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ABSTRACT: The present work focuses on post-processingelisamodeling. Discrete models are used to
describe failure of brittle and heterogeneous materialn8yng that data obtained with these models are very
close to those obtained with digital image correlation téghes (displacement fields), similar algorithms are
applied to compute usual data such as strain fields. Diffeneaimples illustrate performances of the approach,
in particular regarding the computation of stress intgrfaittors.

1 INTRODUCTION post-processing tools. Extensions to discrete model-

Discrete element models are widely used for computlng are proposed, and applications on strain field will
ing failure of cementitious and concrete structuresPe shown to illustrate the performance of the ap-
thanks to modern computer performance. HoweverProach. Alast example of crack propagationin a beam
engineering app”cations with discrete descriptiongs |ntr0duced, with an estimation of stress |ntenS|ty
are still uncommon in comparison with finite elementfactors.
techniques. One of the reasons for this is that homoge-
nized quantities (e.g. stress, strain, damage variablesj, DISCRETE MODEL
usually “handled” by engineers are not naturally ob-2.1 Model basis
tained with discrete descriptions: such an approacim the framework of discrete modeling, the material
is based on a description of the material microstrucis not described as a continuous medium but as an
ture that accounts for heterogeneities. Discrete modassembly of particles. This assembly may break un-
els deal only with local quantities, and require aver-der loading, allowing a natural description of discon-
ages to be performed for macroscale analyses. Diffetinuities. Hence, these discrete models are relevant
ent solutions to the averaging problem have been prao represent failure of brittle heterogeneous material,
posed, mainly based on spatial averages of the localaused by nucleation, propagation and coalescence of
quantities. cracks. In this study, the material is described by an
We propose here a more general approach, based assembly of rigid cells, obtained from a Voronoi tes-
image correlation techniques. During the last yearssellation computed on a set of randomly distributed
these techniques have become very attractive for arpoints (see for instance (Tillemans and Herrmann
alyzing experimental tests (Sutton et al. 2000). Locall995)). Centers of neighboring particles are linked
and global quantities are obtained all over the sampléogether by Euler-Bernoulli beams (figure 1) in or-
by measuring kinematic changes between two statesler to represent the elastic behavior of an isotropic
Depending on the material behavior, one can measumedium, characterized by two elastic parameters. In-
displacement fields, or identify strain fields, or evenelastic response of material is obtained by introduc-
stress intensity factors, for example. The analysis isng a nonlinear behavior for the beams. We choose
performed on a heterogeneous field from the evaluahere an elastic-brittle law to describe the response of
tion of local quantities, a feature also present in dis-a quasi-brittle material such as concrete. The failure
crete models. Following this idea, the same type othresholdP;; for beami; is computed from
analysis for both experimental tests and discrete mod-
eling computations is performed to obtain mechanical p <5ij |1 — %’\)
fields. We illustrate this post-processing technique on g
several examples of building materials and concrete
structures. whereef; andy; are considered to be random vari-
In the first part, we present the discrete model usedbles with Gaussian distribution;; corresponds to
in this study, with a particular focus on the standardthe failure of the beam in tensile mode, angl cor-
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responds to the failure of the beam in a bending2.2 Basic post-processing

mode (Woestyn et al. 2006). Microstructure hetero-Different elementary outputs are produced when run-
geneities are then introduced through the mesh variing numerical simulations:

ability and through the probability density function _

of £7 and . At this point, the model is nothing e a force-displacement curve,

e the crack pattern or damaged zones for a brittle
material,
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These outputs are obtained directly, without any in-
terpretation or transformation. Figures 2 and 3 show
such outputs for a discrete model. A 3-point bend sim-
ulation is performed on@8 x 0.1 m beam. The mesh

is made ofl 60 x 20 particles. The Gaussian distribu-
tions of the model random parameters are character-
ized by the average and the standard-deviation of each
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Figure 1. Example of Voronoi mesh. values:
but a lattice model (Schlangen and Garboczi 1997; Epr=15x1071 o, = 0.05
Van Mier et al. 2002). Particle shapes are taken into ~
account in two cases: O = 5.6 x 1077 0y, = 0.05,

¢ When two disconnected particles overlap, a c:on-A s expected, a vertical macrocrack propagates from

tact force is generated. This force depends on th(ghe bottom face of an initially uncracked beam.
area of the overlap domain, and therefore on par-

ticle shapes. .
e For dynamic loadings, Voronoi shapes are f
needed to estimate the weight distribution of par- 0l
ticles to compute the mass matrix.
= |
In the following, quasi-static loadings are considered g -
with the following elastic prediction algorithm (De- e |
laplace and Rey 2005): |
Stepk T
1. apply elastic Ioadin@el a0l L0
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2. computeu® using an iterative method

_ Figure 2. Force-displacement response.
3. computey,,;, with
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4. save coupléa,i,u®, i, fe)

5. change stiffness matrix with 5 5430.05
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whereL;; is the connectivity matrix of element 0 9.109e-05

tJ- Figure 3. Crack pattern, horizontal and vertical dis-
End step placements of the 3-point bend configuration.

This algorithm allows one to follow snap back re- However, one may need more refined data from
sponses and solution uniqueness is guaranteed.  the simulation. For instance, strain and stress fields



are usually needed by engineers. More specifically,
stress intensity factors are a basic quantity for fracture
mechanics analyses, as is the damage field for dam-
age mechanics. This information is not be obtained
directly from a simulation. Some “transformations”
are to be performed from the computed displacement
field. These transformations are the key for a good in-
terpretation of simulation results, especially for het-
erogeneous materials. A first possibility consists in
computing the different quantities close to the particle
scale e.gthe strain field is computed by averaging the
displacements of the beams connected to each parti-
cle. This approach has the virtue of being simple, but
IS not necessarily relevant in terms of scale. One may
imagine obtaining information at a coarser scale than
that of the particles. This is achieved by considering
mechanical solutions of the studied problem. Analyt-
ical solutions of basic problems are known and can be
used to enrich the computation of a strain field from

a discrete displacement field. This kind of consideraFigure 4. Different sizes and shapes of domain bound-
tion has been developed successfully during the lagiry 9w (bold line) for a Voronoi particle (grey filled).

years for experimental measurements, for instance byhe following computations use the last domain.
using digital image correlation techniques (Roux and

Hild 2006). _ _ The failure mode corresponds to a macrocrack that
By noting that data obtained from a discrete el-propagates through the sample, perpendicular to the
ement model computation and from a experimentajpading direction. Note that the vertical position of
digital image correlation result are very similar (a dis-the macrocrack is priori unknown. Strain fields;;
crete displacement field), we propose to apply DIC al{horizontal),z,, (vertical) andz,, are plotted in fig-
gorithms to post-process discrete modeling. We proyre 5 (note the different scales), where a fixed range
pose in the next part to illustrate enhanced postprocess ysed. Strong discontinuity due to the macrocrack

output obtained with such an analysis. is clearly visible, as the regularization due to the aver-
age computation on the domain boundary. Changes of
3 STRAIN ANALYSIS strain fieldse,, with the crack propagation is shown

Computing strain fields from displacement field is ain figure 6, with an adaptive range for the gray scale.
problem that has been studied for several years (Al-

lais et al. 1994; Geers et al. 1996; Kruyt and Rothen-
burg 1996). For heterogeneous materials, computing
local strains from displacement on the boundary of
a considered domain is common to experimental and
numerical applications. The average strain tesssr
computed over a domain with
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whereu is the displacement of a material point in
the studied configuratiom the normal to the domain
boundaryow andV, is the area of the domain. Strain
values are expected to be independent of domain
if its size is large with respect to the material mi-
crostructure scale (or particle size for discrete model).
This condition is not fulfilled for this study. There-
fore, strain fields depend in part on the size and the
shape of the domain, and different choices are pos-
sible (figure 4). Following (D’Adetta et al. 2004), we g zooeos
choose a circular domain with a diameter of about fiveFigure 5. Straire;q, 20 andey, fields for a simple
times the patrticle size. tension test.

Strain fields are computed on a square sample
loaded vertically in tensior6{l x 64 particles). Model The spatial resolution of the strain fields is limited
parameters are identical to that of the first examplewith this approach to the particle size (just one value

(u@n+n®u)ds

2,000e:04__0.000e+00 0__ 1000603




basis functions is
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in plane stress condition, as expected along the free
(examination) surface, with being the Poisson’s ra-
tio. Let us note however that the amplitudes of these
functions are real numbers.

_ e _ The strategy is thus to decompose the estimated
Figure 6. Change of strain field, with crack propa-  displacement field (from discrete calculations, see
gation (adaptive range scale). Fig. 3) onto the basis of}, test functions. For this

goal, the following objective function is minimized
is computed for each particle). This limitation van-

ishes if one considers integrating this field over the Neo
particle area. For elastic problems, a simple linear in- 7 (a) = Z lw; = ava]* (4)
tegration is the best approximation of the strain field. =1 k

where N, is the number of computed displacement

points.

One advantage of this formulation is that the value

reached by the objective function constitutes a global
4 STRESS INTENSITY FACTOR EVALUATION  quality parameter. Since the identification procedure

assumes that the crack geometry is known, a min-

imization of this global residual over tha priori

guessed crack tip position also provides a natural way
Extracting some mechanically meaningful informa-of optimizing the crack geometry. It can be noted that
tion using the detailed map of displacement is per-other techniques can be followed to extract the stress
formed by identifying the amplitudes of relevant ref- intensity factor by using interaction integrals (Hellen
erence displacement fields. In the present case, ori®75; Destuynder and Djaoua 1981; Réthoré et al.
can easily list some meaningful contributions. First,2005).
rigid body motions have to be accounted for and con- This identification is carried out on the 3-point
stitute the first three fields, two in-plane translationspending test presented in Section 2.2. The results re-
v, andvsy, and one rotation about an axis normal toported below are obtained from estimates of the dis-
the observation plane;;. One single uniform strain placement field over a region of interest that amounts
field, v,4, is allowed for in order to leave the crack to a disk of external radius of 0.03 m centered on a
face stress-free, the so-called “T-stress” (uniaxial tengross determination of the crack tip position. In fig-
sion along the crack direction). The presence of aire 7, the map of estimated mode | and mode |l stress
crack generates two independent “singular” displaceintensity factors is plotted as functions of the guessed
ment fields corresponding to modesvk, and Il,vg,  crack tip location (for output convenience, the beam
with two scalar amplitudes that will give access toaxis is vertical). To select the most appropriate loca-
the stress intensity factors. Lastly, in order to enrichtion, the map of global residual is shown in the same
the basis, one may also consider the next order sulfigure. The crack tip is accurately located in both
singular mode | and Il fields, respectively denoteddirections. From the absolute minimum, one locates
by v; andvg. It is convenient to express these vec-quite precisely the crack tip position that provides the
tors as complex valued fields in the local crack framebest fit quality. The position of the crack tip estimated
(crack tip at the origin, and crack extension along theby the post-processing approachris= 0.385 m and
negative real axis). A current poiit is represented y = 0.049 m. These values are in very good agree-
by a complex number = = + iy or polar coordi- ment with the “real” crack tip position = 0.383 m
natesz = re?’, and similarly the displacement is rep- andy = 0.048 m, which correspond to the last broken
resented byr = u, + iu,. The expression of the eight beam location.

1315206 2261e-03



0.38

0os 03 .06 computation of stress intensity factors is performed
oos 0N athree-point bending test problem.

0.02

0.382 0.26 0.38:
0.24 ~0.38:

022
0.38

~0.384
£

*0.386

0.2 -0.02

0.38§ 0.18 0.38: _0.04

0.39

0.16 0.3 -0.06
0.0440.0460.04{? 0).05 0.0520.054 0.0440.0460.048 0.05 0.0520.054
v(im \

0.34
0.383
_0.384
E
*0.388

0.38§

0.39

0.0440.0460.048 0.05 0.0520.054
m

Figure 7.K; in MPa/m (left), K;; in MPa,/m (cen-
ter) and global residual? — 7,,in)/Zmin (right) as
functions of the assumed crack tip positiorandy.
The optimal position is depicted by the white box.

More importantly, the same analysis also provides
a quantitative estimate of the stress intensity fac-
tors for both modes | and Il. The singular field,
which is directly measured through the amplitudes
of vs5 andvg, yields the SIF when the elastic con-
stants are known (in present cade,= 29.2 GPa
andv = 0.2). One obtaings’; = 0.22 MPa,/m, and
K;; = 0.00 MPa,/m. Note that the quite low value
obtained forK; is in accordance with experimental
result K; = 0.235 MPa,/m obtained by (Abell and
Lange 1998) for cement paste, with an elastic modu-
lus of 32.4 GPa.
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Figure 8. Identified horizontal (left) and vertical
(right) components of the displacement field ex-
pressed in meters as projected onto the basis of suited
functions. The crack is depicted by a white line.

5 CONCLUSIONS

During the past years, digital image correlation tech-
niques have become a powerful tool to analyze ex-
perimental results. Measured displacement fields en-
riched by classical mechanical fields allow several

guantities to be computed with high resolution. Fol-

lowing this approach, and by noting that the outputs
of discrete models are similar to those obtained by
experimental analyses, we propose to use DIC algo-
rithms to post-process discrete modelings. Applica-
tions on strain field computations are shown, and a
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