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ABSTRACT: The present work focuses on post-processing discrete modeling. Discrete models are used to
describe failure of brittle and heterogeneous material. Bynoting that data obtained with these models are very
close to those obtained with digital image correlation techniques (displacement fields), similar algorithms are
applied to compute usual data such as strain fields. Different examples illustrate performances of the approach,
in particular regarding the computation of stress intensity factors.

1 INTRODUCTION
Discrete element models are widely used for comput-
ing failure of cementitious and concrete structures,
thanks to modern computer performance. However,
engineering applications with discrete descriptions
are still uncommon in comparison with finite element
techniques. One of the reasons for this is that homoge-
nized quantities (e.g. stress, strain, damage variables),
usually “handled” by engineers are not naturally ob-
tained with discrete descriptions: such an approach
is based on a description of the material microstruc-
ture that accounts for heterogeneities. Discrete mod-
els deal only with local quantities, and require aver-
ages to be performed for macroscale analyses. Differ-
ent solutions to the averaging problem have been pro-
posed, mainly based on spatial averages of the local
quantities.

We propose here a more general approach, based on
image correlation techniques. During the last years,
these techniques have become very attractive for an-
alyzing experimental tests (Sutton et al. 2000). Local
and global quantities are obtained all over the sample
by measuring kinematic changes between two states.
Depending on the material behavior, one can measure
displacement fields, or identify strain fields, or even
stress intensity factors, for example. The analysis is
performed on a heterogeneous field from the evalua-
tion of local quantities, a feature also present in dis-
crete models. Following this idea, the same type of
analysis for both experimental tests and discrete mod-
eling computations is performed to obtain mechanical
fields. We illustrate this post-processing technique on
several examples of building materials and concrete
structures.

In the first part, we present the discrete model used
in this study, with a particular focus on the standard

post-processing tools. Extensions to discrete model-
ing are proposed, and applications on strain field will
be shown to illustrate the performance of the ap-
proach. A last example of crack propagation in a beam
is introduced, with an estimation of stress intensity
factors.

2 DISCRETE MODEL
2.1 Model basis
In the framework of discrete modeling, the material
is not described as a continuous medium but as an
assembly of particles. This assembly may break un-
der loading, allowing a natural description of discon-
tinuities. Hence, these discrete models are relevant
to represent failure of brittle heterogeneous material,
caused by nucleation, propagation and coalescence of
cracks. In this study, the material is described by an
assembly of rigid cells, obtained from a Voronoi tes-
sellation computed on a set of randomly distributed
points (see for instance (Tillemans and Herrmann
1995)). Centers of neighboring particles are linked
together by Euler-Bernoulli beams (figure 1) in or-
der to represent the elastic behavior of an isotropic
medium, characterized by two elastic parameters. In-
elastic response of material is obtained by introduc-
ing a nonlinear behavior for the beams. We choose
here an elastic-brittle law to describe the response of
a quasi-brittle material such as concrete. The failure
thresholdPij for beamij is computed from
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responds to the failure of the beam in a bending
mode (Woestyn et al. 2006). Microstructure hetero-
geneities are then introduced through the mesh vari-
ability and through the probability density function
of εcr
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Figure 1. Example of Voronoi mesh.

but a lattice model (Schlangen and Garboczi 1997;
Van Mier et al. 2002). Particle shapes are taken into
account in two cases:

• When two disconnected particles overlap, a con-
tact force is generated. This force depends on the
area of the overlap domain, and therefore on par-
ticle shapes.

• For dynamic loadings, Voronoi shapes are
needed to estimate the weight distribution of par-
ticles to compute the mass matrix.

In the following, quasi-static loadings are considered
with the following elastic prediction algorithm (De-
laplace and Rey 2005):

Stepk

1. apply elastic loadingfel

2. computeuel using an iterative method

3. computeαmin with

αmin = min
i,j∈(1,..,n)

i6=j

(
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)

4. save couple(αminu
el, αminf

el)

5. change stiffness matrix with

K
k+1 = K

k −Lij
T
KijLij

whereLij is the connectivity matrix of element
ij.

End stepk

This algorithm allows one to follow snap back re-
sponses and solution uniqueness is guaranteed.

2.2 Basic post-processing
Different elementary outputs are produced when run-
ning numerical simulations:

• a force-displacement curve,

• the crack pattern or damaged zones for a brittle
material,

• the displacement field.

These outputs are obtained directly, without any in-
terpretation or transformation. Figures 2 and 3 show
such outputs for a discrete model. A 3-point bend sim-
ulation is performed on a0.8×0.1 m beam. The mesh
is made of160× 20 particles. The Gaussian distribu-
tions of the model random parameters are character-
ized by the average and the standard-deviation of each
values:

ε̄cr = 1.5× 10−4 σεcr
= 0.05

θ̄cr = 5.6× 10−3 σθcr
= 0.05,

As expected, a vertical macrocrack propagates from
the bottom face of an initially uncracked beam.
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Figure 2. Force-displacement response.
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Figure 3. Crack pattern, horizontal and vertical dis-
placements of the 3-point bend configuration.

However, one may need more refined data from
the simulation. For instance, strain and stress fields



are usually needed by engineers. More specifically,
stress intensity factors are a basic quantity for fracture
mechanics analyses, as is the damage field for dam-
age mechanics. This information is not be obtained
directly from a simulation. Some “transformations”
are to be performed from the computed displacement
field. These transformations are the key for a good in-
terpretation of simulation results, especially for het-
erogeneous materials. A first possibility consists in
computing the different quantities close to the particle
scale,e.gthe strain field is computed by averaging the
displacements of the beams connected to each parti-
cle. This approach has the virtue of being simple, but
is not necessarily relevant in terms of scale. One may
imagine obtaining information at a coarser scale than
that of the particles. This is achieved by considering
mechanical solutions of the studied problem. Analyt-
ical solutions of basic problems are known and can be
used to enrich the computation of a strain field from
a discrete displacement field. This kind of considera-
tion has been developed successfully during the last
years for experimental measurements, for instance by
using digital image correlation techniques (Roux and
Hild 2006).

By noting that data obtained from a discrete el-
ement model computation and from a experimental
digital image correlation result are very similar (a dis-
crete displacement field), we propose to apply DIC al-
gorithms to post-process discrete modeling. We pro-
pose in the next part to illustrate enhanced postprocess
output obtained with such an analysis.

3 STRAIN ANALYSIS
Computing strain fields from displacement field is a
problem that has been studied for several years (Al-
lais et al. 1994; Geers et al. 1996; Kruyt and Rothen-
burg 1996). For heterogeneous materials, computing
local strains from displacement on the boundary of
a considered domain is common to experimental and
numerical applications. The average strain tensorε is
computed over a domainω with

ε =
1

Vω

∫

∂ω

1

2
(u⊗n + n⊗ u) ds

whereu is the displacement of a material point in
the studied configuration,n the normal to the domain
boundary∂ω andVω is the area of the domain. Strain
values are expected to be independent of domainω
if its size is large with respect to the material mi-
crostructure scale (or particle size for discrete model).
This condition is not fulfilled for this study. There-
fore, strain fields depend in part on the size and the
shape of the domainω, and different choices are pos-
sible (figure 4). Following (D’Adetta et al. 2004), we
choose a circular domain with a diameter of about five
times the particle size.

Strain fields are computed on a square sample
loaded vertically in tension (64× 64 particles). Model
parameters are identical to that of the first example.

Figure 4. Different sizes and shapes of domain bound-
ary∂ω (bold line) for a Voronoi particle (grey filled).
The following computations use the last domain.

The failure mode corresponds to a macrocrack that
propagates through the sample, perpendicular to the
loading direction. Note that the vertical position of
the macrocrack isa priori unknown. Strain fieldsε11

(horizontal),ε22 (vertical) andε12 are plotted in fig-
ure 5 (note the different scales), where a fixed range
is used. Strong discontinuity due to the macrocrack
is clearly visible, as the regularization due to the aver-
age computation on the domain boundary. Changes of
strain fieldsε22 with the crack propagation is shown
in figure 6, with an adaptive range for the gray scale.
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Figure 5. Strainε11, ε22 and ε12 fields for a simple
tension test.

The spatial resolution of the strain fields is limited
with this approach to the particle size (just one value
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Figure 6. Change of strain fieldε22 with crack propa-
gation (adaptive range scale).

is computed for each particle). This limitation van-
ishes if one considers integrating this field over the
particle area. For elastic problems, a simple linear in-
tegration is the best approximation of the strain field.

4 STRESS INTENSITY FACTOR EVALUATION

Extracting some mechanically meaningful informa-
tion using the detailed map of displacement is per-
formed by identifying the amplitudes of relevant ref-
erence displacement fields. In the present case, one
can easily list some meaningful contributions. First,
rigid body motions have to be accounted for and con-
stitute the first three fields, two in-plane translations,
v1 andv2, and one rotation about an axis normal to
the observation plane,v3. One single uniform strain
field, v4, is allowed for in order to leave the crack
face stress-free, the so-called “T-stress” (uniaxial ten-
sion along the crack direction). The presence of a
crack generates two independent “singular” displace-
ment fields corresponding to modes I,v5, and II,v6,
with two scalar amplitudes that will give access to
the stress intensity factors. Lastly, in order to enrich
the basis, one may also consider the next order sub-
singular mode I and II fields, respectively denoted
by v7 andv8. It is convenient to express these vec-
tors as complex valued fields in the local crack frame
(crack tip at the origin, and crack extension along the
negative real axis). A current pointM is represented
by a complex numberz = x + iy or polar coordi-
natesz = reiθ, and similarly the displacement is rep-
resented byu = ux + iuy. The expression of the eight

basis functions is

v1(z) = 1
v2(z) = i
v3(z) = iz
v4(z) = (κ− 1)z + 2z
v5(z) =

√
r[2κeiθ/2 − e3iθ/2 − e−iθ/2]

v6(z) = i
√
r[2κeiθ/2 + e3iθ/2 − 3e−iθ/2]

v7(z) =
√
r3[2κe3iθ/2 − 3eiθ/2 + e−3iθ/2]

v8(z) = i
√
r3[2κe3iθ/2 + 3eiθ/2 − 5e−3iθ/2]

(2)

where

κ =
(3− ν)

(1 + ν)
(3)

in plane stress condition, as expected along the free
(examination) surface, withν being the Poisson’s ra-
tio. Let us note however that the amplitudes of these
functions are real numbers.

The strategy is thus to decompose the estimated
displacement field (from discrete calculations, see
Fig. 3) onto the basis ofvk test functions. For this
goal, the following objective function is minimized

T (a) =
Nco
∑

i=1

‖ui −
∑

k

akvk‖2 (4)

whereNco is the number of computed displacement
points.

One advantage of this formulation is that the value
reached by the objective function constitutes a global
quality parameter. Since the identification procedure
assumes that the crack geometry is known, a min-
imization of this global residual over thea priori
guessed crack tip position also provides a natural way
of optimizing the crack geometry. It can be noted that
other techniques can be followed to extract the stress
intensity factor by using interaction integrals (Hellen
1975; Destuynder and Djaoua 1981; Réthoré et al.
2005).

This identification is carried out on the 3-point
bending test presented in Section 2.2. The results re-
ported below are obtained from estimates of the dis-
placement field over a region of interest that amounts
to a disk of external radius of 0.03 m centered on a
gross determination of the crack tip position. In fig-
ure 7, the map of estimated mode I and mode II stress
intensity factors is plotted as functions of the guessed
crack tip location (for output convenience, the beam
axis is vertical). To select the most appropriate loca-
tion, the map of global residual is shown in the same
figure. The crack tip is accurately located in both
directions. From the absolute minimum, one locates
quite precisely the crack tip position that provides the
best fit quality. The position of the crack tip estimated
by the post-processing approach isx = 0.385 m and
y = 0.049 m. These values are in very good agree-
ment with the “real” crack tip positionx = 0.383 m
andy = 0.048 m, which correspond to the last broken
beam location.
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Figure 7.KI in MPa
√

m (left),KII in MPa
√

m (cen-
ter) and global residual(T − Tmin)/Tmin (right) as
functions of the assumed crack tip positionx andy.
The optimal position is depicted by the white box.

More importantly, the same analysis also provides
a quantitative estimate of the stress intensity fac-
tors for both modes I and II. The singular field,
which is directly measured through the amplitudes
of v5 and v6, yields the SIF when the elastic con-
stants are known (in present case,E = 29.2 GPa
andν = 0.2). One obtainsKI = 0.22 MPa

√
m, and

KII = 0.00 MPa
√

m. Note that the quite low value
obtained forKI is in accordance with experimental
resultKI = 0.235 MPa

√
m obtained by (Abell and

Lange 1998) for cement paste, with an elastic modu-
lus of32.4 GPa.
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Figure 8. Identified horizontal (left) and vertical
(right) components of the displacement field ex-
pressed in meters as projected onto the basis of suited
functions. The crack is depicted by a white line.

5 CONCLUSIONS
During the past years, digital image correlation tech-
niques have become a powerful tool to analyze ex-
perimental results. Measured displacement fields en-
riched by classical mechanical fields allow several
quantities to be computed with high resolution. Fol-
lowing this approach, and by noting that the outputs
of discrete models are similar to those obtained by
experimental analyses, we propose to use DIC algo-
rithms to post-process discrete modelings. Applica-
tions on strain field computations are shown, and a

computation of stress intensity factors is performed
on a three-point bending test problem.
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