together with the test results. The formula seems to
capture the whole range accurately.
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Figure 13. Prediction of formula (15) over the size range 1:10°.
The test data in the narrow size range are also shown (o = 0.05
and 0.30).



6. CONCLUSIONS

Based on the work reported in this paper, the

following conclusions can be drawn.

e A deterministic (as opposed to statistical) size
effect exists in the strength of cracked concrete
structures owing to the stress redistribution
introduced by the presence of cracks manifested
in the FPZ.

e The deterministic strength size effect becomes
stronger as the size of the cracked structure
increases but weakens as the size of the crack
reduces relative to the size of the structure.
These experimental observations are confirmed
by theoretical/computational studies based on
the FCM. For these studies it is important
however to use the true, size-independent
fracture energy and the corresponding tension
softening diagram of the concrete mix that are
independently measured.

e The theoretical/computational model that is in
full agreement with the test results in the
limited range of sizes tested in the laboratory
can be extended beyond this range to include
cracked concrete structures in the very large
size range of 1:80.

e The theoretical/computational results in this
extended size range can be represented by a
strength size effect formula that is very simple
to use in practice and has the appropriate
asymptotic behaviour of both size extremes.

e Besides the mix properties (Young’s modulus,
E, direct tensile strength, £, and the true size-
independent specific fracture energy, G) which
must be independently measured, this simple
formula contains three unknown coefficients
which depend only on the size of the crack
relative to the size of the structure (i.e. ).

e These three coefficients can be determined by
regression on test results obtained on
geometrically similar specimens of any shape
but of varying sizes and o that can be
conveniently handled in a laboratory. The
formula can be used with confidence for
cracked concrete structures in the range of at
least 1:80.
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