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1 INTRODUCTION 
 
The case of an infinite plate with a semi-infinite 
crack belongs to negative fracture geometry in 
fracture mechanics. In order to research whether 
the double-K fracture model (Xu & Reinhardt 
1999a, b, c; Xu & Reinhardt 2000) and the 
cohesive stress based crack extension resistance 
curve method (Xu & Reinhardt 1998) apply to the 
negative geometry, one has to seek the analytical 
solution of the fictitious crack model and the 
analytical expressions of the cohesive stress based 
crack extension resistance during the complete 
fracture process for the semi-infinite crack as the 
theoretical basis for numerical and experimental 
studies.  
The double-K fracture model has been 

successfully applied to three-point bending 
notched beams, CT specimens and WS specimens 
(Xu & Reinhardt 1999 b, c; Xu & Reinhardt 
2000), such positive fracture geometry. In this 

paper, an attempt is made to find the analytical 
solution of the stress intensity factors at the 
fictitious crack tip during the different states of 
crack propagation in the semi-infinite crack for 
concrete and give the mathematical expressions of 
them for the different states of crack propagation.  
Furthermore, numerical simulation on a big size 

concrete plate with the dimensions of 4m times 4m 
has been performed using a nonlinear finite 
element code based on micro-plane model for 
gaining the plots of load versus loading point 
displacement (P-δ), load versus crack propagation 
length (P-∆a) and load versus crack tip opening 
displacement (P-CTOD). Based on these data, 
double-K parameters and the cohesive stress based 
KR curve were determined using the analytical 
solution according to the corresponding propagated 
crack length. The corresponding net stress intensity 
factor for the complete fracture process is 
calculated, too. The gained results provide new 
understanding for the application of the double-K 
fracture model to the negative geometry.  
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2 THE ANALYTICAL SOLUTIONS OF A 
SEMI-INFINITE CRACK WITH A 
FICTITIOUS CRACK ZONE IN AN 
INFINITE PLATE 

 
Herein, an infinite plate of unit thickness with a 
semi-infinite crack subjected to a pair of splitting 
forces P acting against the crack surfaces at the 
position y = 0, x = - (b + ∆a) where ∆a ≥ 0 at an 
arbitrary loading state in a moving Cartesian 
coordinate is shown in Fig. 1 (a). The moving 
Cartesian coordinate is assumed to be fixed at the 
tip of propagating crack and to be moved forward 
ahead with the crack propagation. With increase of 
the acting forces P the corresponding P-δ curve and 
P-∆a curve will follow the patterns shown in Fig. 1 
(b) and (c) respectively. 
We can assume that when the acting force P is less 

than Pini, the P-δ curve will be straight and there 
will be no occurrence of stable crack growth. 
At this loading state for ∆a = 0, the stress intensity 

factor at the preformed crack tip can be calculated 
as follows (Tada et al., 1985): 
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Fig. 1. The semi-infinite crack extension in quasi-brittle 
materials. 
Once the acting force P exceeds the value of Pini, 
the P-δ curve will be nonlinear and stable crack 
propagation will occur. In concrete, the upper and 
lower surfaces of a propagating crack are not 
stress-free when its width at the preformed crack 
tip is less than w0. The crack propagation occurred 
in the region to be restrained by the cohesive stress 
was termed the "fictitious crack". Therefore, our 
main attention is focused on finding a closed form 
solution of the semi-infinite crack with a fictitious 
crack zone in an infinite plate after the acting force 
P exceeded the value of Pini. 
For convenience to solve the problem as 

mentioned above, the original point of the 
Cartesian coordinates is fixed on the fictitious 
crack tip and can be moved with the development 
of the fictitious crack. Therefore, the considered 
semi-infinite crack with a fictitious crack zone 
subjected to one pair of the splitting forces P in the 

infinite plate is demonstrated in Fig. 2 (a). 
According to the superposition assumption the 
crack problem shown in Fig. 2 (a) can be divided 
into two crack problems shown in Fig. 2 (b) and (c) 
separately. 
 

P

P

y

x0

ft

 σ (CTOD)

b ∆ a

preformed

crack

fictitious

crack

δ

CTOD

σ (x) P

P

y

x0

b ∆a

preformed

crack

fictitious
crack

δ

CTOD

y

x0

ft

σ (CTOD)

∆a

preformed

crack

fictitious

crack

CTOD

σ (x)

= +

(a) (b) (c)

Fig. 2 The superposition demonstration of a semi-infinite crack 
with a fictitious crack zone in an infinite plate subjected to a 
pair of splitting forces P acting  against the crack surfaces at 
the position y = 0, x = -(b + ∆a). 
 
From the solution presented in formula (1) we can 

easily obtain the solution for the crack problem 
illustrated in Fig. 2 (b) as follows: 
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The stress intensity factor KIc due to the cohesive 
stress on the fictitious crack zone shown in Fig. 2 
(c) can be calculated through integrating equation 
(1): 
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Because the cohesive stress distributions σ(x) 
along the fictitious crack zone are different at the 
various crack propagation states, the solution of 
integration (3) for each state will be given 
subsequently. 

Since σ-w curves can be taken as material 
properties, the cohesive stress distribution on the 
fictitious crack can be determined by comparing 
CTOD in different loading states with the 
characteristic coordinates of the bilinear softening 
curve, ws and w0. In fact, the cohesive stress is 
dependent on the crack profile. The distribution of 
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Fig. 3. Cohesive stress distributions on the fictitious crack at 
different loading states. 
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it is somewhat nonlinear. However, in order to be 
able to find an analytical solution for the problem 
and to have a good approximation for the solution, 
the cohesive stress on the fictitious crack is 
assumed to be a bilinear one. The cohesive stress 
distributions at the typical loading states 
corresponding to CTOD are demonstrated in Fig. 3. 
Now, the stress intensity factor due to the cohesive 

stress is solved in the following space for the 
different crack propagation states. 

      

2.1  The stress intensity factor due to the trapezoid 
distribution of the cohesive stress on the 
fictitious crack when 0 ≤ CTOD ≤ CTODc 
(included critical situation) 

 

It is known that a trapezoid distribution of the 
cohesive stress on the fictitious crack should be 
assumed if the loading state is in between point B 
and C shown in Fig. 1 (b) and (c) at which CTOD 
will satisfy the conditions of 0 ≤ CTOD ≤ CTODc. 
For the semi-infinite crack with a fictitious crack 
zone in an infinite plate, the trapezoid distribution 
of the cohesive stress is illustrated in Fig. 4. 
 

 y

 x 0

 ft

 σ(CTOD)

∆a

 CTO D

 σ(x)

  a 0 (→  ∞ )

 
 
Fig. 4. The trapezoid distribution of the cohesive stress on the 
fictitious crack in a semi-infinite crack problem when 0 ≤ 
CTOD ≤ CTODc. 
 
And the corresponding expression of the cohesive 

stress distribution is as follows: 
[ ] 0xa-
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To submit equation (4) into integral (3) the stress 
intensity factor at the fictitious crack tip due to the 
cohesive stress for the crack problem shown in Fig. 
4 can be received: 
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2.2 The stress intensity factor due to the trapezoid 
bilinear distribution of the cohesive when 
CTODc < CTOD < w0 

 

After the external splitting forces P exceeded the 
maximum forces (critical forces) Pmax, due to the 
softening properties of fictitious crack in concrete, 

the P-δ curve follows a descending branch (see Fig. 
1 (b)). If the CTOD is in such a region of CTODc < 
CTOD < w0, according to the illustration of Fig. 
3(b), the cohesive stress distribution on the 
fictitious crack should be a trapezoid bilinear 
distribution (Fig. 5). 
The trapezoid bilinear distribution is expressed as 
follows: 
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Similarly, to submit the expression of σ(x) into 
integral expression (3), KIc can be divided into two 
parts: 
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To integrate the two parts of equation (7) 
separately, one can get the detailed expressions of 
KIc (1) and KIc (2) as follows: 

[ ]{

[ ]

}][ (CTOD)-)CTOD(
a+a

a
3
2+

a(CTOD)-)CTOD(
3
1-

a-a(CTOD)2-2=K

cs
c

ccs

c
c(1)
I

σσ

σσ

σ
π

∆∆
∆

∆

∆∆
 

[ ]I
c(2)

t s c cK  =  - 2
3

2 2 f + ( C TO D ) a
π

σ ∆
 

By combining them, the stress intensity factor due 
to the trapezoid bilinear cohesive stress distribution 
on the fictitious crack for the semi-infinite crack 
problem shown in Fig. 5 can be obtained: 
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Fig. 5. The trapezoid bilinear distribution of the cohesive stress 
on the fictitious crack in the semi-infinite crack problem when 
CTODc < CTOD < w0 is met. 
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2.3 The stress intensity factor due to the fully 
bilinear cohesive stress distribution on the 
fictitious crack 

 

For a special situation shown in Fig. 3(c) at which 
CTOD reaches the characteristic coordinate w0 of 
the σ-w softening curve, a fully bilinear cohesive 
stress distribution on the fictitious crack should 
appear, see Fig. 6. 
The corresponding expressions of the cohesive 

stress distribution are given as follows: 













=
∆≤≤∆

∆∆
∆

≤≤∆
∆

∆






c
c

cs1

c

c
cst

cs2

a-xa- 
a-a
x+a)(CTOD = (x)

0xa-
a

x+a
)(CTOD-+

)(CTOD = (x)

f
x

σσ

σ
σσσ )(

(9) 

If one notes such a reason that the cohesive stress 
boundary conditions in the crack problem shown in 
Fig. 6 just is a special situation of that shown in 
Fig. 5, it has no need to submit expression (9) into 
integral (3) to carry out the complicated integration 
again. We only need to let σ(CTOD) = 0, and ∆a = 
∆aw0 in integral (3), the stress intensity factor due to 
the fully bilinear cohesive stress on the fictitious 
crack zone shown in Fig. 6 can be easily obtained: 
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The solution presented in expression (10) of KIc is 
also suitable for such a situation in which a new 
formed free crack has appeared and CTOD has 
exceeded the value of w0. The reason is that for 
such a semi-infinite crack problem, the length of 
the preformed crack is infinite and the solutions of 
the stress intensity factor due to the cohesive stress 
boundary conditions corresponding to the situation 
shown in Fig. 3 (c) are the same as those shown in 
Fig. 3 (d). 
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Fig. 6. The full bilinear distribution of the cohesive stress on 
the fictitious crack in the semi-infinite crack problem at a 
special situation of which CTOD = w0 is met. 
 
3. THE EXPRESSIONS OF DOUBLE-K 

FRACTURE PARAMETERS, COHESIVE 
STRESS BASED KR CURVE AND THE 
NET STRESS INTENSITY FACTOR FOR 
NEGATIVE GEOMETRY 

The double-K fracture parameters, i.e. KIc
ini and 

KIc
un, which were introduced in the double-K 

fracture model, are based on the form of stress 
intensity factor K.  
One parameter KIc

ini is the initiation toughness that 
describes the crack initiation. Theoretically 
speaking, the initiation toughness KIc

ini is defined 
as the initial cracking stress intensity factor at the 
initial crack tip by the initial cracking load. So, for 
this kind of negative geometry, it is expressed as 
follows:  

      
b

P 2 )b,P(K = K ini
iniI

ini
Ic

0
0 π
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In fact, the initiation toughness KIc
ini is the inherent 

toughness of a material. It implies that a crack does 
not propagate when the stress intensity factor at the 
initial crack tip is less than the inherent toughness, 
i.e., the initiation toughness KIc

ini. 
Another parameter KIc

un is the critical stress 
intensity factor that describes the critical situation 
of unstable fracture. According to the definition, it 
meets, b = b0 + ∆ac, P = Pc. So, for calculating the 
value of KIc

un one only needs to submit Pc and b 
into the same formula (3). It is expressed as 
follows: 
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Until occurrence of the critical fracture, the 
toughness of a loaded body increases from the 
value of KIc

ini to the one of KIc
un due to the stable 

crack propagation. The increase of the toughness 
during the stable crack propagation is only due to 
the cohesive stress on the fictitious crack. The 
contribution due to cohesive stress at the critical 
situation is called KIc

c. In positive geometry, like 
three point notched bending beams, CT specimens, 
WS specimens, it was found that the increase of 
fracture toughness due to the cohesive stress during 
the crack propagation meets three-parameter 
law(Xu & Reinhardt 1999c; Xu & Reinhardt 
2000), it applies: 

un
Ic

c
Ic

ini
Ic KKK =+                     (13) 

Contrarily for the considered negative geometry, 
from formulae (12) and (13), one can see that the 
stress intensity factor at the propagating crack tip 
decreases with the increase of crack length when 
the externally applied load remains constant. 
Whether the double-K model also applies to 
negative geometry is questionable yet.   
In fact, a crack in the negative geometry once 
initiates, the length of the crack will increase until 
the externally applied load arrives at its maximum 
value Pmax. During the crack propagation from 
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crack initiation to the load exceeding its maximum 
value, the stress intensity factor at the propagating 
crack tip not only depends on the crack extension, 
but also is strongly influenced by the increased 
externally applied load. Exactly speaking, it 
decreases with extension of the crack, and 
increases with the increase of the externally applied 
load P. However, whether the stress intensity factor 
actually increases or decreases depends whether 
(P/Pini)² is larger than b/b0 or not. Concerning so 
big difference between the negative geometry and 
the positive one, we have to use numerical studies 
or experimental investigations to check how to 
calculate the critical stress intensity factor KIc

un. It 
means that one has to choose correctly the critical 
fracture state, i.e., correspondingly the critical 
crack length and the critical load Pc. Furthermore, 
in order to certify whether the double-K fracture 
model applies to the negative geometry, we need to 
confirm the difference between the values of KIc

ini 
and KIc

un due to the stable crack propagation is 
positive or negative. If it is positive, we also need 
to know whether this value is equal to the value of 
KIc

c contributed by the cohesive stress on the 
fictitious crack zone. Corresponding to several 
crack propagation states, the formulae to calculate 
the KIc

c are given in formulae (5), (8) and (10) 
respectively. 
According to the definition of the cohesive stress 
based KR curve (Xu & Reinhardt 1998), the 
analytical expressions of it for this negative 
geometry can be gained. For various different 
crack propagation states, the expressions are 
different. Corresponding expressions for each 
crack propagation state are given as follows 
respectively. 
1.When CTOD ≤ CTODc and ∆a ≤ ∆ac, it applies 

fa2
3
2KK t

ini
IcR ∆++= )2( β

π
             (14) 

2.When CTODc < CTOD ≤ w0 and ∆ac  < a ≤ ∆aw0, 
we have 

{

ts
c

c

c
ini
IcR

f-
a+a

a
3
2+

a+2
3
1+

a-a22KK







∆∆
∆

∆

∆∆+=

)(

)(

)(

ββ

β

β
π    (15) 

3.When CTOD ≥ w0 and ∆a ≥ ∆aw0, we have 
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Where CTOD is crack opening tip displacement 
and CTODc is its critical value; ft is the tensile 
strength; σ(CTOD) can be determined according to 
the softening traction versus separation law of the 
concrete. A bilinear one also can be used, the 
corresponding parameters used in the bilinear 
softening traction-separation law have been coded 
in the CEB-FIP Model Code 1990. 
For knowing whether the net stress intensity factor 

at the propagating crack tip meets a zero 
assumption used by some researchers, or not, we 
also calculated the net stress intensity factor at the 
propagating crack tip during the complete fracture 
process for this negative geometry in this paper. 
So, under common action of the externally applied 
load and the cohesive stress on the fictitious crack 
zone, the net stress intensity factor for this negative 
geometry for various crack propagation states can 
be easily expressed respectively as follows: 
4. When CTOD ≤ CTODc and ∆a ≤ ∆ac, it is 
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5. When CTODc < CTOD ≤ w0 and ∆ac < ∆a ≤ aw0, 
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6. When CTOD ≥ w0 and ∆a ≥ ∆aw0,  
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Using the formulae (5), (8) and (10) to (20) in this 
section and the former section, the double-K 
parameters, three-parameter law, cohesive stress 
based KR curve and the net stress intensity factor 
during the complete fracture process for this 
negative geometry can be evaluated. For gaining 
the corresponding data, numerical studies or 
experiments on an infinite plate with a 
semi-infinite crack in mathematical meaning 
should be performed. Considering much expense 
carrying out the experiments on the infinite plate 
with a semi-infinite crack, the numerical studies 
should be firstly done. In the next section, the 
consequences gained from numerical studies will 
be shown and discussed.       
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4. NUMERICAL INVESTIGATIONS AND THE 
GAINED RESULTS 

 
In order to investigate the fracture behavior, 
numerical simulation for a concrete plate with 
plane dimensions of 4000 × 4000 mm² was 
performed using a nonlinear finite element code 
based on the micro-plane model (Ozbolt et al. 
2001). In the finite element code, the micro-plane 
model was used for concrete material model and a 
fitting nonlinear softening traction-separation law 
and the crack band model (Bazant et al. 1983) were 
used for describing the fracture process zone 
(FPZ). Total elements are 4210. The preformed 
crack is 2000 mm long and the crack tip 
coordinates are in the centre of the plate. A pair of 
point loads act on two sides of the crack with a 
distance of 57.14 mm to the crack tip. The distance 
of acting loads to the crack tip is less than 1/35 of 
the total crack length and the ligament length. 
Therefore, this case should be considered as an 
infinite plate with a semi infinite crack case. In the 
calculation, the input data of material properties are 
that elastic modulus is 32 GPa, compressive 
strength is 40 MPa, tensile strength is 3.0 MPa and 
Poisson ratio is 0.18. 
Through the numerical simulation, the gained plots 
of P-δ, CTOD-δ, and ∆a-δ were shown in Fig. 7. 
For this concrete material, the tensile strain 
0.00025 was assumed a controlling value for 
distinguishing cracking initiation. On them, the 
characteristic points were marked after the crack 
propagation process was carefully investigated. 
The crack propagation in some typical loading 

steps is shown in Fig. 8.  At steps 15, and 50 (see 
Fig. 8 (a) and (b), the crack propagation increases 
with increase of load until the maximum load 
arrives at the loading step 50. When load exceeded 
its maximum value, the loading began to decrease 
and the corresponding crack no longer propagates 
toward the front, and somewhat retrenched 
backward, see Fig. 8 (c).  
In order to observe the stress softening properties 

on the FPZ, the tensile stress distributions for the 
several loading states are shown in Fig. 9 (a) and 
the tensile strain ones in Fig. 9 (b) respectively. 
They show that although their distributions are 
somewhat nonlinear, but one could use a bilinear 
function of the distance from crack tip to 
approximately characterize the cohesive stress on 
the FPZ. 

Due to great differences between the fracture 
processes in negative geometry and positive 
geometry, both the crack initiation and the critical 
fracture in them are greatly different. Therefore, 

nobody has any experience to determine the initial 
cracking load, critical crack length and the critical 
fracture load in fracture experiments in negative 
geometry yet. Through being careful observation 
of the FPZ, tensile stress and tensile strain 
distributions and COD on FPZ at the several 
loading stages, it was found that the crack initiation 
occurs at the loading step 4, and the critical fracture 
at the loading step 15. For using the formulae 
developed in this paper to calculate the double-K 
fracture parameters, cohesive stress based KR 
curve, net stress intensity factors for the complete 
loading process, the bilinear softening traction 
separation law proposed by CEB-FIP Model Code 
1990 was employed. In the calculation, σs = 0.368 
MPa, ws = 0.0613mm, w0 = 0.1mm were used. 
Through careful investigation, it can be determined 
that Pini is 365 N, ∆ac is 83.5 mm and Pc is 974N. 
The crack propagation length ∆aw0 corresponding 
to the zero cohesive stress is 140mm. Using the 
formulae, it can be calculated that KIc

ini is 1.218 
MPam1/2, KIc

un is 2.073 MPam1/2, and KIc
c is 0.810 

MPam1/2. It can be seen that their relation satisfies 
the three-parameter law of fracture toughness in 
crack propagation expressed in equation (13) too, 
for this negative geometry.  
In Table 1, Kc due to cohesive stress, KI caused by 
externally applied load P, net stress intensity 
factors KN influenced by them common action and 
the crack extension resistance KR based on 
cohesive stress were shown in columns {5} to {8} 
respectively. It can be seen that before the critical 
fracture occurred, the stress intensity factor KI 
caused by the externally applied load P increases 
rapidly. During this stage, the crack propagation 
length increases slowly and the externally applied 
load increases quickly. As the result, the stress 
intensity factor KI increases rapidly due to the 
dominance of the loading increase. After the 
critical fracture load Pc was exceeded until the 
maximum load arrived, the stress intensity factor 
KI almost remains constant that is due to the slow 
ascent of load and observable increase of the crack 
propagation length. After the maximum load Pmax 
was exceeded, the stress intensity factor KI 
decreases because the load decreased observably 
and the crack propagation retrenched slightly. The 
net stress intensity factor KN due to the common 
action of the externally applied load and the 
cohesive stress shown in column {7} is about 60% 
of the stress intensity factor KI caused by the 
externally applied load P. It could be imaged that 
the zero net stress intensity factor impossibly 
exists at the fictitious crack tip in concrete 
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materials for any stage in the complete fracture 
process.  
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Fig. 7. Plots of P-δ, ∆a-δ and CTOD-δ got in numerical study on 
an infinite plate with a semi-infinite crack  
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Figure 8  The crack propagation in several loading states. 
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Figure 9 The tensile stress (a) and strain distributions (b) on 
FPZ. 
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Figure 10 The illustration of P, ∆a, KI due to P, Kc caused by 
the cohesive stress and the net stress intensity factor KN during 
the complete fracture process in negative geometry  
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Figure 11 An illustration instance using cohesive stress based 

KR curve compared with the stress intensity factor KI curve due 
to P to describe the crack propagation in negative geometry 
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All results show that both double-K fracture 

model and the cohesive stress based KR curve 
method apply to the negative geometry too. The 
zero net stress intensity factor does not exist at the 
fictitious crack tip in any stage during the 
complete fracture process in concrete materials. 
 
5. CONCLUSIONS AND DISCUSSION 
 
In this paper, an attempt was made to show 
whether the double-K fracture model and the 
cohesive stress based KR curve apply to negative 
geometry based on both analytical investigation 
and numerical study on the fictitious crack in the 
infinite plate with a semi-infinite crack. Using the 
developed analytical solutions and the numerically 
studied data, double-K fracture parameters, 
cohesive stress based crack extension resistance 
KR, net stress intensity factor KI during the 
complete fracture process were evaluated and the 
three parameter law of the fracture toughness 
increase due to crack propagation was checked 
once more for the negative geometry. It was found 
that the fracture toughness increase due to the 
crack propagation satisfies the three-parameter 
law for the considered negative geometry, like in 
positive geometry. The gained results also show 
that both double-K fracture model and the 
cohesive stress based KR curve apply to the 
studied negative geometry. Moreover, net stress 
intensity factor KN at the propagating crack tip 
during the complete fracture process even in 
negative geometry is significant. Zero net stress  

 
intensity factor at the propagation crack tip in 
concrete materials is almost impossible.  
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Table 1 The results of P, ∆a, CTOD, KI caused by externally applied load P, Kc caused by 
cohesive stress, net stress intensity factors KN caused by them common action and the 
cohesive stress based crack extension resistance KR 

Displacement 
(mm) 
{1} 

P/mm  
(N/mm) 

{2} 

a  
(mm) 
{3} 

CTOD 
(mm) 
{4} 

Kc 

 (MPam1/2) 
{5} 

KI  
(MPam1/2) 

{6} 

KN  
(MPam1/2) 

{7} 

KR  
(MPam1/2) 

{8} 
0.010 
0.040 
0.050 
0.100 
0.150 
0.160 
0.200 
0.250 
0.300 
0.350 
0.400 
0.450 
0.500 
0.550 
0.600 
0.650 
0.700 
0.750 
0.800 

104.0 
364.8 
439.1 
746.9 
974.3 
1006.1 
1033.4 
1123.7 
1203.2 
1263.7 
1302.4 
1344.3 
1357.2 
1349.2 
1329.9 
1301.2 
1270.9 
1244.4 
1223.7 

0.00 
0.00 
3.09 
40.80 
83.50 
93.00 

105.20 
145.10 
169.30 
190.50 
210.60 
221.60 
232.60 
235.00 
234.00 
233.10 
231.70 
231.10 
230.60 

0.0000 
0.0081 
0.0114 
0.0372 
0.0613 
0.0656 
0.0732 
0.0883 
0.0981 
0.1051 
0.1076 
0.1073 
0.1056 
0.0996 
0.0935 
0.0870 
0.0883 
0.0921 
0.0968 

0.000 
0.000 
0.206 
0.654 
0.810 
0.819 
0.827 
0.836 
0.836 
0.836 
0.836 
0.836 
0.836 
0.836 
0.836 
0.836 
0.836 
0.836 
0.836 

0.347 
1.218 
1.428 
1.904 
2.073 
2.072 
2.046 
1.994 
2.017 
2.026 
2.008 
2.032 
2.012 
1.992 
1.967 
1.927 
1.887 
1.849 
1.820 

0.347 
1.218 
1.222 
1.250 
1.263 
1.253 
1.219 
1.158 
1.182 
1.190 
1.173 
1.196 
1.176 
1.156 
1.131 
1.091 
1.051 
1.014 
0.984 

1.218 
1.218 
1.423 
1.871 
2.027 
2.036 
2.045 
2.053 
2.053 
2.053 
2.053 
2.053 
2.053 
2.053 
2.053 
2.053 
2.053 
2.053 
2.053 


