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ABSTRACT: In conventional analysis and design procedures of reinforced concrete structures, the ability of
concrete to resist tension is neglected. Under cyclic loading, the tension-softening behavior of concrete influ-
ences its residual strength and subsequent crack propagation. The stability and the residual strength of a cracked
reinforced concrete member under fatigue loading, depends on a number of factors such as, reinforcement ra-
tio, specimen size, grade of concrete, and the fracture properties, and also on the tension-softening behavior
of concrete. In the present work, a method is proposed to assess the residual strength of a reinforced concrete
member subjected to cyclic loading. The crack extension resistance based approach is used for determining the
condition for unstable crack propagation. Three different idealization of tension softening models are consid-
ered to study the effect of post-peak response of concrete. The effect of reinforcement is modeled as a closing
force counteracting the effect of crack opening produced by the external moment. The effect of reinforcement
percentage and specimen size on the failure of reinforced beams is studied. Finally, the residual strength of the
beams are computed by including the softening behavior of concrete.

1 INTRODUCTION

Reinforced concrete members subjected to cyclic
loading may exhibit both stiffness and strength degra-
dation depending on the maximum amplitude and the
number of cycles experienced by the member. Most of
the models available currently simulate the cycle de-
pendent stiffness loss that is observed in experiments.
The well known Park and Ang (1985) model defines
a damage index which is expressed as a linear rela-
tion with displacement ratio and absorbed cyclic en-
ergy, to describe the hysteretic damage in reinforced
concrete members. Garstka et al. (1993) have defined
damage indicator in terms of energy ratios, for com-
puting the stiffness loss due to inelastic deformation
under earthquake loading. These models are based
on elastic-plastic response of RC members, hence-
forth do not discuss on cracking behavior of con-
crete. In general, it is accepted that highly reinforced
beams that fail by steel yielding are mostly fracture-
insensitive. So, structures of these type have not been
much investigated from the viewpoint of fracture me-
chanics. However, there are situations in which frac-
ture plays a role, e.g. failure of normally and lightly
reinforced beams (Bazant and Planas 1998). In par-
ticular, if crack forms within the tensile zone of RC
beams due to fatigue loading, it provokes unstable
behavior, which may introduce snap back response
in the post peak region. For avoiding such a situa-

tion, the criterion to compute the minimum reinforce-
ment for concrete members under flexure, is deter-
mined through fracture mechanics approach (Bosco
et al. 1990), as the condition for which first con-
crete cracking and steel yielding are simultaneous. All
LEFM models that are currently available in the liter-
ature have roots in the model proposed by Carpinteri
(1981). In the LEFM based models, to compute the
fracture moment, it is assumed that the KI = KIc, and
steel yielding occurs simultaneously. In the present
approach, the assumption of steel yielding is not con-
sidered. The limiting criterion is assessed in terms of
the tip opening displacement, hence the presence of
the process zone is incorporated in the formulation
through softening laws. Further, the stability of the
crack propagation is also determined using crack ex-
tension based approach.

2 FRACTURE MECHANICS BASED MODEL
OF REINFORCED CONCRETE BEAM

Based on Carpinteri’s (1981) seminal work on LEFM
models of reinforced concrete beam, the member with
a crack of length a subjected to bending is approx-
imated by a beam subjected to the bending moment
and to the steel force applied remotely from the crack
plane as shown in Figure 1(a), (b) and (c). Next the
steel action is decomposed in a standard way into a
bending moment and a centric force. Under the ac-
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tion of applied moment M , the steel force is a stati-
cally undetermined reaction. Carpinteri assumed that
the crack remains closed while the steel is in elastic
regime. Therefore, the crack growth takes place only
when the steel yields and simultaneously KI = KIc.
Using this condition, the unknown steel force can be
computed as described by Carpinteri (1984). With
these conditions, the parametric equations of the mo-
ment rotation curves could be obtained easily. The
limitation of this model in terms of crack closing
in elastic regime of the reinforcement was removed
by Baluch et al. (1992) and by Bosco and Carpin-
teri (1992). In the present work, the model proposed
by Bosco and Carpinteri (1992) is used. They have
modified an earlier model by letting the force of the
reinforcement act on the crack faces rather than re-
motely from the crack plane as shown in Figure 1 (d).
Hence, it is no longer necessary to assume that the
crack is closed everywhere while the steel is elastic;
it is enough to assume that the crack is closed at the
point where the reinforcement crosses it. Hence the
condition for obtaining the unknown steel force in the
elastic regime can be written as,

ws = (ws)M − (ws)S = 0 (1)

where ws is the crack opening at the level of steel bar;
(ws)M and (ws)S are the crack opening due to bend-
ing moment and closure forces exerted by the rein-
forcement respectively. These are computed using the
following relations (Alaee and Karihaloo 2003);

(ws)M = λSMM (2)

and

(ws)S = λSSFS (3)

where λSM and λSS, the compliance coefficients due
to unit moment M and unit steel force FS , can be writ-
ten as,

λSM =
2

BDE

∫ a

Cs

YM

(
x

a

)
F1

(
x

a
,

a

D

)
dx (4)

and

λSS =
2

BE

∫ a

Cs

F1

(
x

a
,

a

D

)2

dx (5)

where Cs is the clear cover to the steel bar. In the
above Equations, YM
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Once the unknown steel force is computed using the
above relation, based on the principle of superposi-
tion the stress intensity factor can be expressed as a
summation of KIM and KIF as,

KI = KIM −KIF (8)

where KIM and KIF are the stress intensity factors
produced by the bending moment and steel force,
which can be written as follows:

KIM =
M

BD3/2
YM(α) (9)

and

KIF =
FS

BD1/2
F1

(
Cs

D
,

a

D

)
(10)

In the present study, the above described model is
used for determining the condition for unstable crack
propagation based on the crack extension resistance
approach. The tension softening behavior of concrete
in the post peak region is also incorporated in the anal-
ysis. The detailed description is given in the subse-
quent section.
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Figure 1: (a), (b), (c), Carpinteri’s LEFM approxima-
tion for RC beam; (d) Bosco and Carpinteri’s Modifi-
cation
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3 DETERMINATION OF FRACTURE STABIL-
ITY CRITERION: CRACK EXTENSION RE-
SISTANCE BASED APPROACH

The residual strength assessment of a reinforced con-
crete member essentially involves the determination
of critical condition with respect to fracture failure.
In the present study, the condition for unstable crack
propagation is found out based on the crack extension
resistance based approach. The crack extension resis-
tance based approach originally proposed by Rein-
hardt and Xu (1998) for plain concrete specimen, in
which the crack extension resistance is computed con-
sidering the effect of cohesive forces within the pro-
cess zone. The basic principle of the approach is that
the crack extension resistance is composed of two
parts. One part is the inherent toughness of the mate-
rial, which resists the initial propagation of an initial
crack under loading, and is denoted as K ini

Ic . The co-
hesive force distributed on the fictitious crack during
crack propagation gives another part of the extension
resistance. Therefore, it is a function of the cohesive
force distribution f(σ), tensile strength ft of the ma-
terial and the length a of the propagating crack, which
can be written as follows,

KR(∆a) = Kini
Ic + Kc(ft, f(σ), a) (11)

The inherent initiation toughness K ini
Ic for a standard

three-point bending beam can be computed using

Kini
Ic = K(Pini, a0) =

3PiniL

2BD2

√
πa0g1

(
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D

)
(12)

where Pini is the initial cracking load; a0 is the initial
notch length; L,B,D is the span, width and depth of
the beam respectively and g1(a0/D) is the geometric
factor.
Similarly, the general expression of the crack ex-
tension resistance due to cohesive force is given by
(Reinhardt and Xu 1998),

Kc(ft, f(σ), a) =
∫ a
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/
√
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where F1 is the geometry factor as defined in Equation
7. In the above Equation σ(x) is the assumed stress
distribution within the fracture process zone. In the
present study, the three idealizations for the traction-
separation law are considered in order to determine
the crack extension resistance and the corresponding
critical crack length for which unstable fracture takes
place. In available literature, the post-peak softening
behavior has been mathematically modeled by differ-
ent investigators using linear, bilinear, power-law and
other relationship depending on the trend followed by
experimental results. In this work, we consider the ef-
fect of linear, bilinear and power law softening be-
havior on the fatigue strength of reinforced concrete

beams. Amongst these, the simplest approximation is
the linear softening relation as proposed by Hillerborg
et al. (1976), and stress at any point in the process
zone is considered to be a function of the crack open-
ing only. Mathematically, the linear softening relation
can be written as (Hillerborg et al. 1976),

σ = ft

(
1− w

wc

)
(14)

where ft is the tensile strength, w the crack opening
displacement and wc the critical crack opening dis-
placement.
Similarly, the bilinear softening behavior can be
mathematically expressed as,

σ =
{

ft − (ft − σ1)w/w1 w ≤ w1

σ1 − σ1(w −w1)/(wc −w1) w > w1
(15)

where w1 is the opening displacement when the soft-
ening curve changes slope due to bi-linearity and the
corresponding stress is σ1.
The power function suggested by Reinhardt (1984) is
given by,

σ = ft

[
1−

(
w

wc

)n]
(16)

where n is an index which is assumed to be 0.248
based on experimental calibrations. After a crack
starts from a notch, the size of the fracture process
zone grows as the crack advances. The consequence is
that the crack resistance KR to propagation increases.
The condition for crack propagation within a mem-
ber is considered when KR(∆a) equals KI . KIP is
the mode I stress intensity factor under the external
loading P , which for a RC beam under three-point
bending is given by Equation 8 together with 9 and
10. The important point to be noted here is that, the
effect of reinforcement is not considered in terms of
resistance, instead it is incorporated while evaluating
the stress intensity factor. This is done because, the
steel force depends on the applied external moment,
therefore not an inherent property of the material.
Further, to determine the instability condition, the
well known concept of fracture equilibrium is used
(Bazant and Cedolin 1998). If the fracture equilibrium
state is unstable, the crack will propagate by itself.
Formally, these conditions can be stated as follows:

K ′
R(∆a)−K ′

IP > 0 ⇒ stable

K ′
R(∆a)−K ′

IP (P ) = 0 ⇒ critical

K ′
R(∆a)−K ′

IP (P ) < 0 ⇒ unstable(17)

where the primes in K ′s indicate the slope of the
quantities concerned. From the above conditions it
turns out that, when the slope of the resistance curve
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Table 1: Details of the RC beam
Depth 150 mm
Width 100 mm
Length 1200 mm

Steel area 113.09 mm2

Yield stress 544 MPa
E 35.6e3 MPa
fck 45 MPa
ft 3.75 MPa
GF 0.0725 N/mm

wc (Linear) 0.037 mm
wc (Bi-linear) 0.094 mm
wc (Linear) 0.067 mm

is lesser than the slope of the KI curve, unstable crack
propagation takes place. In the present study, a rein-
forced concrete beam is considered for numerical val-
idation of the above method. The details of the speci-
men geometry and fracture properties are listed in Ta-
ble 1. The specimen was originally used by Alaee and
Karihaloo (2003) for their study on CARDIFRC.

The proposed method of obtaining the instability
condition is applied for the RC beam under consid-
eration, for three different values of external moment
as M = 2E6,3.5E6 and 6E6Nmm as shown in Fig-
ure 2. In this particular case, only linear softening
is assumed. It is seen that, for the lowest value of
M , the slope of the resistance curve remains higher
than the slope of KIP curve throughout the assumed
crack length regime; hence the crack propagation is
stable for this case. For M = 3.5e6 N-mm, the resis-
tance curve intersects the stress intensity factor curve
at a point α = 0.418, and K ′

R is lesser than K ′
IP for

α greater than 0.418. Hence, according to the stabil-
ity condition stated above, the crack propagation re-
mains stable upto relative crack depth of 0.418, be-
comes critical at that particular value of α, and the
unstable region follows in case of further crack prop-
agation. For the M value of 6e6N − mm, the resis-
tance is always lesser than the stress intensity factor
throughout the crack propagation region resulting in
an unstable fracture phenomenon. It can be concluded
that as the applied moment value increases the α value
corresponding to fracture instability decreases. The
study is further extended to determine the influence
of different softening approximations as described by
Equation 14, 15 and 16, on the computation of in-
stability limits. Figure 3 shows the KR,KIP curves
obtained considering the three softening laws under
the external moment of 3.5e5N −mm. Since, the ex-
ternal load remains constant, and the softening does
not take part in KIP computation, the KIP curves
are the same for all the three cases. Only the resis-
tance curve will depend on the softening approxima-
tions. The comparative study reveals that the linear
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Figure 2: KR,KIP for Linear Softening

softening predicts highest value of αC = 0.418 corre-
sponding to unstable condition, followed by bilinear
(αC = 0.375) and power-law (αC = 0.195). There-
fore, one has to correlate the experimental data of un-
stable crack propagation with the numerical predic-
tions and conclude about the ideal softening approxi-
mation, which would result into realistic prediction on
stability condition. Once the critical value of α is de-
termined, the residual strength of the RC beam has to
be computed as a function of increasing crack length
in the stable region. Before entering into the discus-
sion of fatigue behavior, it is to be noted here, that a
parametric study is performed on the steel percentage
and the size of the specimen, to find out the influence
of these factors on fracture stability issue. Figure 4
represents the KIP and KR curves for three differ-
ent percentages of steel and considering linear soft-
ening. The resistance will be same for all the three
cases and the SIF due to applied loading also does
not vary with p unless steel yielding occurs. There-
fore, the curves coincide with each other and inter-
sect at a specific point. Hence, it can be concluded,
that the reinforcement percentage does not have any
perceivable effect on the stability criterion. The crit-
ical value of α remains unchanged for increasing as
well as decreasing value of steel percentage. Whereas,
a strong effect of specimen size is observed on the
instability condition as predicted in Figure 5. Here,
three different values of specimen depth are consid-
ered (D = 75,150 and 300mm). It is observed that
as the specimen size decreases, the zone correspond-
ing to stable crack propagation almost vanishes as ob-
served for D = 75mm; where the resistance is always
lesser than the SIF value.
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4 FATIGUE CRACK PROPAGATION IN REIN-
FORCED CONCRETE

In the present study, to analyze the fatigue behav-
ior of reinforced concrete, the LEFM based fatigue
law as proposed by Slowik et al. (1996) is used, with
suitable modifications to incorporate the effect of re-
inforcement. The fatigue law proposed by Slowik et
al. (1996) for describing the complex phenomenon of
crack propagation in concrete is given by:

da

dN
= C

KImax
m∆KI

n

(KIC −KIsup)p
+ F (a,∆σ) (18)

where C is a parameter which gives a measure of
crack growth per load cycle, KIsup is the maximum
stress intensity factor ever reached by the structure in
its past loading history, KIC the fracture toughness,
KImax is the maximum stress intensity factor in a cy-
cle, N is the number of load cycles, a is the crack
length, ∆K is the stress intensity factor range, and
m, n, p, are constants. These constant co-efficients are
determined by Slowik et al. through an optimization
process using the experimental data and are 2.0, 1.1,
0.7 respectively. In an earlier work, the above law is
modified by the authors (Sain and Chandra Kishen
2004), to incorporate the effect of frequency of the
cyclic loading, and the effect of overloads, the details
of which are not repeated here.
In case of reinforced concrete beams, the stress in-
tensity factor is considered to be a combined effect
of applied loading and the tensile reinforcement as
mentioned in Equation 8. The presence of reinforce-
ment introduces a negative SIF (resistance to crack
opening), which essentially reduces the crack prop-
agation rate. When the steel is in the elastic regime,
the unknown reaction force in steel is computed using
the method as described in earlier section. The crack
propagation procedure is applied for the considered
specimen, for three different values of reinforcement
percentage (p = 0.36,0.75,1.51%). Figure 6 shows
the a−N curve obtained using the proposed method,
for three different steel area under constant amplitude
fatigue load with maximum moment of 3.5E6Nmm
and a minimum value of zero. It is observed that the
rate of crack propagation remains same for all the
three p values, if the steel does not yield. The steel
yielding occurs only for p = 0.36%, at α = 0.5, under
the given loading condition. Hence, after α = 0.5, the
crack propagation rate differs from the other two case
as shown in the Figure.

5 RESIDUAL STRENGTH ASSESSMENT
The tensile strength and toughness of concrete are
usually disregarded in the strength assessment of re-
inforced concrete member. In the present study, the
post-peak behavior is considered in terms of the
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Figure 6: Fatigue crack propagation in RC beam

tension-softening law, as described earlier, for com-
puting the residual capacity of a cracked RC beam.
The available methods for determining the fracture
moment, either assume the limiting condition as
yielding of reinforcement or assume the length of the
process zone. These assumptions are relaxed in the
foregoing analysis. The criterion used for computing
the ultimate moment capacity is the crack tip opening
displacement, w at the tip of each incremental crack
length reaching the critical crack tip opening displace-
ment, wc, which is a material parameter. Hence, the
reinforcement does not necessarily reach yielding cor-
responding to all the crack length values. The follow-
ing assumptions are made in the analysis regarding
the stress-strain distribution along the cracked sec-
tion:

1. Strain varies linearly across the depth of beam
during bending.

2. The crack opening profile is linear.

3. The softening behavior is known in terms of co-
hesive force-crack opening law. Alternatively, an
average strain εt on the continuum scale may
be defined as representative of the opening dis-
placement of the microcracks within an effective
softening zone width hs. In this way, an effec-
tive stress-strain constitutive relationship can be
adopted in the spirit of the nonlocal continuum
concept (Bazant and Oh 1983). The crack open-
ing displacement in the discrete crack model and
the post-peak strain in the continuum model are
related by w = hsεt. In the present study, hs is
taken as 0.5D, where D is the beam depth.

By fixing the limiting tip opening displacement, cor-
responding equivalent strain is calculated following
assumption (3). The ultimate tensile strain corre-
sponding to w = wc is denoted as εtu, and the strain

corresponding to elastic limit (in other words ε for
w = 0 or σ = ft) is represented as εtp. The frac-
ture process zone of length lp is assumed to form in
front of the crack tip. It comprises of the zone start-
ing from the crack tip where (w = wc) or equiva-
lently εt = εtu and extending until w = 0 or εt = εtp.
To compute the moment carrying capacity for the as-
sumed strain distribution, an incremental procedure as
proposed by Raghuprasad et al. (2005), is adopted.
The method is based on the fundamental equilib-
rium equation for the progressive failure of concrete
beams. The uncracked ligament portion (d−αd− lp)
as shown in Figure 7 is divided into a number of seg-
ments (say 10,000); each having a segment of depth
δx = [(1 − α)d − lp]/10,000. To calculate the neu-
tral axis depth factor k, a trial and error procedure is
adopted. Knowing k, by the linearity assumption, lp
can be computed as,

lp =
(
1− εtp

εtu

)
(1− k − α)d (19)

Hence, the resistance provided by the softening zone,
(assuming linear softening behavior) can be expressed
as,

Ts =
1

2
Blpft (20)

Next in the uncracked ligament portion, the stresses
are calculated at each segment for the compres-
sive strains εc1, εc2 . . . εcm and for the tensile strains
εt1, εt2 . . . εtn; where m = number of segments in com-
pression zone, and n = number of segments in tension
zone. Then the compressive forces fc1, fc2, . . . fcm and
the tensile forces ft1, ft2, . . . ftm are calculated incre-
mentally. The stress and strain in the tensile reinforce-
ment can be computed as;

εst = εtu
1− k

1− α− k
(21)

and the stress, can be written as,

σst = Esεst ≤ fY (22)

where, Es is the elastic modulus of steel and fY is the
yield stress. Steel is assumed to behave in an elastic
perfectly plastic manner. Hence, the resistance pro-
vided by the reinforcement is expressed as,

Tst = σstAst (23)

where, Ast is the area of reinforcement. The depth of
the neutral axis is calculated such that the total com-
pressive force (C = fc1 + fc2 + . . . + fcm) equals the
total tensile force (T = Ts + ft1 + ft2 + . . . + ftm +
Tst). Once the neutral axis depth factor is known the
moment carrying capacity can be computed for that
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equilibrium configuration. The moment of resistance
can be computed as,

MR = Msoft + MUT + Mst (24)

where, Msoft is the moment of resistance provided by
the softening zone and equals,

Msoft = Ts[(1−α− k/3)D − 2/3lp] (25)

and MUT is the moment of resistance provided by the
uncracked tension concrete, which is given by,

MUT = TUt[(1− α− k/3)D − xx/3− lp] (26)

where TUt is the tensile resistance provided by the un-
cracked concrete and xx is the length of the corre-
sponding uncracked portion. Finally, the moment of
resistance due to the reinforcement Mst is computed
as,

Mst = Tst

(
1− k

3

)
d (27)

The procedure is repeated for different crack lengths
a1, a2...an as long as equilibrium is satisfied.
The proposed method is applied to determine the mo-
ment carrying capacity for the RC beam specimen as
considered above, as a function of increasing crack
length. Figure 8 shows the normalized moment value
obtained for the considered specimen as a function
of increasing crack length. It is observed that, before
steel yielding, the moment carrying capacity increases
along with increase in crack length, and the value
starts decreasing once the steel undergoes plastic de-
formation, which is reasonable in case of reinforced
specimen. The normalization is done with respect to
(KIcBD3/2).
Figure 9 shows the normalized moment value for the
specimen, computed using the above method as well
as assuming the LEFM criteria, which considers the
failure condition to be (KI = KIc) together with the
assumption of steel yielding. In the second case the
ultimate moment can be expressed as follows;

MF =
KIcBD3/2

YM(α)
+

FP D

YM(α)

[
F1

(
x

a
,α
)

+ YM(α)
(

1

2
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)]
(28)
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through present method
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It is seen from the results, that before steel yielding,
the second condition predicts higher value than the
first case. Whereas, after steel yielding it is lower than
the present method. The moment value computed us-
ing Equation 24 becomes greater than those computed
using Equation 28. Hence, it can be concluded that the
assumption of steel yielding for throughout the crack
propagation regime, overestimates the capacity of the
member in the initial crack propagation stage. How-
ever, a situation may arise, when the member fails due
to crack propagation even though the steel may not
have yielded. Therefore, the present method relaxes
the assumption of steel yielding, instead it considers
the formation of full process zone at the crack tip.
The failure is to be governed by the crack tip open-
ing displacement as mentioned earlier, which is more
reasonable in case of residual strength assessment of
cracked member.
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6 CONCLUSIONS
In the first part of the present study, a method is pro-
posed to determine the condition for unstable crack
propagation in a RC beam, considering the post-peak
softening response of the concrete. The crack exten-
sion resistance based approach is followed to deter-
mine the critical value of relative crack depth. Three
standard approximations namely, linear, bilinear and
power-law are used for describing the softening zone
behavior. A parametric study is performed over the
reinforcement percentage and the depth of the beam,
to find out the influence of each on the stability crite-
rion. It is observed that the percentage reinforcement
does not effect the stability phenomenon, unless the
steel yields, whereas the depth of the specimen has a
strong influence on fracture instability. As the depth
increases, the critical crack length corresponding to
instability decreases. In the second part of the anal-
ysis, the residual strength of a cracked RC beam is
assessed by considering the critical tip opening dis-
placement as the governing parameter. The numerical
example shows, that the prediction through proposed
method is reasonable in the sense, it relaxes the as-
sumption of steel yielding for each and every crack
length, which is commonly followed in LEFM based
analysis. It is observed that the capacity of the mem-
ber increases along with crack length when the rein-
forcement is within the elastic regime, whereas after
steel yielding the value reduces with further propaga-
tion of crack.
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