
 
 

Introduction 
 
Use of fibers in concrete is intended to utilize the 
strength and stiffness of fibers in reinforcing the 
brittle matrix.  Reinforcing ordinary concrete 
materials with short randomly distributed brittle 
fibers such as glass has been attempted for more 
than 20 years [1][2].  Such brittle matrix-brittle 
fiber materials are superior to other FRC (Fiber 
Reinforced Concrete) materials for several reasons.  
In comparison to steel fibers, the small diameter of 
the individual glass fibers ensures a better and 
more uniform dispersion.  In addition, the high 
surface area and relatively small size of glass fiber 
bundles offers significant distribution capability 
and crack bridging potential as compared to steel 
fibers.  The glass fibers are  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
randomly distributed offering efficiency in load 
transfer.  Furthermore, the bond strength of the 
glass fiber is far superior to the polypropylene 
fibers, thus increasing the efficiency of fiber length 
so that there is limited debonding and fiber pullout.  
Finally, due to the highly compliant nature of the 
glass fiber bundles which bridge the matrix cracks 
at a random orientation, they are able to orient so 
as to carry the load across the crack faces. 
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Abstract: The role of fibers on the tensile stress strain response and the fracture toughness of cement based 
composites are studied by means of a cohesive crack approach.  A model is proposed to include the 
interfacial debonding and pullout of fibers as closing pressure distribution which is expressed as tensile 
stress crack-width response.  R-Curves are then used to account for increased energy dissipation and 
simulate the crack growth in the matrix response subjected to the closing pressure.  The closing pressure, 
characterized as an exponentially decaying stress crack-width relationship, is integrated to compute the 
amount of toughening at incremental crack growth lengths.  The strain energy release rate of a three point 
bending specimen interface are equated to the R-Curve, and solved for the critical crack extension.  The R-
curves are further used to compute the compliance and the load deformation response.  The toughening 
component is due to the closing pressure of fibers which depends on the matrix crack opening.  A 
parametric study of the effects of model parameters on the crack growth is conducted.  The present model is 
also compared with experimental data on glass fiber composites.   
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Figure 1.  The schematic model of the fiber 
toughening resulting in R-Curve behavior, and b) 
the model used for use of R-Curves for crack 
growth and instability criterion. 

 
Analytical Simulation of Toughening 
 
The process of toughening can be modeled by 
means of R-curves as shown in Figure 1.  R  
represents the increased resistance of the material 
from the base level Rm due to the growth of the 
crack and increases with incremental crack growth 
“∆a” due to the presence of bridging.  It is 
observed that as we load a material containing a 
small flaw, the flaw will begin to grow (under an 
increasing applied stress intensity factor) until the 
process zone is fully developed.  The crack in the 
process zone has a different shape because of the 

forces of the bridging fibers.  According to a 
simplified approach in Figure 1.a the amount of 
toughening due to each intersected fiber may be 
accounted as n1∆R.  Once the zone has developed 
fully, then the whole crack may move forward with 
the process zone, remaining at a constant size, at an 
energy level of Rm+  n2∆R.  By controlling the 
microstructure and properties of the material to 
result in such an R-curve behavior, we can ensure 
that cracks are stable over certain limits of flaw 
size.  This mechanism is thus able to explain why 
for many cement based composites, reduction of 
inter-fiber spacing results in formation and growth 
of significant cracking without causing 
catastrophic fracture.   

 
To address the toughening due to the crack 
bridging of fibers at the local level, a stress 
intensity approach is used.  The bridging force, 
expressed in terms of the stress intensity factor, 
works to reduce the applied stress intensity factor.  
The fiber pullout mechanism and the closing 
pressure are the primary parameter considered. The 
stress intensity factors are directly obtained from 
the stresses that are required to pull the fiber out of 
the matrix, and expressed as: 
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Where P(u) represents the force carried by a 
bridging fibers as a function of crack opening.  The 
fiber is located at distance “x” from the tip of a 
crack length “a”.  Parameter g(1,x/a)  represents the 
green’s function representing the stress intensity 
due to a unit load.  The parameters obtained from 
equations 1 and 2 represent the contribution of a 
single fiber, and the collected terms of the 
contribution are computed in two alternative 
approaches.  Using the Green’s function Approach 
the contribution of a closing pressure profile is 
integrated over the crack length and expressed as: 
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where, G(a,x) = green’s function, “a” represents 
the  crack length, “lb” bridging zone length, and 
“σb” bridging stress.  Alternatively, using the 
Potential Energy Approach, one can express it 
based on the crack opening profile, u(x):  
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The criteria for the cracking can be defined in 
terms of energy balance.  In an R–Curve 
formulation, the notch sensitivity represented as 
the extent of stable crack growth ∆a can be 
normalized with respect to the specimen width: 
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A condition of α=1 represents the LEFM 
conditions, whereas α>1 represents the quasi-
brittle materials.  The energy balance criterion 
requires that the strain energy release rate is equal 
to the fracture resistance of the material at any 
stage of stable crack growth while the condition for 
crack instability is defined as the rate of strain 
energy release rate exceeding the rate of increasing 
the toughness of the materials  as shown in Figure 
1.b.  The stable crack growth and the onset of 
instability are defines as equations 6 and 7.  
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Failure Conditions, Stable and Unstable Crack 
Growth 
 

A closed form solution procedure for 
modeling of the R-curve for quasi-brittle materials 
has been proposed by Ouyang, Mobasher, and 
Shah [3].  Using this approach the R-curve 
representing the fracture resistance of a material is 
defined by two parameters “α” and “β” 
representing the “∆ac” and “R”.  These parameters  
can be obtained by fitting the load-CMOD or 
deflection plots and expressed as: 
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Since R varies with the crack length, it can not be 
viewed as a single valued function, and the 
extension of the stable cracking is determined 
entirely by the geometry and loading.   The 
procedure used in the present approach is based on 
calculating R parameters corresponding to the 
load-deformation history of the specimen as 
suggested by Mobasher, Ouyang and Shah [4]. The 
procedure is based on calculation of the fit 
parameters which describe the effect of fibers in 
the context of the resistance curve, R and also the 
amount of critical crack length ∆ac.   

 
A parameter that is needed in the formulation is a 
proper representation of the closing pressure 
profile.  In the present study, the model proposed 
by Sakai and Suzuki [5 ] is used.  Similar in nature 
to Foote, Mai, Cotterell, [ 6] Model, this approach 
represents the stress across the crack ligament as a 
function of both the crack opening and also the 
crack ligament length. By assuming various forms 
of the functional relationship, both models of 
increasing and decreasing stress as a function of 
crack opening can be represented using similar 
parameters.  For example, the responses for both 
stress crack opening and crack opening vs. position 
can be expressed as equations 10 respectively and 
shown in Figure 2.  Parameter lb in this case is 
equivalent to the stable crack growth length ∆ac. 
 
The proposed procedure can be used to estimate 
bridging tractions from the R-curve behavior using 
an inverse problem.  The first step is to utilize a 
stress crack width relationship model.  In the 
current approach we assume a generalized profile 
of bridging tractions (model assumption) and use 
Tension σ-w curve as failure criteria. The stress 
crack width relationship is used as the material 
property, and bridging tractions are derived from 
the stress crack width approach.  In addition, using 
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the same crack growth parameters, the magnitude 
of toughening in the form of stress crack opening 
integrals in the process zone are then calculated are 
converted to to elastically equivalent fracture 
parameters. 
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Figure 2.  The closing pressure vs. crack opening 
distribution according to Sakai-Suzuki Model. 

 
Using standard nonlinear LEFM approaches, the 
equivalent material parameters in terms of , Gf, and 
u, or KIc, or CTODc are defined.  These fracture 
parameters are used to obtain the parameters of the 
R-curve.  The solution algorithm is defined by 
assuming the criteria for failure in terms of two 
parameters namely, the stable crack growth length, 
“ac” and the scaling parameter in the R-Curve 
defined earlier as β.  Using these two parameters 
the energy release required for growth, R(a) is 
constructed.  At this point the crack is 
incrementally extended and R(a) and G are 
calculated and used in the equilibrium equation to 
solve for the parameters of the R-Curve.  Newton-
Raphson Algorithm for nonlinear equation solution 
is used.  Once the parameters of the R-curve are 
calculated, it can be constructed, and the Load-
deformation response is obtained by incrementing 
crack length “a”, setting R(a) = G(a) to solve for P 

as a function of crack growth.  The load 
deformation response is computed from the 
theoretically based R-curve formulation using a 
compliance approach.  Once the load is obtained, 
the crack length “a” is used to get the compliance 
and deformation is computed.  This procedure is 
then subjected to parameter optimization through 
inverse solution to fit the experimental load 
deformation response in terms of the parameters of 
stress crack width relationship.  As an added extra 
step, one can calculate and correlate closing 
pressure-crack length to energy in the process 
zone.  Parameter Optimization through inverse 
solution can also be accomplished by fitting the 
experimental data with model estimation. 
 
Figures 3, 4, and 5 in addition to the data presented 
in Table 1 show the parametric study of the effect 
of tensile strength  response on the R-curve and the 
resulting load deformation response.  A prismatic 
specimen 101.6x101.6x304.2 mm in dimensions 
and an initial notch length of a0= 12.75 mm was 
used.  The material parameters for the stress strain 
response are listed in Table 1 in addition to 
constant variables used as E = 25000 MPa, 
maximum width of a crack opening with traction, 
CTODc= u =  0.06 mm.  Parameters n =  0.16,  ni  
= 1.5 and q =  0.5 were the power coefficients of 
the stress-softening and stress crack length 
ligament response.  In addition a constant of up = 
0.004 mm was used as the displacement 
corresponding to the maximum stress.    

 
F’t, 
MPa 

β1 αc R, 
Nmm 

Gf 
Nmm 

 
∆K 

3 0.013 3.67 0.067 0.067 31.8  

4 0.020 3.427 0.089 0.089 37.2 

5 0.028 3.221 0.111 0.111 41.8 

6 0.037 3.057 0.133 0.133 46 

 
 

 
Table 1- Parameters of the effect of 
tensile strength on the load deformation response. 
Note that as the tensile strength, and thus the 
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stress strain response of the specimen in the post 
peak region is increased, it results in an increase 
in the plateau value of the R-Curve and the 
flexural load deformation response as shown in 
Figure 4.  According to this simulation the 
strength of a beam in flexure is as much as 57% 
with a significantly higher energy dissipation in 
the post peak response of the flexural curve.   
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Figure 3 Parametric study of the stress crack width 
relationship for increasing tensile strength. 
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Figure 4 Parametric study of the effect of stress 

strain response on the R-curve  
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Figure 5 Parametric study of the effect of stress 
strain response on the load-CMOD response. 

0 0.02 0.04 0.06 0.08
w, mm

0

2

4

6
St

re
ss

, M
Pa

wmax= 0.08 mm
wmax= 0.06 mm
wmax= 0.04 mm
wmax= 0.02 mm

 
Figure 6a) Parametric study of the effect of post 
peak range in the stress strain response. 
 
Figures 6a and 6b show that as the size of the stress 
strain response of the specimen in the post peak 
region is increased, it results in an increase in the 
flexural load deformation response.  Note that 
according to this simulation the maximum strength 
of the flexural response is as much as 70% with a 
significantly higher energy dissipation in the post 
peak response of the flexural curve as the ultimate 



width is increased from 0.02 – 0.08 mm, a factor of 
four times.   
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Figure 6b) Parametric study of the effect of post 
peak range on the resulting flexural load-
CMOD response. 

 
In order to validate the capability of the model in 
predicting the mechanical response of fiber 
reinforced concrete, the flexural load-deformation 
of concrete reinforced with various levels of alkali 
resistant (AR) glass fibers was studied.  In the 
present work, two types of AR Glass fibers 
referred to as: High dispersion (HD) and High 
Performance (HP) obtained from Vetrotex Cemfil 
were considered. Several fiber lengths and contents 
were studied.  Control specimens without fibers 
were prepared in both mixtures for comparison.  
The procedures for the mix designs and specimen 
fabrications in addition to comprehensive 
mechanical property data are provided in an earlier 
paper [7].   
 
According to Figure 7 it is possible to model the 
effect of duration of curing on the mechanical 
response by developing a nonlinear curve fit model 
to the experimental data for the flexural load-
CMOD response based on R-curves.  Using these 
R-curves, one can calculate the contribution of 
fibers to toughening using Equation 3.   
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Figure 7.  Modeling the effect of age on the 
flexural and R curves of fiber reinforced concrete 
a) the R-curve Response, and b) the load 
deformation response compared with experimental 
data 
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Figure 8 Modeling the fiber volume fraction using 
R-curves, a) the R-curve response, and b) load-
CMOD plot.   

 
Figure 8 represents the model fit parameters for the 
study of the effect of fiber volume fraction on the 
flexural response, load-CMOD plot and b) the R-
curve response.  the By conducting a nonlinear fit 
to the experimental load-CMOD responses, the two 
parameters, critical crack length ∆ac, and also the 

parameter β representing the R-curve are obtained.  
In this case the ranges of R values obtained are 
from 0.004 to 0.015 N/m and the range of critical 
crack extensions are in the range of 20-35 mm.   
Note that the predictability of the effect of fiber 
volume fraction in the increased load carrying 
capacity is significantly improved.   
   
Conclusion 
 A procedure to calculate the role of fibers 
on the tensile stress strain response and the fracture 
toughness of cement based composites are studied 
by means of a cohesive crack approach.  The 
tensile stress crack-width response is used as the 
primary material response, and the load 
deformation response is obtained in conjunction 
with experimental data.  R-Curves are a convenient 
means of accounting for the increased energy 
dissipation and simulate crack growth.  
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