
1 INTRODUCTIUON 

1.1 Motivation 
The use of Fracture Mechanics (FM) in estimating 
concrete behavior and determining the strength of 
concrete elements has received considerable atten-
tion over the past years, primarily because it can de-
scribe and interpret size effects in the experimen-
tally-observed behavior of concrete structures. In the 
field of applying FM to concrete, two approaches 
came to be widely accepted within the engineering 
community, both of which adopt the assumptions of 
Linear Elastic Fracture Mechanics (LEFM). The 
first is the Fictitious Crack Model (FCM) due to 
Hillerborg et al (1976). The second approach is the 
Crack Band Theory model, introduced by Bazant 
and Oh (1983). Of the two, the former has an advan-
tage of not relying on an empirical parameter such 
as the crack band width, which makes it more read-
ily adaptable for implementation in Finite Element 
(FE) codes. The FCM approach has been used to de-
velop the cohesive-elastic bond-splitting model for 
estimating the cover-splitting strength along a rein-
forcing steel bar based on bond stress (Tepfers 
1979). In this study, this original model is desig-
nated A0 and is briefly reviewed for completeness 
and its simplifying assumptions identified. Four al-
ternative models are developed and introduced to 
mathematically address these assumptions and des-

ignated A1 through A4. The proposed models are 
compared through their estimation of bond strength 
in a typical bar pull-out example of a steel bar em-
bedded in a concrete cylinder. After identifying the 
more significant models among the proposed alter-
natives, the stability of their predictions with respect 
to the uncertainty in their individual parameter val-
ues is investigated using a deterministic sensitivity 
analysis, namely the Tornado diagram analysis (Lee 
& Mosalam 2005) and compared to that of the refer-
ence model within the context of the benchmark 
problem. Besides establishing the sensitivity to 
modeling assumptions, the discussion of the bench-
mark problem results addresses the influence and 
methods of selection for the number of radial cracks 
in the model under both deterministic and probabil-
istic contexts. 

1.2 Background – Model A0 
The reference bond-splitting model assumes the dis-
tribution of stresses and deformations shown in Fig-
ure 1 for a single bar embedded in concrete. As the 
bar is being pulled from the concrete, ribs on its pe-
rimeter result in an inclined resisting force, which 
can be resolved into radial “pressure” and longitudi-
nal “bond” components, related through an angle of 
internal friction α, which reflects the surface condi-
tions. The stress state is assumed axi-symmetric at 
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any radius r. The cylinder enclosed within the cover 
c surrounding the bar is assumed to have n identical 
and stable cracks that extend radially to a length e. A 
polar coordinate system is used where the radial and 
tangential directions are indicated by subscripts r 
and t, respectively. The hoop (tangential) stress at r 
= e is equal to the cracking stress ft, and is assumed 
to vary elastically in the uncracked region, r > e. 
The model assumes that neighboring longitudinal 
bars are far enough and that their bond stress fields 
do not overlap. In the cracked region, r ≤ e, the tan-
gential stress decreases towards the center with the 
widening of the crack width w until it vanishes at a 
crack width wc, following a power law as follows, 

( ) ( ) 01 k
ctt wwfw −=σ  (1) 

where k0 = material parameter determined from the 
tensile fracture energy GF. The hoop strain at r = e, 
neglecting Poisson’s effect, is obtained from 

crctr Efe εε ≡=)(  (2) 

where Ec = concrete modulus of elasticity. This 
value of the radial strain is assumed constant over 
the cracked part r ≤ e. Thus, 

)()(2)(2 rnwrree rr += επεπ , crrr er εεε =≈ )()(  (3a, b) 

This yields a linear distribution of crack width, i.e. 

nrerw cr )(2)( −= πε  for er ≤  (4) 

which gives an explicit formula for the hoop stress 
in the cracked region, namely, 

( )( )rwrt σσ =)(  for errm ≤≤  (5) 

where rm = max {ds / 2, e – wc / 2πεcr } defines the 
end of the cohesive zone where softening occurs. 

Given the elastic solution (Timoshenko & Good-
ier 1951) of stresses at radius r, in a thick-walled 
cylinder of ri and ro inner and outer radii, respec-
tively, subjected to internal pressure pi, i.e. 
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The pressure p at the bar surface contributed by 
both regions, elastic and cracked, can then be calcu-
lated by superposition of the equilibrium solution for 
the elastic region and the integral of σt(r) over r ≤ e. 

1.2.1 Elastic Contribution, pe 
From Equation 6b we can deduce the pressure acting 
at the bar surface given the pressure applied at the 
inner wall of the elastic ring. Hence, 
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where σt(e) = ft at the onset of cracking, ds = bar di-
ameter r =ri = e, and ro = c + ds / 2 in Equation 6. 

1.2.2 Cohesive Contribution, pc 
At any radius r ≤ e, for the rigid body mechanism 
assuming Equation 3 holds, using Equations 1, 4, 
and 5 and finally integrating the hoop stresses over 
the cracked region leads to 
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Superposing Equations 7 and 8 leads to the total 
pressure, namely 

ce ppp +=  (9) 

Subsequently, from equilibrium, the shear stress is 

ατ tanp=  (10) 

which represents the bond strength at crack length e. 
Eligehausen et al. (1983) calculated the average 
value of the angle of internal friction α, using nu-
merical results of stress distribution around a bar 
with lateral ribs for a range of cover thickness and 
bar diameter values. The results were independent of 
the concrete quality, with values varying between 
0.49 and 1.00. Presently, α is left out by restricting 
the computation to the radial pressure p due to the 
ribs on the bar and the pull-out action of the longitu-
dinal stress. Thus, the pressure capacity is given by 

}{max pp er =  (11) 

where pr = the maximum pressure value the ring can 
sustain as the crack propagates radially, after which 
the crack becomes unstable and runs all the way to 
the surface causing a longitudinal splitting crack.  
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(b) Cohesive-elastic ring idealization of cover region 

Figure 1. Cohesive-elastic crack model (Tepfers 1979, 
Reinhardt & Van der Veen 1990). 



This value is dependent on the assumed number 
of radial cracks n whose increase results in a de-
crease in the crack opening w per crack at any given 
crack length e, which leads to an increase in the av-
erage tangential stress within the cracked region and 
a corresponding increase in the cohesive pressure 
term pc. The secondary effect of discretely-spaced 
transverse reinforcement is not explicitly modeled in 
this model yet can be included in the parameter α. 

2 MODEL ENHANCEMENTS 

A close investigation of Equation 9 reveals that the 
resulting pressure is directly proportional to the ten-
sile strength ft, fracture energy GF, cover thickness c, 
number of cracks n, and limiting crack width wc, 
while it is inversely proportional to the reinforcing 
bar diameter ds. However, this model involves the 
following assumptions and simplifications: 
1 The concrete material is assumed to behave uni-

axially. This is reflected in neglecting the effect 
of radial dilation in calculating εcr in Equation 2, 
as well as assuming that cracking in tension takes 
place upon violating a uniaxial stress criterion in 
the hoop direction which neglects the effect of 
the radial stress. This radial stress is compressive 
for the given deformation mode, which should 
reduce the uniaxial tensile strength and lead to 
unconservative estimates using model A0. 

2 The crack opening is assumed to vary linearly 
with the radius in Equation 4. This requires that 
the tangential strain along the crack length is 
equal to the cracking strain, which is only valid at 
r = e (Equation 3). Softening in the region r < e 
will result in the bulk material between cracks 
elastically unloading to lower strains and, subse-
quently, a non-linear crack width distribution 
along the radius r. This is neglected, with the ar-
gument being made that a compensating effect is 
expected from neglecting radial dilation. 

3 The model assumes that the exact shape of the 
tension softening relationship does not signifi-
cantly affect the resulting strength, as long as the 
fracture energy enclosed by the softening curve 
remains the same. Thus, the model adopts a sim-
ple power softening law (Equation 1), whose co-
efficient k0 is determined by equating to GF the 
integral of σdw over the range 0 < w < wc. Fur-
thermore, while ft is either directly measured or 
estimated from the compressive strength, GF is 
difficult to measure and is commonly estimated 
as a function of ft, and wc is typically estimated as 
a multiple of the average aggregate size 
(Ratanalert & Wecharatana 1989), leading to 
compounded uncertainty in the model estimation. 

The following subsections will present the mathe-
matical formulations developed to address each of 
the individual assumptions identified above. 

2.1 Model A1 – Biaxial behavior of concrete 
The introduction of a concrete biaxial failure crite-
rion explicitly accounts for the effect of radial dila-
tion in the cracked region. The modified cracking 
stress ft’ is adopted from Gambarova et al. (1994), 
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where fc = compressive strength and σr = radial 
(transverse) stress (tension positive). Dividing Equa-
tion 6a by Equation 6b and setting σt(e) = ft’,  
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Substituting Equation 13 in Equation 6 and solv-
ing for ep  as in Equation 7 leads to the first term in 
Equation 14. The second term is analogous to that in 
Equation 9 after replacing ft by ft’. Accordingly, the 
total pressure sustained in the ring surrounding the 
bar is given by 
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where the crack width wm = the smaller of wc and the 
crack width at the steel-concrete interface, and can 
be expressed as 

( )( ) nrew mcrm −πε= 2  (15) 

Equation 14 explicitly incorporates the effect of the 
biaxial stress state in the plane of the bar cross-
section on the tensile cracking in concrete. The 
model becomes further complicated upon consider-
ing 3-D stress state effects. However, it is argued 
that splitting failure is investigated in between two 
existing flexural cracks and that concrete stresses in 
the longitudinal direction are therefore insignificant. 
It is also assumed that stress fields surrounding 
neighboring longitudinal bars are far enough relative 
to the cover thickness. The effect of radial dilation is 
accounted for by updating εcr in Equation 16 for 
each trial crack length e according to 

( ) ( )( ) crtcr Eevfe σ−=ε  (16) 

where v = Poisson’s ratio for concrete. 

2.2 Model A2 – Nonlinear crack width distribution 
Accounting for the nonlinear crack width distribu-
tion requires the solution of an iterative nonlinear 
problem. The governing compatibility equation is 

( ) ( ) ( ) crtt eerrnwrr επεπεπ 222 ≈=+  (17) 



Thus, along the crack face, according to Equation 1 
the tangential stress distribution follows Equation 
18; while in the bulk concrete between two cracks, 
assuming uniform linear-elastic unloading, the tan-
gential stress distribution follows Equation 19. Fi-
nally, invoking equilibrium requires equality be-
tween Equations 18 and 19. 

( ) ( )( )( )01 k
ctt wrwfr −=σ  (18) 

( ) ( )rEr tct εσ =  (19) 

Substituting Equation 19 in Equation 17 leads to 
( ) ( )( )ctcr Errernw σεπ −= 2  (20) 

Substituting Equation 20 in Equation 18 yields 
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Equation 21 is nonlinear of the form x = G(x) for x 
= σt. Convergence requires that |dG(x) / dx| < 1. 
This is indeed satisfied, as illustrated by Equation 22 
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Numerical investigation of typical parameter 
ranges suggest that the solution will converge, albeit 
slowly. After evaluating the hoop stress at sufficient 
points along the radius, the pressure in the ring is 
calculated by numerical integration of Equation 8. 

2.3 Models A3 and A4 – Alternate softening laws 
Several tensile stress–crack width softening laws 
have been proposed in the literature. A recent review 
is available in van Mier (1997). An all-inclusive sur-
vey would be prohibitive and beyond the scope of 
this study. Instead, two alternative laws are consid-
ered and shown to have a significant effect on the 
results. Model A3 uses the tensile softening law 
given in Gambarova et al. (1994) by the formula 
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where da = average aggregate size and k3 = model 
parameter. The elastic contribution to the total pres-
sure pe in Equation 9 is not affected by Equation 23. 
However, using Equation 23 for calculating the de-
rivative dr / dw and noting that w decreases as r in-
creases, the cohesive contribution pc becomes 
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Model A4 uses an alternate form of the power law 
in Equation 1, according to 

( ) ( ) 41 k
ctt wwfw −=σ  (25) 

where k4 = model parameter. This leads to the cohe-
sive pressure term in Equation 9 becoming 
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For the purpose of comparing models A0, A3 and 
A4 and isolating the shape effect of the tensile sof-
tening curve, parameters k3 and k4 are selected so 
that the tensile fracture energy GF under the soften-
ing curve in Equations 23 and 25 is maintained 
equal to that under the softening curve in Equation 1 
for a corresponding value of k0. Figure 2 presents 
graphic comparison of the alternate softening laws. 
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Figure 2. Tension-softening profiles for equal fracture energy. 

3 BENCHMARK PROBLEM 

The relative significance of the enhancements de-
scribed in Section 2 is evaluated using a hypotheti-
cal benchmark problem of typical parameter values. 
This benchmark problem considers the bar-pullout 
resistance of a single reinforcing steel bar embedded 
in a concrete cylinder and evaluates the maximum 
radial pressure developed before bond-splitting fail-
ure occurs. The radial pressure is computed and 
maximized along the crack length for a variable 
number of radial cracks. The estimated response us-
ing model A0 is compared to estimates using models 
A1 through A4 to investigate the sensitivity to the in-
dividual simplifying assumptions. The computa-
tional time needed by each model is also compared 
to assess its practicality. In addition, the sensitivity 
of the model estimate to the assumed number of 
cracks is investigated and combined with experi-
mental observations to estimate a value for the pa-
rameter n in the absence of experimental data perti-
nent to the problem of interest. In the presence of 
such data, a probabilistic approach is outlined to ac-
count for randomness in n. 

3.1 Problem statement 
The benchmark problem geometry is similar to 
Figure 1. Since the governing equations are highly 
nonlinear, the use of normalized quantities for force 



and geometric parameters becomes a matter of form 
and convenience, because the results remain specific 
to the neighborhood of the set of geometric and ma-
terial properties considered. As such, the signifi-
cance of the different model enhancements, dis-
cussed above, is investigated on a problem that 
represents a commonly encountered set of parame-
ters. The problem data is as given below: 
fc = 30.0 MPa, wc = 0.2 mm, ft = 3.0 MPa, c = 30.0 
mm, Ec = 22.0 GPa, ds = 10.0 mm, GF = 0.1 
MPa.mm,  da = 16.0 mm, and v = 0.2. This data 
yield the model parameters k0 = 0.2 in Equation 1, k3 
= 773.0 in Equation 23, and k4 = 5.0 in Equation 25. 

3.2 Comparison Results 
Figure 3 shows the computational solutions calcu-
lated for the benchmark problem using models A0, 
A1, A3 and A4. Results for model A2 are not noticea-
bly different from those of model A0 and are not 
shown. The plots demonstrate the variation of the 
normalized radial pressure capacity p / ft, versus the 
normalized radial crack length e / c, for a range of 
assumed radial cracks n. The number of cracks 
range from 0 to ∞. The case n = 0 corresponds to an 
assumption of pc = 0 and no cohesion in the cracked 
concrete, i.e. brittle tensile cracking. The case n = ∞ 
corresponds to a case of an infinitely-rigid confining 
medium outside the cover region. Together, both 
cases define the theoretical bounds on the solution. 

It can be observed that the radial pressure capac-
ity is positively correlated to the number of radial 
cracks, and that it increases as a result of increasing 
crack length up to a maximum value and then de-
creases as the crack becomes unstable and splitting 
failure occurs. It can also be observed that the nor-
malized radial pressure values computed using 
model A0 are generally higher than those of model 
A1 and lower than those of model A2. 

Given Equation 11, the radial pressure capacity 
pertinent to the bond-splitting failure is the maxi-
mum response in Figure 3 at each n value and can be 
determined numerically. These values have been 
computed for n = 1, 2, and 3 for models A0 through 
A4 and tabulated in Table 1. The computational time 
required for completing the solution is also indicated 
for each model. For ease of comparison, all values in 
the table have been normalized by the corresponding 
value (on the same row) for Model A0.  

 
Table 1. Comparison between radial pressure capacity of 
reference and alternative models. 
n  Model A0 Model A1 Model A2 Model A3 Model A4 
1 1.000 0.969     1.060 1.220 1.339 
2 1.000 0.972     1.053 1.273 1.372 
3 1.000 0.973     1.049 1.293 1.376 
Time 1.000 1.333 192.300 0.667 1.000 
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(b) Crack length-radial pressure capacity for model A1 
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(c) Crack length-radial pressure capacity for model A3 
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(d) Crack length-radial pressure capacity for model A4 

Figure 3. Partial results for benchmark problem. 

3.3 Discussion 
This section discusses the behavior of the computed 
response using model A0 and its dependency on the 
assumed number of radial cracks, and compares its 
predictions with those of models A1 through A4 to 
establish the effect of their underlying assumptions. 
In discussing the model sensitivity to the number of 
radial cracks in section 3.3.1, the comparison is lim-
ited to models A0, A3, and A4. This is because the 
predicted response of models A1 and A2 is not sig-
nificantly different from that of model A0. 

3.3.1 Effect of number of radial cracks 
It is clear in Figure 3 that the influence of n affects 
primarily the peak pressure capacity, while its effect 
on the computed response at lower e / c values is 
less significant. The computed response experiences 
a major increase upon considering the cohesion con-
tribution (from n = 0 to 1), and that the sensitivity 
decreases quickly as n increases further. A conserva-



tive estimate of n = 1 is typically assumed in design 
situations for choosing appropriate cover thickness 
and bar anchorage lengths. However, experimental 
observations by Reinhardt et al. (1986) report a con-
sistent observation of three cracks or more. It can 
also be argued that the assumption of an axi-
symmetric stress state, upon which the model formu-
lation is based, is grossly violated by the assumption 
of one radial crack. 

Figure 3 shows that the sensitivity of the model 
prediction to the uncertainty in the number of radial 
cracks for values of n > 1 is highest in the reference 
model A0. This sensitivity decreases significantly in 
model A3 and is minimal for model A4 (11% in-
crease in pr from n = 2 to n = ∞, versus 20% and 
51% increases for A3 and A0, respectively). In the 
range of commonly-observed values of n between 2 
and 5, the sensitivity in prediction for the three mod-
els is comparable and is equal to 7%, 11% and 6% 
for A0, A3, and A4, respectively. 

It must be noted that the number of radial cracks 
is a function of the geometry and boundary condi-
tions surrounding the embedded longitudinal bar, 
which may differ from the idealized benchmark 
problem. Therefore, one concludes that an assump-
tion of n = 2 or 3 satisfies the model assumptions, 
results in a stable estimate, and conservatively 
agrees with experimental observations in cases 
where experimental data pertinent to the application 
of interest is not available. In the presence of appli-
cation-specific experimental data, a probabilistic ap-
proach can be followed that mimics the randomness 
of the process; whereby n can be assigned a discrete 
probability distribution (e.g. Poisson) whose pa-
rameters can be estimated from the data. By simulat-
ing n a sufficient number of times from this assigned 
distribution and substituting in the bond-splitting 
model, the distribution of the resulting bond strength 
can be generated and its mean and dispersion esti-
mated. 

3.3.2 Effect of biaxial behavior of concrete 
It can be observed in Table 1 and Figure 3b that in-
corporating the biaxial behavior of concrete has no 
significant effects on the estimated response. The 
observed effect results in a decrease of the estimated 
maximum radial pressure capacity and an increase 
of the e / c value where the maximum capacity is ob-
tained. On average, radial pressure capacity values 
computed using model A1 for the benchmark prob-
lem are consistently less than those computed using 
model A0 by approximately 3%. This results in un-
conservative estimates but is compensated for by the 
assumption of linear crack width distribution. 

3.3.3 Effect of nonlinear crack width distribution 
It can be observed in Table 1 that accounting for 
nonlinear crack width distribution in model A2 re-
sults in an increase in the estimated radial pressure 

capacity by approximately 5% and requires ap-
proximately 200 times more CPU time for the 
benchmark problem. The increase in accuracy is 
deemed infeasible and unjustified for modeling such 
a local phenomenon in the context of an FE model, 
especially because the increased accuracy does not 
render the original model unconservative. Thus, the 
initial simplifying assumption of neglecting this ef-
fect is considered adequate and justified. 

3.3.4 Effect of softening law 
It can be observed in Table 1 and Figure 3c and d 
that, counter to commonly assumed, the shape of the 
softening curve does result in a significant effect 
both on the radial pressure capacity and the corre-
sponding e / c value. For model A3, the difference in 
estimated maximum pressure capacities is approxi-
mately 28%, while for model A4, the difference is 
approximately 37%; for n ranging between 2 and 5 
cracks. This is evidence that the designation of the 
fracture energy as a sole parameter – in addition to 
its being usually empirically assumed rather than di-
rectly measured and thus highly uncertain – instead 
of a more accurate representation of the actual post-
cracking behavior is a major source of uncertainty 
for this model. 

4 DETERMINISTIC SENSITIVTY ANALYSIS 

It has been established in the previous section that 
the assumption of alternative material softening laws 
and the use of cohesive-elastic bond splitting models 
formulated accordingly leads to a significant varia-
tion in the predicted response across these models, 
namely A1, A3, and A4. Therefore, the adoption of 
tensile fracture energy as a sole model parameter to 
characterize the softening behavior is a major source 
of uncertainty in the model. This uncertainty is fur-
ther compounded by the uncertainty in the tensile 
fracture energy value, which is often estimated from 
indirect measurements. This section individually ex-
amines the robustness of the three models A0, A3, 
and A4 by investigating the sensitivity of the re-
sponse predicted within each model to the model in-
put parameters. The comparative study is performed 
using a deterministic sensitivity analysis approach, 
commonly referred to in the literature as the Tor-
nado diagram analysis method. A summary of this 
method is described next. An extensive review can 
be found in (Lee & Mosalam 2005) and a similar 
application of this approach to the present study can 
be found in (Binici & Mosalam 2007). 

The Tornado diagram analysis is a deterministic 
method developed to numerically determine the sen-
sitivity of an output quantity of interest to uncer-
tainty in input parameter values, and thus establish 
the relative importance of the input parameters with 
respect to their random nature. In this method, a ref-



erence point is initially set by computing the pre-
dicted model response using the expected mean val-
ues of the input parameters. Next, the parameters are 
individually varied within a given range of uncer-
tainty, typically parameterized by their coefficient of 
variation (COV). The resulting changes (swings) in 
the predicted response quantity is computed, com-
pared and sorted across the different parameters. A 
graphic comparison of the computed sensitivity 
measures (swings) is used to establish the relative 
importance of the parameters. A larger sensitivity 
measure is an indication of a higher relative impor-
tance of the associated parameter and, consequently, 
a larger role for the uncertainty associated with said 
parameter in determining the outcome and accuracy 
of the model. In interpreting the results for the com-
parative study, the following criteria are considered 
to indicate a higher degree of model robustness: (a) 
Relatively lower sensitivity to uncertainty in input 
parameters, (b) significant sensitivity to only a 
smaller number of parameters, and (c) especially 
low sensitivity to parameters in which a higher de-
gree of uncertainty is anticipated. 

4.1 Problem statement 
The benchmark problem defined in section 3 is used 
in the present Tornado diagram analysis. The pre-
dicted maximum pressure pr is defined as the output 
quantity of interest. The list of input parameters be-
ing considered and their mean values is composed of 
the quantities defined at the end of subsection 3.1. 
The deterministic sensitivity of the model response 
to parameter uncertainty is calculated using the rela-
tive change (swing) in the predicted maximum pres-
sure corresponding to one standard deviation step on 
either side of the mean value for each input parame-
ter, with an assumed COV of 10%. Since the model 
sensitivity to parameter uncertainty is generally 
nonlinear, a tight step size (in terms of COV) is rec-
ommended in order to better represent the sensitivity 
in the neighborhood of the mean response. 

4.2 Results 
Figure 4 shows the Tornado diagram results for 
models A0, A3, and A4, where the parameter k repre-
sents softening law parameters k0, k3, and k4, respec-
tively. The shown results correspond to the case of   
n = 3. The most important model parameter is the 
bar diameter, and it has the same sensitivity measure 
for all models. This is followed by the cover thick-
ness then tensile strength (order reversed for A1) at 
approximately equal importance. The fourth parame-
ter on the list is tensile fracture energy, where there 
is a significant difference in the sensitivity measure 
across models. Here starts a significant decrease in 
importance for the remaining parameter in models 
A3 and A4, but not in model A0. The relative impor-

tance of the subsequent variables continues to de-
crease. The minimum sensitivity measure value is 
zero for the average aggregate size in models A0 and 
A4, where it is not included in the softening law 
formulation. Regarding uncertainty in the power law 
parameters k, model A0 is most sensitive with pa-
rameter k0 having an importance rank of 4 out of 8. 
Parameter k3 has a rank of 2 in model A3, while k4 
has a rank of 3 in model A4. However the value of 
the sensitivity measure indicates that model A3 is 
slightly more sensitive to parameter k3 than model 
A4 is to parameter k4. It is worth noting that the sen-
sitivity of models towards the assumed 10% COV is 
commeasurable with their sensitivity to the number 
of radial cracks over their range of expected values 
(subsection 3.3.1). Thus, for parameters whose ex-
pected COV is typically lower (e.g. bar diameter), or 
typically higher (e.g. fracture energy), the relative 
importance of the number of cracks can be deduced. 
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(a) Tornado diagram results for model A0 
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(b) Tornado diagram results for model A1 
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(c) Tornado diagram results for model A3 

Figure 4. Results of Tornado diagram for n = 3 radial cracks. 



4.3 Discussion 
Referring to the criteria of model robustness out-
lined earlier in section 4, all models display ap-
proximately the same sensitivity towards the three 
highest-ranking parameters. These three parameters 
are typically easier to estimate or measure directly 
with limited uncertainty. However, models A3 and 
A4 do not display significant sensitivity towards the 
remaining parameters, whereas model A0 does. 
Moreover, model A0 is significantly sensitive to the 
fracture energy, whose estimation typically involves 
high uncertainty, and to the power law parameters k0 
and wc, which are highly uncertain owing to per-
ceived randomness in tension-softening response. 
Therefore, the proposed models A3 and A4 are more 
robust than the reference model A0. This is further 
reinforced by the relative sensitivity of the three 
models to the number of radial cracks previously ob-
served in subsection 3.3.1. Moreover, since model 
A4 displays less sensitivity towards uncertainty in 
the remaining parameters than model A3, is not af-
fected by the uncertainty in estimating the average 
aggregate size, and shows decreasing sensitivity to-
wards fracture energy and the lower-ranking pa-
rameters with increased number of radial cracks (not 
shown), it is considered the most robust model. 

5 CONCLUDING REMARKS 

From the previous discussions, the following con-
cluding remarks can be inferred: 
1. The cohesive-elastic model for bond failure be-

tween concrete and longitudinal steel bars by 
splitting has been reviewed, and its assumptions 
and simplifications have been identified for in-
vestigation. Four alternate models have been for-
mulated to explicitly address each assumption. 

2. A benchmark problem has been introduced to as-
sess the relative significance of improving the in-
dividual modeling assumptions. 

3. It has been demonstrated that ignoring the biaxial 
behavior of concrete in tension results in an in-
significant overestimation of bond strength. This 
effect is counter-balanced by the equally insig-
nificant effect of assuming linear crack width dis-
tribution along the crack length. 

4. It has been demonstrated that the shape of the ten-
sion-softening material law is a significant factor 
of uncertainty in the analytical model, and that it 
is important to select a softening law that reliably 
represents the considered application. 

5. The model sensitivity to the number of radial 
cracks has been investigated. Recommendations 
for selecting a valid estimate in both deterministic 
and probabilistic contexts were presented. 

6. The relative robustness against parameter uncer-
tainty in the reference model as well as two mod-

els formulated using alternative tension-softening 
material laws was assessed using a Tornado dia-
gram analysis for the benchmark problem. 

7. The reference model was found to be relatively 
most sensitive to uncertainty in parameters which 
typically have a highly random nature and thus is 
the least robust. The two alternate models were 
found to be significantly less sensitive to highly-
random parameters and should therefore result in 
a more reliable prediction of bond strength. 
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