
1 INTRODUCTION  

Applying vibration analysis to the study of structural 
integrity is nowadays of increasing interest in most 
areas of engineering activities. This is particularly 
true regarding the structural monitoring of damage 
(Salawu 1997).  Frequency changes and damage 
evolution in structures are phenomena which are 
mutually associated, which indicate that free vibra-
tion concepts can be coupled to fracture mechanics 
to study the crack process, as well as crack proper-
ties of different materials.  

Moreover, other natural parameters, such as 
modes shapes, are of interest in globally evaluating 
the progressive damage process until failure, or in 
determining the location of damaged zones, such as 
discrete cracks occurring in structures (Dimarogonas 
1996, Chinchalkar 2001, Law & Lu 2005).  

Taking this into account, studies of different na-
tures related to vibration responses of cracked ele-
ments have been published, most of then concerned 
with the linear-elastic crack problem (e.g. Ram & 
Lee 1992, Khiem & Lien 2004).  

In the case of quasi-brittle materials, the deter-
mination of crack depth as a fundamental fracture 
parameter in measuring damage severity or crack re-
sistance, can not be directly calculated from linear-

elastic fracture mechanic concepts, due to the extent 
of the inelastic process zone, lp, occurring ahead of 
the visible crack tip.  

 
 
Figure 1. Quasi-brittle crack: inelastic process zone, lp, ahead 
of the visible crack tip. 
 

With origins in complex mechanisms, the ine-
lastic processes are sometimes modeled via a simple 
interface connecting the newly formed crack faces, 
on which a cohesive stress acts representing the in-
terface’s ability to bridge stresses across the crack 
faces (Hillerborg 1985, Shah et al. 1995). The distri-
bution of the cohesive stresses is schematically 
shown in Figure. 1. 
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 Focusing on the case of a cracked beam from 
the dynamic viewpoint, different situations need to 
be examined. Within the linear-elastic case, as crack 
propagates, i.e., as crack length increases, the natural 
frequency responses gradually decrease, as a conse-
quence of the successive changes in the specimen’s 
compliance. In this context, both, the modal and the 
crack problems will be completely determined from 
the knowledge of the extents of the crack length, at 
each step of crack propagation. 

In the case of quasi-brittle materials, it is ex-
pected that the same mechanisms causing softening 
are also responsible for part of the total reduction in 
natural frequency responses.  

However, the crack length of the propagating 
crack is not known a priori, because the extent of 
the process zone is also unknown. 

This fraction of the overall reduction in fre-
quencies adds the one concerning the increase in the 
specimen’s compliance, which, in turn, comes from 
the extension of the (free) crack faces, in the linear-
elastic sense. These different mechanisms acting on 
frequency responses of quasi-brittle materials make 
the coupled modal-fracture mechanics problem non-
linear.  

However, in fracture mechanics studies of 
quasi-brittle materials, the computation of crack ex-
tensions, in general, follow specific non-linear 
guidelines in order to calculate effective crack 
lengths, aeff, (Jenq & Shah 1985, Karihaloo & 
Nalathambi 1989).   

This will enable one to combine both, the modal 
and the crack problems, into a single non-linear 
situation within which the main unknown factor will 
be the effective crack depth, aeff. 

This approach is based on the assumption 
widely accepted within the framework of the quasi-
brittle crack theory that the energy dissipation neces-
sary for crack propagation will take place within a 
preferential plane, or a crack band (Bazant & Oh 
1983), especially in the case of the pre-notched 
beam discussed herein.  

In this paper, the modal parameters of a linear-
elastic cracked beam, at different crack depths, are 
firstly determined for a given beam geometry.  Sub-
sequently, these parameters are used together with 
the frequency responses experimentally obtained, 
before and after imposing cracks to the specimens, 
to compute effective crack lengths and the fracture 
toughness of the material.  

Finally, the values of fracture toughness ob-
tained with the proposed method are compared with 
the fracture toughness values obtained from Two Pa-
rameter Crack Model methodology (Jenq & Shah 
1985). 

2 DINAMIC RESPONSE OF A NOTCHED 
BEAM ELEMENT 

The beam element considered in the present discus-
sion is treated as a continuous, linear and conserva-
tive system, so that dumping is disregarded. Fur-
thermore, the structural element is thought to vibrate 
freely.  

In the case of a structural element fulfilling the 
hypothesis of Euler-Bernoulli’s beam theory, the 
frequencies, fi, associated with the different modes 
of (free) vibration can be computed with (Blevins 
1984): 
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where λi are dimensionless parameters associated 
with the different mode shapes which depends on 
boundary conditions, E is the Young’s modulus, m is 
the mass per unit length of the beam and L is the 
beam’s length.  
 

 
Figure 2. Notched-through beam element: First mode shape, 
location of the nodal points and loading arrangement. 

 
As a consequence of the approach, transverse 

shear and rotational inertia effects are not consid-
ered. Instead, in this study the assumptions of Ti-
moskenko’s beam theory are used.  

Denoting the crack length as a, the relative 
crack length, which will be used in most of the fol-
lowing discussions, is defined as α = a/W, where W 
is the depth of the beam.  

To consider the frequency responses of a 
notched beam element, a dimensionless function of 
dependence on geometry, v (α0), that also takes into 
account the constant λi, is applied to Equation 1. In 



this case, the transversal frequency, f, corresponding 
to the lowest mode of vibration will be given by:  
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where M is the mass of the element and α0=a0/W is 
the normalized notch depth. Young’s modulus can 
be determined from the notched geometry by rear-
ranging Equation 2:  
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Considering the cross section shown in Figure 
1b, the nominal moment of inertia, I0, as a function 
of the initial notch depth, a0, can be calculated as 
follows: 
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The substitution of Equation 4 into Equation 3 
leads to a general formula that can be used to com-
pute Young’s modulus, before crack propagation: 
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To consider the frequency responses of a 
cracked beam element at different crack depths, ai, 
the dimensionless function of dependence on ge-
ometry, v(α), concerning the full or almost all the 
crack path will be needed a priori.  

Here, the computation of this function is carried 
out using the finite element method. 

3 FINITE ELEMENT ANALYSIS 

To study the crack process, a two-dimensional (lin-
ear-elastic) free-vibration analysis was carried out 
using the ANSYS program in plane stress assump-
tion using the lumped mass approximation. The ge-
ometry (Fig. 2b) and elastic parameters adopted 
through the computations are given in Tab. 1. 

The beam was modeled with a mesh composed 
of triangular quadratic isoparametric finite elements. 
The crack was propagated along the central plane of 
the beam from a 3 mm wide initial notch.  

 
Table 1 - Geometrical and material parameters used through 
the simulations (1 daN = 10N ≈ 1kgf). 

Lenght Depth Width Notch Depth E Mass
L (cm) W(cm) B(cm) a0 (cm)  (daN/cm^2) (kg)

50.00 15.00 15.00 2.25 300000.00 28.125  
 

Throughout the computations, different vari-
ables affecting the frequency and displacement re-
sponses have been studied, namely Poisson’s ratio,ν, 

and the initial notch depth, a0. In the former case, the 
values of 0.1, 0.2 and 0.3 have been used.  

In the latter, the profundities a0 of 20.0, 22.5 and 
25 mm, which correspond to α0 values of 0.133, 
0.150 and 0.167, respectively, have been investi-
gated. 

In each step of the analysis, the crack tip was 
moved in small steps by consecutive increments Δa 
of crack advance. Within the analysis, an increment 
of 5mm was used.  

The crack-tip singularity affecting the mode 
shapes was handled with a rosette of twelve triangu-
lar quarter-point elements (radius of 0.05cm) around 
the “current” crack tip. 

3.1 Dimensionless function of dependence on 
geometry 

The numerical computations were performed over a 
relative crack length range of α0 < α ≤ 0.80. The 
equations for the dimensionless functions v(α) were 
determined by fitting 4th degree polynomials to the 
results numerically obtained and are given by Equa-
tion 6.  

The coefficients from a through e originated in 
the nonlinear fittings for different values of ν are 
given in Tab. 2.  
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For the notched specimen (before crack propa-
gation), the v(α0) values are affected also by the ini-
tial notch depth, a0. The values of these constants are 
given in Tab. 3, for Poisson’s ratios which were 
studied, so that intermediate α0 and ν values can be 
linearly interpolated.  

It has been observed in the range investigated, 
that the variation of the notch depth, a0, is of impor-
tance only for the intact geometry, therefore affect-
ing Equation 5.   

After crack propagation, its interference in fre-
quency responses is negligible, due to the small 
variation of mass concerned with different notch 
depths, so that for all practical purposes, Equation 6 
can be safely used. 

 
Table 2 – Coefficients for the function of dependence on ge-
ometry – v (α) 

ν a b c d e 

0.10 593.1081 416.0307 906.4000 -3163.4058 2992.3754
0.20 593.8430 414.1586 980.7819 -3295.5156 3068.5907
0.30 594.6467 411.1085 1061.9722 -3436.8336 3149.1527  

 
 
 
 
 



Table 3 – Constant v(α0) values for different notch depth. 

ao αo v(αo)

(cm) ν = 0.1 ν = 0.2 ν = 0.3

2.00 0.13333 655.599 657.122 658.657
2.25 0.15000 664.835 666.559 668.300
2.50 0.16667 673.701 675.637 677.598  

 
If Equation 2 is used in conjunction with Equa-

tion 6, Young’s modulus enters in daN/cm2 (1 daN = 
10N ≈ 1kgf) and the linear dimension in cm (centi-
meters), respectively, to achieve frequency re-
sponses of the same order of magnitude of v(α) val-
ues.   

To use GPa (gigapascal) and m (meter) instead, 
v(α) values computed with Equation 6 as well as the 
constant for the notched specimen before crack 
propagation, will have to be multiplied by 103. 

3.2 Position of nodal points 
As expected, the frequency and displacement re-
sponses of a beam with a propagating crack will be 
different for each crack depth considered.  

Taking this into account, the whole coupled 
crack-modal analysis represents a set of studies con-
cerned with bodies of different geometries.  Due to 
this fact, as the crack advances, the nodal points for 
the vibration mode investigated will move towards 
the center of the beam.   

This moving behavior has been previously dis-
cussed and exploited in inverse techniques for sizing 
and locating cracks in vibrating beams (e.g. Dilena 
& Morassi 2002].   

The location of the nodal points at the bottom 
face of the beam is also a function of the Poisson’s 
ratio of the material.  

Regarding beam ends (Fig. 2a), for each step of 
crack propagation the nodal point positions are now 
given as a fraction of the beam’s length, L, and Pois-
son’s ratio, ν,  and can be computed with Equation 
8.  

LkL LNP =                 (8) 
The kL curves can be expressed with the nonlin-

ear model given by Equation 9, for Poisson’s ratios 
equal to 0.1 and 0.3. For intermediate values of ν, a 
kL factor as a function of the normalized crack 
length, α, can be obtained by linear interpolation.  

The coefficients to be used with Equation 9 are 
presented in Tab. 4.  
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Table 4 – Coefficients for the computation of kL, using Equa-
tion 9. 

ν a b c d e f

0.1 0.229907 -0.020039 0.358762 -0.859155 0.847116 -0.309700
0.3 0.233444 -0.030502 0.391712 -0.929505 0.912846 -0.330675  

 
The implications of the moving behavior of the 

nodal points on experimental determination of fre-
quency responses will be discussed in section 5. 

4 THE EFFECTIVE APROACH 

Young’s modulus, E, of the material is first obtained 
using the frequency response of the notched beam in 
the “intact state”. The specimen is then subjected to 
the center-point loading configuration shown in Fig-
ure 2b.  

In most cases, the test can be performed under 
load control if a very small loading rate is specified, 
so that the specimen can be safely unloaded at the 
peak-load, Pmax. This allows the implementation of 
the methodology without requiring complex, dis-
placement-controlled load equipment.  

Subsequently, a new modal evaluation is per-
formed. Now, the frequency response, f, will be 
lower, though reflecting the change on beam’s com-
pliance associated with crack advance. 

The frequency response obtained and the nor-
malized initial notch depth, α0=a0/W, are used with 
Equation 5 to compute a fresh value of E, say, Ei, 
which will result much lower than the original one.  

The relative effective crack length is found by 
iterating for α in Equation 5 until the condition Ei 
≈E is satisfied, within a pre-defined tolerance.  

When this condition is fulfilled, the converged 
value of α will stand for the effective normalized 
crack length, αeff, which is used to compute the ef-
fective crack length: 

Wa effeff α=                          (10) 
The fracture toughness, Km

IC, is finally evalu-
ated using the LEFM equation for the three-point 
bend configuration: 
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where Pmax is the peak-load, M is the mass of the 
specimen, g is the gravity acceleration and the su-
perscript m stands for “modal”.  

The dimensionless function of dependence on 
geometry and boundary conditions, f(α), computed 
by the authors with FEM for a beam with S/W = 3 
loaded in three-point bend, can be calculated by sub-
stituting αeff in Equation12: 
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Many loading-unloading cycles, followed by 

natural frequency estimations can be performed to 
evaluate the changes on the beam’s compliance. 
However, a single cycle is sufficient to calculate the 
fracture toughness. 

On the other hand, the test can be performed 
under crack mouth opening displacement (CMOD) 
control in order to introduce a considerable amount 
of crack into the beam in a stable fashion. This is ar-
chived by monotonically loading the specimen and 
unloading it at 95% of Pmax, beyond the peak-load 
(Shah et al. 1995).  

In this case, only two load-unloading are strictly 
necessary for a complete check on fracture resis-
tance.  

Since two successive ascendant branches will 
result from this procedure, the consequent variation 
on flexural compliance between cycles enables one 
to use the Two-Parameter Crack Model (Jenq & 
Shah 1985) to check the Km

IC value obtained from 
the modal analysis. 

5 PRELIMINARY EXPERIMENTAL ANALYSIS 

The analytical approach described above has been 
preliminary applied to the results of tests performed 
on three concrete beams tested in three-point bend. 
The span, depth and width of the beams were 
450mm, 150mm and 150mm respectively.  

The depths and widths of all notches were 3mm 
and 25mm, respectively.   

The material investigated was a high strength 
concrete with a mix proportion, in mass, equal to 1: 
2.13: 1.83 (cement, sand and gravel) with a maxi-
mum aggregate size of 19 mm and a water-to-
cement ratio of 0.31. Silica fume has been added to 
this mix in the proportion of 7% concerning the ce-
ment’s weight.  

The mechanical properties obtained at an age of 
28 days in axial compression and Brazilian splitting-
tension tests of (10x20) cm cylinders were fc=70.57 
MPa and ft=5.25 MPa, respectively. Young’s 
modulus, E, obtained in compression tests was equal 
to 43.42 GPa. 

 

5.1 Modal Responses 
Young’s modulus, E, of the material was first de-
termined using the frequency responses of the 

notched beams in the intact state. To accomplish 
this, an accelerometer was placed at the bottom face 
of the beams, about 20 mm away from the central 
notch (Borsaikia et al. 2006).  

The beams were sustained by two nylon wires 
positioned at the nodal points corresponding to the 
lowest natural frequency, computed with Equation 8. 
For this, a Poisson ratio equal to 0.2 was used. The 
arrangements used are shown in Figure 3. 

 

 
 

Figure 3. Evaluation of frequency responses of a notched beam 
in the “intact” state. 

 
At this stage, each beam was excited several 

times on the opposite side of the accelerometer using 
a modal hammer and the average frequency re-
sponses, individually applied to Equation 5.  

Within a second phase of tests, all specimens 
were subjected to fracture using an INSTRON sys-
tem in a center-point loading configuration in order 
to introduce substantial amounts of crack into the 
specimens.  

The specimens were loaded under CMOD 
(crack mouth opening displacement) control up to 
the peck-loads, Pmax, and unloaded at about 95% 
past Pmax. 

New modal evaluations were conducted after 
complete unloading of the specimens.  

Considering that all beams were cracked at this 
stage and that the correct positions of the nodal 
points could not be known a priori (because the 
crack depths were not known), all beams were sus-
tained at nodal positions of α ≈ 0.3, which approxi-
mately corresponds to the cracked configuration of a 
concrete beam loaded in three-point bend.  

Supplementary loading and unloading opera-
tions were conducted in two specimens (SP2 and 
SP3), in order to provide information regarding 
changes to the specimen’s compliance, as well as to 
frequency responses due to the crack growth.  



The changes occurring in the specimen’s com-
pliance were used to calculate the fracture tough-
ness, KS

IC, using the Two Parameter crack model 
(Jenq & Shah 1985) to check the fracture toughness 
values obtained with the proposed model. 

6 RESULTS AND DISCUSSIONS 

The values of Young’s modulus, E, calculated with 
Equation 5 from responses of the intact specimens 
are presented in Tab. 5.  

 
Table 5 – Young’s modulus computed from responses of the 
intact specimens (1daN=10N≈10kgf). 

Specimen Frequency α0 E (intact) E (intact)
(Hz) - (daN/cm^2) (GPa)

SP-1 1973.00 0.1667 474874.250 47.487
SP-2 1943.00 0.1667 455527.887 45.553
SP-3 1973.00 0.1667 469703.221 46.970
Mean: 466701.786 46.670

Stand. Dev.: 8178.301 0.818  
 

It has been observed that, for the material tested, 
the mean value of E dynamically obtained (46.67 
GPa), was about 7.5% greater than the mean value 
found with (10x20) cm cylinders in compression 
tests (43.42 GPa).  

For each specimen tested, Equation 5 was used 
with an increment for α of 1.0x10-8 to compute suc-
cessive values of Young’s modulus, Ei, until con-
vergence (Ei ≈ E ). For this, a tolerance of 0.00001 
was used (with E given in kN/mm2). The results ob-
tained are given in Tab. 6. 

 
 

Table 6 – Fracture toughness computed with the proposed 
model. 

Spc          Frequency E (converged) aeff KIC KIC
Initial (Hz) Final (Hz) (daN/cm^2) (cm) (daN.cm^ -1.5) (kN.mm^ -1.5)

1 1973.00 1919.00 474874.246 2.920 130.07 0.04113
2 1943.00 1898.00 455527.879 2.862 108.05 0.03417
3 1973.00 1915.00 469703.214 2.948 113.52 0.03590

Mean 117.21 0.03707
 Stand. Dev. 9.36 0.00296  

 
The fracture toughness values computed with 

the methodology of the Two Parameter crack model 
are presented in Tab. 7 for specimens sp2 and sp3, in 
view of the fact that the data file containing the re-
loading path of specimen sp1, was lost during the 
tests. 

 
 
 
 
 

Table 7 - Fracture parameters computed with the methodology 
of the Two Parameter crack model. 

Specimen ac KIC KIC
(mm) (daN.cm  ̂-1.5) (kN.mm  ̂-1.5)

sp2 25.426 101.511 0.03210
sp3 39.728 136.348 0.04312

Mean: 118.930 0.03761
Stand. Dev.: 24.63 0.00779  

7 CONCLUSIONS 

In this paper, a new formulation based on the modal 
dynamic analysis was proposed to evaluate the con-
crete fracture toughness from notched-through beam 
tests. A set of dimensionless functions of depend-
ence of frequencies on geometry, was computed for 
the (150 x 150 x 500) mm notched-through speci-
men. These functions allowed for the computation of 
Young’s modulus of the material.  

A modal/fracture mechanics approach was pre-
sented to model the frequency reduction arising from 
the cohesive interface of the propagating fictitious 
crack in a quasi-brittle material, therefore allowing 
the computation of effective crack lengths.   

The computationally obtained lengths were used 
to calculate the fracture toughness of high strength 
concrete. 

Taking into account the quite limited experi-
mental program presented to check the model pro-
posed in this paper, particularly regarding the num-
ber of specimens tested, it was observed that the 
fracture toughness obtained via modal analysis dif-
fers in a reasonably way from the data calculated us-
ing the Two Parameter Crack Model.  

Naturally, a more robust experimentation is 
needed. Furthermore, an experimental program in-
volving specimens geometrically similar in two di-
mensions is necessary to have a complete check on 
the size effect phenomenon. 
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