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ABSTRACT: This paper presents the results of a very recent experimental research program aimed at investi-
gating mixed-mode fracture of longitudinally reinforced concrete beams. The tests were designed so that only
one single mixed-mode crack generates and propagates through the specimen, as opposed to the usual dense
crack pattern found in most of the tests in scientific literature. The specimens were three-point-bend beams
of three different sizes. They were notched asymmetrically and reinforced with various ratios of longitudinal
reinforcement. These experiments may help to understand the mechanisms of mixed-mode crack propagation
in longitudinally reinforced concrete elements. Finally an analytical model based on the experimental results
model is presented to analyze size effect and hyper-strength in this kind of elements.

1 INTRODUCTION

This paper presents some very recent results of an ex-
perimental program aimed at disclosing some aspects
of the propagation of mixed-mode cracks through lon-
gitudinally reinforced concrete elements and its con-
sequences. Specifically, the program was designed to
investigate the influence of the size of the specimen
and of reinforcement detailing on mixed-mode crack
propagation. This research is an extension of previ-
ous works on the nucleation and propagation of mode
I cracks in reinforced concrete (Ruiz et al., 1998; Ruiz
and Carmona, 2006). By focusing on mixed-mode
cracks we aim at completing the study of the genera-
tion and development of the different types of cracks
that may appear in longitudinally reinforced concrete
beams.

In reinforced concrete, mixed-mode crack propaga-
tion is mainly addressed from a technological stand-
point. The dense crack pattern that results from the
usual reinforcement detailing and element geometry
may somehow make it difficult to induce direct re-
lations between causes and effects. That is why we
focus on the propagation of one single mixed-mode
crack. Of course, there are some other excellent stud-
ies with common points with our methodology. They
addressed problems related to the shear resistance
of reinforced elements, like the study on failure by
diagonal tension performed by Bažant and Kazemi
(Bažant and Kazemi, 1991), or the work by Kim and
White (Kim and White, 1999) on the generation of

shear-damaged in reinforced concrete.
The article is organized as follows. An outline of

the experimental program is given in Section 2. In
Section 3 we describe the characterization tests per-
formed on the materials used to make the reinforced
beams. Section 4 deals with the experimental set-up
for the mixed-mode tests. The experimental results
are presented and discussed in Section 5. Section 6
include a simple analysis of size effect in reinforced
notched concrete beams. Finally, in Section 7 some
conclusions are extracted.

2 OVERVIEW OF THE EXPERIMENTAL PRO-
GRAM

The program was designed to study the propagation
of mixed-mode cracks through reinforced concrete.
Specifically, we wanted to disclose the influence of
the amount of reinforcement and specimen size on the
crack propagation. We also intended to analyze the
variations in the crack pattern and in the mechanical
behavior due to the size of the specimens. In addi-
tion, the program had to provide an exhaustive mate-
rial characterization to allow a complete interpretation
of the test results.

With these intentions in mind, we chose the beam
sketched in Figure 1 as a convenient specimen for
this research. Our choice revisits the geometry tested
by Jenq and Shah to study mixed-mode crack prop-
agation in plain concrete (Jenq and Shah, 1988). It
is a notched beam that exhibits a single mixed-mode



crack when subjected to bending at three points. In
their work, Jenq and Shah provide plenty of insights
on the generation and propagation of the crack which
are of use here. We reinforce the beams with several
ratios of longitudinal (ρl = Al

BD
, being Al the area of

the cross section of the longitudinal reinforcing bars,
B the beam width and D the beam depth). The re-
inforcement provokes changes in the orientation of
the main crack and in the global mechanical response,
but the presence of a notch avoids a dense crack pat-
tern that would blur our perception of such changes.
At most, some reinforcement configurations generate
a secondary flexural crack at midspan that competes
with the one that starts from the notch tip.

Regarding the size of the beams, we wanted even
the largest beams to be reasonably easy to handle and
test. At the same time, the behavior of the labora-
tory beams should be representative of the behavior of
beams of a normal size made of ordinary concrete. In
order to fulfill both requirements, Hillerborg’s brittle-
ness number βH (Bažant and Planas, 1998) was used
as the comparison parameter. It is defined as the ra-
tio between the size of the beams —represented by
their depth D— and the characteristic length of the
concrete, `ch (Petersson, 1981), i.e.:

βH =
D

`ch

, where `ch =
EcGF

f 2
t

, (1)

Ec is the elastic modulus, GF the fracture energy
and ft the tensile strength. As a first approximation,
two geometrically similar structures display a simi-
lar fracture behavior if their brittleness numbers are
equal. According to this, a relatively brittle micro-
concrete was selected with a characteristic length of
approximately `ch = 90 mm (the details of the micro-
concrete are given in the next section), while the
beams were made to be 75, 150 and 300 mm in depth.
Since `ch of ordinary concrete is 300 mm on aver-
age, our 150 mm depth laboratory beams are expected
to simulate the behavior of ordinary concrete beams
500 mm in depth, which is considered as a reasonable
size for the study.

The dimensions were scaled to the beam depth D,
please see Figure 1. We made small (S, D = 75 mm),
medium (M, 150 mm) and large (L, 300 mm) spec-
imens reinforced with several ratios of longitudinal
reinforcement. The beam width is in all cases equal
to 50 mm. Each specimen was named by a letter indi-
cating the size (S, M or L) and one figure indicating
the number of bars used for the reinforcement. For ex-
ample, L2 names a large beam with two longitudinal
bars. We performed at least two tests for each type of
beam.
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Figure 1: Beam Geometry.

Table 1: Micro-concrete mechanical properties.

fc
(a) fts

(b) Ec GF `ch

MPa MPa GPa N/m mm
mean 36.3 3.8 28.3 43.4 86.8

std. dev. 1.9 0.3 2.7 5.8 -

(a) Cylinder, compression tests.
(b) Cylinder, splitting tests.

3 MATERIALS CHARACTERIZATION
3.1 Micro-concrete
A single micro-concrete mix was used throughout the
experimentation, made with a lime aggregate of 5
mm maximum size and ASTM type II/A cement. The
mix proportions by weight were 3.2 : 0.45 : 1 (ag-
gregate : water : cement). We made characterization
specimens out of all batches.

Compression tests were carried out according to
ASTM C 39 and C 469 on 75 × 150 mm cylinders
(diameter × height). Brazilian tests were also carried
out on these kind of cylinders following the proce-
dures recommended by ASTM C 496. Stable three-
point bend tests on 75 × 50 × 337.5 mm notched
beams were carried out to obtain the fracture proper-
ties of concrete. We followed the procedures devised
by Elices, Guinea and Planas (that are minutely ex-
plained in (Bažant and Planas, 1998)). Particularly,
during the tests the beams rested on anti-torsion de-
vices. They consist of two rigid-steel semi-cylinders
laid on two supports permitting rotation out of the
plane of the beam and rolling along the longitudi-
nal axis of the beam with negligible friction. Ta-
ble 1 shows the mechanical parameters of the micro-
concrete determined in the various characterization



Table 2: Steel mechanical properties.

Es fy,0.2 fu εu

GPa MPa MPa %
174 563 632 4.6

and control tests.

3.2 Steel
For the beam dimensions selected and the desired
steel ratios, the diameter of the steel bars had to be
smaller than that of standard rebars, so commercial
ribbed wires with a nominal diameter of 2.5 mm were
used as reinforcing bars. Table 2 shows the mechani-
cal properties of the ribbed wires. The elastic modu-
lus Es, the ultimate strength fu, the 0.2% offset yield
strength fy,0.2, and the ultimate strain εu. The nom-
inal value of the diameter was used to calculate the
stress-related parameters in Table 2.

The ultimate strain in ribbed bars is considerably
lower than in mild steel bars, due to the defects in the
material resulting from the ribbing process.

3.3 Steel-concrete interface
Pullout tests were carried out by pulling the wire at
a constant displacement rate while keeping the con-
crete surface compressed against a steel plate. Fig-
ure 2a sketches the pull out specimen, a prism of
50 × 50 × 75 mm with a wire embedded along its
longitudinal axis. The bonded length was 25mm (=10
× nominal diameter of the bars) to allow a constant
shear stress at the interface of the reinforcement wires
(Losberg and Olsson, 1979; RILEM/CEB/FIP, 1970).
The relative slip between the wire and the concrete
surfaces was measured at the bottom end. The tests
were carried out at a constant displacement rate of
2µm/s. Figure 2b, shows the upper and lower limit
of the bond-slip curves. The bond strength τc deduced
from these tests was 6.4 ± 1.8 MPa. The scatter is
over 30%, typical for this kind of test.

4 MIXED-MODE TESTS
As we already described in Section 2, the specimens
for the mixed-mode tests were notched beams rein-
forced with longitudinal bars. Figure 1 sketches the
geometry and reinforcement detailing of the beams;

All the beams were supported and tested in three-
point bending tests, as illustrated in Figure 1. Dur-
ing the tests the beams rested on anti-torsion supports
like the ones used to measure GF (see Section 3.1).
For loading, a hydraulic servo-controlled test system
was employed. The test were performed in position-
control. We ensured that the evolution of the crack-
ing process was very slow. The maximum load was
achieved for each size within about 60-80-min. Each
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Figure 2: (a) Pull-out specimen to obtain steel-concrete
interface properties; (b) upper and lower limit of the τ − s
curves.

complete test had a duration of 120-140 min.
The load, P , and the displacement under the load

point, δ, were continually monitored and recorded.
We also used a resistive extensometer centered on the
tensioned face of the beam at the mouth of the notch
to measure the crack opening displacement, CMOD, in
all the tests. In order to complete the experimental in-
formation, we also drew the crack pattern resulting
from each test copying it directly from both sides of
beam.

5 DISCUSSION
Figure 3 shows experimental P -δ and P -CMOD curves.
Plain beams, as a limit case of this category of beams,
are also considered in the figures. In this kind of
beams, the reinforcing bars are far from the tip of
the notch. The crack starting from the notch should
behave like a crack that has already crossed the flexu-
ral reinforcement layer and goes on progressing under
mixed-mode conditions. To facilitate the comparison
between P -δ curves corresponding to the same kind
of beams, the initial slope of the curves is corrected to
the theoretical value obtained from finite element cal-
culations. Different experimental initial slopes in a P -
δ curve are usual even for the same kind of beams and
the same set-up. This is due to the sensitivity of the
elastic flexibility of the beam to the boundary condi-
tions in the application of a concentrated load (Planas
et al., 1992).

The crack propagation process can be understood
with the help of Figures 4 and 5. They show the
evolution of the crack related to the P -δ and the P -
CMOD curves for a L4 specimen (Fig. 4) and L8 beam
(Fig. 5). Please remember that L4 is a large beam —
D=300mm— reinforced with 4 longitudinal ribbed
bars −the reinforcement ratio is 0.13%−. Figure 4a
shows a picture of the specimen after being tested.
The crack trajectory was digitalized and sketched in
Figure 4b. The marks and figures on the sketch refer
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Figure 3: Experimental results given by beams with vari-
ous ratios of longitudinal bars: (a) P -δ curves of the small
beams; (b) P -CMOD curves of the small beams; (c) P -δ
curves of the medium beams; (d) P -CMOD curves of the
medium beams; (e) P -δ curves of the large beams; (f) P -
CMOD curves of the large beams.

to the corresponding points in the P -δ and P -CMOD

curves (Figs. 4c and d respectively) and to the load
in kN that the beam was standing when the crack tip
reached that position. Thus, Figure 4 contains all the
experimental information recorded during the test of
beam L4-7-2 (the last two numbers indicate that the
beam was the second of its kind taken from batch
number 7).

The behavior of the beam is almost linear up to
the cracking load, Pc, which is assigned the label A
in Figures 4b-d. From then on the crack propagates
in a slow and stable manner until its tip reaches the
point labelled as C. Please note that the propagation
between A and C implies almost no increase in the ex-
ternal load. The displacement δ in C is twice the elas-
tic δ that corresponds to A, whereas the crack open-
ing in C is four times longer that the one in A. From
C the crack goes on propagating stably towards D,
but the curves show that the type of propagation has
changed. Indeed, the crack length between C and D
equals the growth between A and C but the loads drop
from 9.8 to 8.1 kN and, strikingly, the crack growth
is not associated to any δ neither CMOD increase. The
change in the nature of the propagation can also be
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Figure 4: Crack propagation in the specimen L4-7-2: (a)
photograph; (b) crack trajectory (the marks denote the ex-
tent of cracking at the given loads in kN); (c) P -δ curve;
(d) P -CMOD curve.

noticed by a deviation in the crack trajectory (Fig.
4b). In reinforced concrete technology the behavior
just described is referred to as failure due to diago-
nal tension. It implies a redistribution of the way of
resisting shear within the beam. Part of the load car-
ried by the concrete ligament is transferred to the steel
bars and that is why the beam recovers some strength
at D. From them on the crack goes on propagating
slowly towards the loading point. Most of the shear is
withstood by the bars that sew the crack. Depending
on the ratio and cover of longitudinal reinforcement
and on the geometry of the beam, the concrete around
the bars may not be strong enough to resist the shear
transferred by the reinforcement. In such cases the
bars provoke the generation of a longitudinal crack at
the level of the reinforcement, which implies a sudden
drop in the load capacity.

Figure 5 provides additional insights on the prop-
agation process, since a L8 beam is reinforced with
8 longitudinal bars, thus doubling the reinforcement
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Figure 5: Crack propagation in the specimen L8-9-2: (a)
photograph; (b) crack trajectory (the marks denote the ex-
tent of cracking at the given loads in kN); (c) P -δ curve;
(d) P -CMOD curve.

ratio. Interestingly, the increase in the reinforcement
ratio provokes the generation of flexural cracks that
initially grow faster that the mixed-mode crack, as the
stretch AB in Figure 5b shows. From B to D flexural
cracks compete with the mixed-mode crack generated
at the notch tip, the propagation being slow and sta-
ble. At this point, like in the previous case, the na-
ture of the propagation changes. Figure 5b-d show
that the mixed-mode crack grows rapidly in a stable
way (stretch DE) whereas the flexural cracks arrest;
likewise, points D and E are very close both in the P -
δ and P -CMOD curves. There has been a redistribution
of the shear carrying capacity from the concrete liga-
ment to the steel bars. The concrete that surrounds the
reinforcement is not able to stand the load transmitted
by the bars and then there starts a longitudinal crack
at the reinforcement level. The big jump between E
and F in the CMOD indicates the opening of this new
crack.

The trajectory of the crack is sensitive to the pres-
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Figure 6: Crack pattern observed in beams with various
ratios of longitudinal bars and no inclined bars.

ence and amount of flexural reinforcement, as Fig-
ure 6 clearly shows. The sketches to represent the
crack pattern of the beams of different size do not
keep the proportionality between the actual beams,
which is 1 : 2 : 4. To facilitate the comparison we
represent the sketches scaled following the ratio 1 :
1.5 : 2. Although two tests have been done per each
beam type, we have selected only one of the resulting
patterns to represent the beam type, since crack pat-
terns for the same beam type are quite similar in all
cases. The angle at which the crack starts propagating
is almost independent from the number of bars, but
as the reinforcement ratio increases, the crack gets in-
clined so as to reach the loading point. In this case,
crack trajectories for different beam sizes are alike.
All the beams broke due to the propagation of the
mixed-mode crack.

The influence of the reinforcement ratio in the
cracking load is analyzed in Figures 7a and b. They
represent the cracking load in a nondimensional way
versus the reinforcement ratio. The geometry and
reinforcement arrangement in these beams facilitate
that the bars work as soon as the beam starts to be
loaded, which provokes a hyper-strength associated to
the ratio of reinforcement. For the ratios considered, a
linear relation between reinforcement ratio and crack-
ing load fits very well the test results (please, note that
the Pearson’s correlation coefficient, R in Figures 7a
and b is very close to 1).

Figure 7c shows the cracking load against the size
of the beam in a non-dimensional form. Plain beam
results and the Bažant’s law (Bažant, 1984) fitted to
these results are also plotted to facilitate the compar-
ison. As reinforcement ratio increases, size effect is
less noticeable.

Figure 7d plots the maximum load (at diagonal ten-
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Figure 7: (a) Cracking strength versus reinforcement ratio
for the medium beams; (b) cracking strength versus rein-
forcement ratio for the large beams; (c) cracking strength
versus size; (d) maximum strength versus size.

sion failure), Pmax, versus size in a nondimensional
form. The strength decreases with size in a smoother
way than for Bažant’s law, that is, than for plain
beams.

6 SIMPLE MODEL TO EXPLAIN SIZE EFFECT
AND HYPER STRENGTH

We observe in Figures 3 and 7 a hyper-strength effect
in cracking and maximum load due to the reinforce-
ment action. According to (Ruiz, 2001) the cracking
load, Pc, is a function, apart from beam geometry and
boundary conditions, of concrete properties, element
size and steel location and properties, including the
bond-slip behavior of the steel-concrete interface. If
reinforcement has reached its yield strength fy, we
can write:

Pc = f
( D

lch
,

c

lch
, ρ, η,

fy

ft

)
(2)

Where D is the depth of the beam, c is the length of
the concrete cover and η is a nondimensional param-
eter that represents the strength of the interface (Ruiz,
2001). In this investigation only the reinforcement ra-
tio and the size of the element are varied. So, we are
going to consider as constants the rest of the parame-
ters and thus Eq. 2 can be rewritten as:

Pc = f
( D

lch
, ρ,

fy

ft

)
(3)

To determine a simple expression to evaluate P0,
we can decompose the load capacity of the beam in
two terms. The first one represents the load stood by

the plain concrete. The second one includes the hyper-
strength attributable to the presence of longitudinal
reinforcement. Thus we can write:

Pc = P0 + ∆P (4)

where Pc is the part on the load due to plain con-
crete and ∆P is the hyper-strength.

For the sake of simplicity, concrete carrying capac-
ity is represented according to linear elastic fracture
mechanics, the simplest fracture hypothesis. We can
write:

σ0 =
P0

BD
= K0β

− 1
2

H ft (5)

Where K0 is a dimensionless constant for scaled
plain beams, and βH is the Hillerborg’s brittleness
number as defined in Eq. 1. The exponent −1

2
rep-

resents the strongest possible size effect. Applicabil-
ity of such size effect to shear fracture was first ana-
lyzed in a pioneering study by Reinhardt (Reinhardt,
1981). It must be emphasized that Eq. 5 only wants
to catch a trend of the actual behavior. Concrete re-
sponse could be modelled with other expressions like
Bažant’s law (Bažant, 1984) or using another expo-
nent like −1

4
(Hillerborg and Gustafsson, 1988).

∆P in Eq. 4 can be considered as a function of the
beam geometry, the position and mechanical proper-
ties of the steel rebars and of the bond-slip behavior
of the steel-concrete interface. In our experimental
program we have used a very low reinforcement ra-
tio and the steel was most of the times yielded at the
cracking load. We derived a linear relation between
the hyper-strength and the longitudinal reinforcement
ratio, based in the results showed in Figures 7a and b.

σ∆ =
∆P

BD
= K∆ρfy (6)

where K∆ is another dimensionless constant pro-
vided the beams keep the same proportions and rein-
forcement ratio. The cracking strength can be rewrit-
ten as:

Pc

BD
= σc = σ0 + σ∆ = K0β

− 1
2

H ft + K∆ρfy, (7)

which can be expressed in a non-dimensional fash-
ion as:

Pc

BDft

=
σc

ft

= K0β
− 1

2
H + K∆ρ

fy

ft

(8)

Applicability of Eqs. 7 and 8 requires not only that
the beams are scaled to each other, but also that the
shape of the cracks be similar. In our case the crack
patterns are very similar for the cracking load, as we
showed in section 5.



ρ=0.13%

β
H

σ
c
 /

 f
t

β
H

σ
c
 /
 f

t

σ c
 /
 f

  
β

t

1
/2

ρfy / f  βt

1/2

H

17.00042.0
2

1

+=
−

H
t

c

f
β

σ

0.10

0.20

0.30

0.40

0.1 0.2 0.3 0.4

y = 0.0042+ 0.89x   R= 0.99

a)

σ
c 
/ 

f 
 β t

1
/2

ρfy / f  βt

1/2

H

0.10

0.15

0.20

0.25

0.30

0.1 1 10

b)

 

 

 

 

K0 K∆

0.20

0.30

0.40

0.50

0.3 0.4 0.5 0.6 0.7 0.8

y = 0.0107+ 0.63x   R= 0.98

c)

0.20

0.25

0.30

0.35

0.40

0.1 1 10

d)

0.240107.0
2

1

+=
−

H
t

c

f
β

σ

ρ=0.26%

K0 K∆

ρ=0.26%

ρ=0.13%
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Figures 8a and c show the linear regression made
with some of test results to get the constants K0 and
K∆. Figures 8b and d show tests results compared
to the obtained size effect law. It may be pointed
out that in notched reinforced concrete beams size
effect tends to disappear when D → ∞. The nomi-
nal shear strength converges to a value different from
zero, which is a function on steel properties. Further
analysis would be necessary to evaluate the influence
of the mechanical behavior of the steel-concrete inter-
face and of the geometry of the beam.

In reinforced concrete elements, the largest crack
at maximum load has the same effect as the notches
in fracture specimens. If we consider that diagonal
tension failure is caused by fracture propagation and
maximum load is attained only after a large fracture
growth (and not at fracture initiation), then Eq. 7 will
be susceptible to represent the ultimate strength at
failure by diagonal tension. Test results available in
the literature show that for diagonal tension failure,
the LEFM asymptote of slope −1/2 fits results bet-
ter than a horizontal asymptote. This means that shear
failure of beams is predominantly brittle (Bažant and
Yu, 2005a; Bažant and Yu, 2005b) and so the hypoth-
esis made in Eq. 5 can be considered accurate enough
for our proposal.

To apply Eq. 7 to analyze diagonal tension failure
we have to make some additional hypothesis. The first
one is that the main crack in similar beams of various
sizes has to be geometrically similar. This is a reason-
able assumption having in mind our results, as it is
observed in Figure 6 for ρ=0.13% and ρ=0.26%. The
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Figure 9: Size effect plots for maximum load: (a) re-
sults for the regression to calibrate K0 and K∆ coeffi-
cients, ρ = 0.13% and ρ = 0.26%; (b) size effect law for
ρ = 0.13% and ρ = 0.26%; (c) results for the regression
to calibrate K0 and K∆ coefficients for Ožbolt and Elige-
hausen results; (d) size effect law for Ožbolt and Elige-
hausen results.

second hypothesis is that steel stress in similar struc-
tures of various sizes at failure have to be similar. In
beams without any notch diagonal tension failure oc-
curs when the steel is still in the elastic range. In Eq. 6
we consider that the steel yielded because this is what
happens in our tests due to the low reinforcement ra-
tio. In un-notched beams fy has to be changed by σs,
steel tension at failure.

Figure 9a shows the linear regression made to get
K0 and K∆ constants for the beams that failed by
diagonal tension. Figure 9b shows the tests results
against the obtained law. We have followed the same
procedure with results obtained by Ožbolt and Elige-
hausen (Ožbolt and Eligehausen, 1997) (Figs. 9c and
d). We selected these results due to the wide size
range that they cover (0.1-2.0 m) and the accuracy ob-
tained from their model. The size effect model that we
propose fits their results quite well, which proves that
the model catches the trends of the response. Sum-
marizing, tests results indicate that the strength tends
to converge to a constant value different from zero.
The proposed model follows this tendency, based on
experimental observations. It can be of use to de-
velop recommendations on shear reinforcement re-
quirements.

7 CONCLUSIONS
This article presents very recent experimental results
on the propagation of mixed-mode cracks through re-
inforced concrete. The tests were designed so that



only one single mixed mode crack generates and
propagates through the specimen, as opposed to the
usual dense crack pattern found in most of the tests in
scientific literature. The specimens were three-point-
bend beams with an asymmetrical notch of three dif-
ferent sizes reinforced with various ratios of longitu-
dinal (flexural) reinforcement.

The cracking load of beams was very sensitive to
the amount of reinforcement and the crack propagated
towards the point where the load was applied. Another
observation is that after a large crack progress the fi-
nal stretch of the crack propagation induced a sudden
drop in the carrying capacity of the beam, similar to
the so-called diagonal tension failure. Also the effect
of the size of the beams is noticeable in our tests. On
the one hand, large beams resisted less load in terms
of stress. On the other hand the larger the beam, the
more leaned towards the load point the crack trajec-
tory was. These experimental results can be used prof-
itably for modeling the behavior of mixed mode crack
propagation on reinforced concrete beams.

Finally, the size effect in both cracking and maxi-
mum load (at the failure by diagonal tension) is accu-
rately described by a simple model. It discloses the
influence of the ratio of longitudinal reinforcement
on the hyper-strength and subsequently, can enlighten
code developers on updating recommendations for
shear reinforcement provisions.
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