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ABSTRACT: It is well known to engineers that fatigue accounts for a majority of structural failures. In plain
and reinforced concrete structures, fatigue may lead to excessive deformations, excessive crack widths, de-
bonding of reinforcement and rupture of the reinforcement or matrix leading to structural collapse. It is learnt
from the available literature on fatigue behavior of concrete that the rate of fatigue crack growth depends on
a number of parameters, such as, the tensile strength, stress history, stress intensity factor range and fracture
properties. Furthermore, these parameters are random in nature. These factors together with the wide variations
in material properties of concrete suggests that a statistical/probabilistic framework is required for fatigue life
prediction in concrete. In this work, the probability of failure of concrete beams under fatigue is computed
through Monte Carlo simulation and by considering the different parameters responsible for fatigue failure as
randomly distributed. The sensitivity of different parameters involved in fatigue process pertaining to failure is
also studied using stochastic sensitivity analysis.

1 INTRODUCTION

Most of civil engineering infrastructures are subjected
to fatigue loading and it is important to consider the
fatigue degradation during residual life evaluation.
Numerous models are available to describe fatigue be-
havior in metals but very few of these can be directly
applied to concrete. Based on linear elastic fracture
mechanics theory, fatigue crack propagation in con-
crete can be described through suitable modification
of the well known Paris Law as discussed in (Bazant
and Kangming 1991), (Carpinteri 1991) (Slowik et al.
1996) and (Subramaniam et al. 2000). The modified
laws include several parameters such as frequency of
applied loading, the presence of fracture process zone,
the size effect and the overload effects, which com-
plicates the fracture process in concrete. Since the
quantities entering into the evaluation process are not
deterministic in nature, an application of the princi-
ples of probability theory becomes mandatory. In the
present work, a statistical framework is discussed for
assessing the fatigue life of plain concrete beams. As
a first step, a modified LEFM based fatigue law for
predicting crack propagation in concrete is discussed
briefly. Subsequently, the reliability with respect to
fatigue failure of the member under consideration is
computed by considering different input parameters
as randomly distributed. Monte Carlo simulation with
Latin Hypercube Sampling technique is used for de-
termining the failure probability. The Latin Hyper-

cube sampling technique reduces the computational
time considerably by a judicious choice of the random
samples, as discussed later. Further, using stochastic
sensitivity analysis, it is also determined in what de-
gree the randomness of an input quantity influences
the variability of the output.

2 LEFM BASED FATIGUE LAW FOR CON-
CRETE

As mentioned earlier, in metals fatigue is a well un-
derstood phenomenon, causing irreversible material
damage (Paris and Erdogan 1963). Unlike in metals,
the fatigue mechanism in concrete is different due to
its quasi-brittle nature. Based on linear elastic frac-
ture mechanics concepts, the fatigue crack propaga-
tion law originally proposed by Slowik et al. (1996)
includes parameters such as fracture toughness, load-
ing history, specimen size etc, except the frequency of
externally applied load and is described by,

da

dN
= C

KImax
m∆KI

n

(KIC −KIsup)p
+ F (a,∆σ) (1)

where C is a parameter which gives a measure of
crack growth per load cycle, KIsup is the maximum
stress intensity factor ever reached by the structure in
its past loading history, KIC the fracture toughness,
KImax is the maximum stress intensity factor in a cy-
cle, N is the number of load cycles, a is the crack
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Table 1: Details of specimen geometry

Specimen Depth Width Span Initial
(mm) (mm) (mm) notch(mm)

Large 152.4 38.1 381 25.4
Medium 76.2 38.1 190.5 12.7

Small 38.1 38.1 95.3 6.35

length, ∆K is the stress intensity factor range, and m,
n, p, are constants. F is a function that accounts for
the overload. These constant co-efficients are deter-
mined by Slowik et al through an optimization pro-
cess using the experimental data and are 2.0, 1.1, 0.7
respectively.
Although, the fatigue crack propagation law given in
Equation 1 is based on LEFM, the effect of the quasi-
brittle nature of concrete and the presence of FPZ is
accounted for by the parameter C. This parameter ba-
sically gives a measure of crack growth per load cy-
cle. In concrete members this parameter indicates the
crack growth rate for a particular grade of concrete
and is also size dependent. Slowik et. al. (1996) pro-
posed an equation for computing C values for a par-
ticular specimen depending on its fracture parameters
such as the characteristic length lch, fracture energy
Gf etc. Since, frequency of external loading also in-
fluences the crack propagation rate in a large amount,
in an earlier work authors (Sain and Chandra Kishen
2003) have proposed a modified empirical equation
for evaluating C incorporating the frequency of load-
ing f as

Cf =−0.0193
(

L

lch

)2

+0.0809
(

L

lch

)
+0.0209(2)

The function F (a,∆σ) in Equation 1 describes the
sudden increase in equivalent crack length due to an
overload (Slowik et al. 1996). A much detailed ex-
planation on effect of overload can be found in (Sain
and Chandra Kishen 2003). The proposed fatigue law
given by Equation 1 together with Equation 2 is vali-
dated using Bazant and Xu’s experimental results for
small, medium and large beam specimens. The details
of the specimen geometry is given in Table 1.

The stress intensity factor for bending specimen is
defined as,

KI =
P

B
√

D
f(α) (3)

where P,B,D are the applied load, specimen width
and depth respectively. f(α) is the geometry factor,
written as,

f(α) =
(1− 2.5α + 4.49α2 − 3.98α3 + 1.33α4)

(1− α)3/2
(4)
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Figure 1: Fatigue Crack Propagation (LEFM law)

In Figure 1, the proposed model is compared with
the experimental results of Bazant and Xu on three
point bend specimens. It is seen in this figure that ini-
tially, the crack growth rate is moderate, and as the
stress intensity factor approaches the fracture tough-
ness, crack growth becomes faster finally leading to
failure, which is represented by the asymptotic nature
of the crack propagation curve. For all the three spec-
imens, a good agreement is obtained between the pro-
posed model and experimental results.

3 RELIABILITY ANALYSIS USING MONTE
CARLO SIMULATION

As described earlier, the fatigue life of the member
can be evaluated by integrating Equation 1 over the
crack length a0 to ac, as∫ Nf

0
dN =

(KIc)
p

C

∫ ac

a0

da

(KImax)m(∆KI)n
(5)

or,

Nf =
(KIC)p

C

∫ ac

a0

da

(KImax)m(∆KI)n
(6)

=
(KIC)pf

C ′

∫ ac

a0

da

(KImax)m(∆KI)n

where a0 and ac are the initial and final notch length;
Nf is the fatigue life of the member. For simplifica-
tion, constant amplitude fatigue loading is considered;
hence KIsup is neglected. Further, to incorporate the
effect of loading frequency explicitly, constant C has
been split as C ′/f ; where f is the frequency of exter-
nal loading and the new constant C ′ is expressed in
terms of mm/sec.
The parameters involved in Equation 5 are stress in-
tensity factors KI which are functions of stress his-
tory, notch length and specimen geometry. Consid-
ering all these parameters to be randomly distributed
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with known statistical distributions, the performance
function for the proposed analysis may be defined as,

g := Nf −Nc (7)

where NC is the failure cycle to be obtained from ex-
periments. In the present analysis NC is considered
to be a design parameter, which will govern the limit
state. If the computed failure cycle Nf considering
the variability of all the input parameters, becomes
lesser than the design life cycle of the member, then
the structure is assumed to fail. To compute the failure
probability of a fatigue specimen based on the above
mentioned theory, Monte Carlo simulation technique
is used. The simulation procedure can be described
through an algorithm as follows:

1. Knowing the distribution and statistical parame-
ters of the random variables involved in the com-
putation (such as a0, ac f etc.), random sample is
generated using Latin Hypercube sampling tech-
nique. Let us say the sample size for each ran-
dom variable is nT .

2. The number of fatigue load cycles required to
reach ac is computed using Equation 5.

3. The computed life cycles is compared with the
desired life NC through Equation 7.

4. The percentage reliability is computed as

R(%) =
(
1− nf

nT

)
100% (8)

where nf is the number of simulation run for
which the limit state function turns out to be
zero.

In the present study Monte Carlo simulation is pre-
ferred over other methods for obtaining the failure
probability because of the following reasons. Firstly,
the proposed method involves a number of random
variables associated with the method described above.
The limit state function is a highly nonlinear implicit
function of those random variables. Hence, finding
out a closed form expression for the probability den-
sity function of the output variable is not straightfor-
ward. Secondly, if the design parameter NC is also
considered to be a random variable (which is reason-
ably possible in real situation), the performance func-
tion will be even more complicated. Therefore, simu-
lation is the only solution in the present case. As it is
mentioned earlier, for generating the sample runs for
the limit state conditions, random samples are gener-
ated as a matrix of k × nT , where k is the number
of random variables and nT is the number of sam-
ples generated for each random variable. The nonlin-
ear performance function is to be evaluated for each

Table 2: Input Random Variables
Variable Distribution Mean Std. Dev.

α0 Log-normal 0.1 0.05
αc Log-normal 0.4 0.2
f Log-normal 0.03 0.021

of those k values, which becomes prohibitively ex-
pensive in terms of computational power. Therefore,
Latin Hypercube sampling (LHS) technique is used to
reduce the sample size. The technique employs strati-
fied sampling on each of k input variables. The range
of each input variable is exhaustively divided into n
disjoint intervals of equal probability. For each in-
put variable, one observation is randomly drawn from
each interval. The n values of the first variable gen-
erated by this process are paired at random without
replacement with the n values of the second vari-
able. The process continues with each successive in-
put variable until nk- tuples are formed. The benefit
that arises from using LHS rather than simple random
sampling is that the statistical estimates of the output
values from the simulation will almost always have
more precision than with the later one (Hora and Hel-
ton 2003). Hence, with fewer sampling values com-
putation time will be substantially saved.

4 CASE STUDIES

The proposed procedure is applied for computing the
fatigue reliability of the three-point bend specimens
as mentioned earlier. Three different size of speci-
mens are considered. The specimen details are al-
ready listed earlier in Table 1. It is assumed that the
elastic modulus E and fracture energy Gf values of
the concrete remains constant. Hence, Equation 2 sug-
gests a constant value of C ′; whereas C will be ran-
dom depending on the distribution of f . In the first
step of the analysis, the stress history is considered to
be deterministic. Further the initial notch length a0,
critical crack length ac (or in other ways the relative
initial and final crack length as α0 and αc) are also as-
sumed to be random. The empirical constants m,n, p
are to be determined from experiments. Therefore, it
is considered to be deterministic for a particular speci-
men and loading set. The input random quantities and
their statistical distributions are tabulated in Table 2.

In the present study, two different set of external
loading history are considered as mentioned below:
Set 1: Minimum fatigue load level Pmin is maintained
to be zero. Maximum load level Pmax is increased in
certain steps to vary the cyclic stress range ∆σ.
Set 2: Maximum load is kept fixed at a constant value,
minimum load level is altered to obtain same set of
stress range ∆σ as in Set 1.
The objective is to study the influence of stress range,
i.e the effect of minimum load level on the cyclic be-
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Figure 2: Reliability Measure for Flexural Fatigue (a)
Set 1

havior. In both the cases, the maximum load level is
restricted upto 80% of the monotonic failure load.

The reliability index in percentage is computed us-
ing the above method for small, medium and large
beam specimen for Set 1 type of loading condition,
and plotted in Figure 2. It is seen that upto cyclic
stress range of ≈ 0.1 MPa, reliability is nearly 100%
for all the specimens. Beyond this stress range, the
reliability starts decreasing along with increase in
stress range value, and the reduction rate is quite
fast. Percentage reliability drops down to 10% for
∆σ = 0.2MPa. Further, the percentage reliability is
computed for Set 2 loading condition and compared
against the value obtained for Set 1 condition. Fig-
ure 3 shows the reliability index computed consider-
ing Set 1 and Set 2 conditions for small beam speci-
men. It is observed that for a fixed cyclic stress range
value, reliability is higher in Set 1 case, compared to
Set 2. This phenomenon can be described in the light
of the proposed fatigue law used for the reliability cal-
culation. In Equation 1, crack propagation rate per cy-
cle depends on ∆K as well as on Kmax. Hence, the
cyclic stress range value together with the maximum
stress in a cycle eventually effects the crack propaga-
tion rate.
Under the loading condition of Set 1, maximum stress
was increased from an initial lower value to a maxi-
mum limit, keeping Pmin = 0; whereas in Set 2, Pmax

was always equal to the limiting value of 1400N , and
Pmin is varied to maintain the same stress range as
Set 1. Therefore, in Set 2 condition, effect of KImax is
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Figure 3: Reliability Measure for Flexural Fatigue
(Comparison between Set 1 and 2): Small specimen

higher throughout the loading range than in Set 1, ex-
cept at the maximum value of upper load level, where
KImax is same for both the cases. Hence, crack prop-
agation rate is also faster in Set 2 condition, resulting
in lower reliability in terms of fatigue life. At the ul-
timate value of Pmax, R(%) turns out to be the same
for both the sets, as explained earlier. It can be con-
cluded from the present study, that reliability compu-
tation depends on the maximum load level in a fatigue
cycle; since failure strain is dependent on the max-
imum stress level. If the applied cyclic stress is also
random, one has to be careful while assessing the fail-
ure proability, as the ∆σ and σmax both influence the
failure cycle.

5 SENSITIVITY ANALYSIS

The variability influence of the maximum number of
loading cycles Nf , that has reached corresponding
to critical crack length, on the variability of input
random quantities was studied by means of stochas-
tic sensitivity analysis. Two different well known ap-
proaches are followed for the calculation of sensitiv-
ity coefficients. The concept is based on the assump-
tion that there will be higher correlation degree of the
output in case of the input parameters, which are rel-
atively more sensitive to the output. The first method
is based on the comparison of sensitivity coefficients
pi defined on behalf of variation coefficients by the
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Table 3: Sensitivity Coefficient (Case 1)
Variable pi ri

Pmax 57.022 -0.995
α0 3.89 -0.4
αC 7.16 0.7412
f 4.9 0.5243

relation (Kala 2006):

pi = 100
v2

yi

v2
y

(9)

where vyi is the variation coefficient of the output
quantity, assuming that all the input quantities except
the ith one are considered to be deterministic ones
(during the simulation, they are equal to the mean
value); where i = 1,2, · · ·M ; M being the number of
input variables. vy is the coefficient of variation of the
output quantity, assuming that all the input quantities
are considered to be random ones.
The second method is to determine the Spearman
rank-order correlation ri frequently applied in the
framework of a simulation method. The Spearman
rank-order correlation can be defined as:

ri = 1− 6(
∑

j kji − lj)
2

N(N2 − 1)
(10)

where ri is the order representing the value of ran-
dom variable Xi in an ordered sample among N sim-
ulated values applied in the j th simulation (the order
ki equals the permutation at LHS), lj is the order of an
ordered sample of the resulting variable for the j th run
of the simulation process, (kji − lj) is the difference
between the ranks of two samples). If the coefficient
ri has value near to 1 or −1, it would suggest a very
strong dependence of the output on the input. The
sensitivity coefficients are calculated for small beam
specimen using both the methods and compared. In
this analysis also, two different cases are considered.
In the first case, Pmin is zero, and Pmax(µ = 1000;σ =
500) is a log-normally distributed variable. The sensi-
tivity co-efficients are tabulated in Table 3. It is seen
that the most sensitive parameter turns out to be Pmax,
followed by αC , f and α0 respectively. In the second
case, Pmin is also taken to be a normally distributed
random variable with a mean of 100 MPa and stan-
dard deviation of 50 MPa. Hence, one more param-
eter ∆σ is also taken into account in the sensitivity
calculation. Table 4 represents the sensitivity mea-
sures obtained for the random variables. In this case
also, the first method based on variability coefficients
results in higher sensitivity for Pmax; whereas Spear-
man correlation predicts ∆σ to be the most sensitive
parameter.

Table 4: Sensitivity Coefficient (Case 2)
Variable pi ri

Pmax 10.34 -0.8942
∆σ 3.23 -0.926
α0 4.22 -0.417
αC 8.19 0.783
f 3.8 0.45

6 EFFECT OF FRACTURE PROPERTY ON RE-
LIABILITY

In the earlier part of this study, the inherent fracture
property KIc of concrete is assumed to be determinis-
tic. In this section, the computation of reliability index
is further refined considering the fracture toughness
KIc to be randomly distributed. To make the compu-
tation easier, once the sensitivity of the other exter-
nal parameters are determined, as discussed in previ-
ous section, the parameters which are predominantly
sensitive, could be assumed as randomly distributed.
Other less sensitive parameters such as α0, f and ∆σ
can be considered to be deterministic. Hence the ran-
dom variables turns out to be αC and KIc. The sta-
tistical distributions are reported as in Table 5. For a
specific value of the samples αC and KIc, the failure
strength σmax can be obtained from the condition of
unstable fracture as follows:

(Pmax)C

B
√

D
f(αC) = KIc (11)

Further, the parameter C is a function of characteristic
length lch as seen in Equation 2, which in turn depends
on the fracture energy Gf (or KIc) as given by the
following relation:

lch =
EGf

f 2
t

=

(
KIc

ft

)2

(12)

Hence, C will also vary depending on the distribu-
tion of KIc. The reliability index is computed through
the above described method as given in Equation 8,
using the Monte Carlo Simulation technique. Fig-
ure 4 shows the reliability index computed for small
medium and large beam specimens. The reliability in-
dex is much lower in this case than the value obtained
considering KIc to be deterministic. Also the value
of the percentage reliability reduces in a much faster
rate, even in the low cyclic stress range. Therefore,
fracture toughness property can be considered as one
of the most influencing parameter in fatigue reliability
computation.

7 CONCLUSIONS
In the present study, a probabilistic framework is sug-
gested for predicting the fatigue life of plain concrete
member considering modified LEFM based fatigue
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Table 5: Random Variables (Effect of KIc)
Variable Distribution Mean Std. Dev.(σ)

KIc log-normal 1 0.5
αC log-normal 0.4 0.2
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Figure 4: Reliability Measure for Flexural Fatigue
(Effect of KIc)

law. The external parameters which drive the fatigue
process such as, stress history, frequency of the cyclic
loading, and the notch length have been considered as
random variables. The reliability index are computed
using Monte Carlo simulation technique, considering
two different loading scenarios. The Latin Hypercube
sampling technique is used to reduce the computa-
tional time. It is seen from the case studies that the re-
liability depends on the maximum stress level as well
as the cyclic stress range. The stochastic sensitivity
analysis is performed to determine the predominant
factor amongst the input variables, which influences
mostly the fatigue reliability prediction. It is observed
that reliability is mostly sensitive to maximum cyclic
stress value, followed by critical crack length, fre-
quency of applied loading and the initial notch length
in that order. Further, the reliability computation is re-
fined considering the fracture toughness to be random
variable, with log-normal distribution. It is seen from
the analytical results, that reliability reduces consid-
erably compared to the earlier one, where KIc is as-
sumed to be deterministic. Thus fracture toughness is
one of the highly influencing parameter in fatigue re-
liability computation.
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