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ABSTRACT: This paper presents a three-dimensional model to simulate the tensile behavior of concrete based
on continuum damage mechanics. By using a symmetric second-order tensor as the damage variable, this
model allows for the simulation of orthotropic degradation. Three decoupled loading functions are defined in
quantities that are thermodynamically conjugate to the damage variables; the use of these specific definitions
yields a symmetric tangent stiffness. In order to allow FE-calculations with arbitrary meshes, a process zone
width is introduced in the damage evolution. A Newton-Raphson-Method is used to solve the resulting nonlinear
system of equations, and all partial derivatives are presented. Finally, the evaluation of the model is carried out
by means of standard experimentation.

1 INTRODUCTION

The tensile behavior of normal concrete beyond its
linear elastic range is defined by the formation and
growth of microcracks. Over time, concentration and
coalescence of these micro defects in a process zone
lead to the appearance of macrocracks. By observ-
ing the uniaxial, macroscopic behavior, one clearly
sees the softening of and a loss of stiffness in con-
crete as proven by cyclic tensile tests, (Gopalarat-
nam & Shah 1985). Modelling of these properties can
take place by means of continuum damage mechan-
ics, (Lemaitre 1991), (Carol et al. 1994), by apply-
ing such concepts as isotropic or anisotropic dam-
age. The anisotropic damage concept should be used
for simulating the tensile softening behavior of nor-
mal concrete due to the orientation of the resulting
load induced microcracks. The realistic simulation
of the anisotropy is important, particularly with re-
gard to the computation of reinforced concrete struc-
tures, because large compressive stresses must be
transferred parallel to the cracks. Anisotropic damage
models have been presented, for example, by: (Simo
& Ju 1987a); (Simo & Ju 1987b); (Govindjee et al.
1995); (Schmidt-Hurtienne 2000) and (Pölling 2000).
Anisotropic damage models are primarily defined by
either a strain based or a stress-based loading sur-
face. As shown in section 2.2, a potentially promis-
ing approach is the formulation of loading functions
in the space of the variables that are thermodynami-
cally conjugate to the damage variables. Such a defi-
nition is based on the use of the pseudo-logarithmic
damage rate tensor, suggested by (Carol et al. 2001),

as the damage variable. This paper presents an or-
thotropic damage model with three decoupled load-
ing functions, as well as introduces a new damage
evolution allowing for FE calculations with arbitrary
meshes. Formulating the loading functions in terms
of variables that are thermodynamically conjugate to
the damage variables requires an iterative method
to solve the resulting nonlinear system of equations.
This method is explictly described in section 3. In the
last section, evaluation of the model is carried out by
means of the experiments of (Nooru-Mohamed 1992)
and (Winkler 2001).

2 DESCRIPTION OF THE MODEL

2.1 Damage operator, energy equivalence approach

The basis of this model is the definition of an effec-
tive, intact material, (Carol et al. 2001), (Lemaitre
1991), with an effective stress σeffij and an effective

strain εeffij . The derivation of a linear damage operator
to connect the effective material state to the nominal
material state, described by the nominal stress σij and
the nominal strain εij , is the goal of this section. The
relationship between these effective quantities is as-
sumed to be linear elastic and isotropic with the stiff-
ness E0

ijkl:

σeffij = E0
ijklε

eff
kl

The constitutive law for the real, damaged material
with the damaged stiffness Eijkl and dependent on a



general damage variable D∗ is

σij = Eijkl(D∗,E0
ijkl)εkl . (1)

The variable can be both a scalar and a tensor. The
relationship between the nominal and the effective
quantities is assumed to be linear. The damage op-
erator is in the form of a fourth order tensor based on
the requirement that a second order tensor remain a
second order tensor after a linear operation. Utilizing
this fact it is then possible to address approaches for
stress and strain:

σeffij = Aijklσkl , εeffij = Bijklεkl (2)

At this point it can only be stated that the operators
have the property of minor symmetry since σij und
εij are symmetric. In order to proceed with the defi-
nition of the damage operator, an equivalence princi-
ple must be chosen, (Lemaitre 1991). Therefore, the
energy equivalence approach is used. This approach
combines the actual material with the effective ma-
terial based on the assumption that the accumulated
elastic energy u is the same in both:

u =
1

2
σijεij =

1

2
σeffij ε

eff
ij

=
1

2
AijklσklBijrsεrs

u =
1

2
(σ : ε) =

1

2
(σ : AT ) : (B : ε) (3)

From this, it follows

AT : B = I4 ,B = A−T (4)

with the fourth order identity tensor I4. With this the
relationship between A und B is derived by means of
the equivalence principle. A is chosen as the linear
damage operator. Thus, (2) can be written as:

σeffij = Aijkl(D∗)σkl, εij = Aklij(D∗)ε
eff
kl

εeffij = Āklij(D∗)εkl, σij = Āijkl(D∗)σ
eff
kl

whereby the inverse of A is labeled as Ā. In order
to formulate the operator A in detail, a convenient
damage variable must be selected. In order to capture
the load induced anisotropy of concrete, the use of
a second-order symmetric damage tensor Dij is sug-
gested, (Carol et al. 2001) or (Lemaitre 1991). This
enables the modeling of orthotropic damage. Matrix
representation of the tensor Dij in the principal axes

Dij =

[
D1 0 0
0 D2 0
0 0 D3

]

allows a comprehensive description of its meaning.
The eigenvalues are defined as 0 <= Dk <= 1 and

k = 1,2,3; whereas,Dk = 0 represents intact material
andDk = 1 completely destroyed material both in the
direction of the eigenvector pertaining to Dk. In the
suggested model, however, the integrity tensor φ̄ij is
used

φ̄ij = δij −Dij

with the Kronecker delta δij. Additionally, the inverse
integrity tensor φij and, for the sake of symmetry, the
tensors w̄ij andwij are introduced, (Carol et al. 2001):

φ̄ij = w̄ikw̄kj , φij = wikwkj

φ̄ikφkj = φikφ̄kj = δij

w̄ikwkj = wikw̄kj = δij

An approach for determing the damage operator A in
one of these variables is the next step. The formula-
tion used by (Carol et al. 2001) is chosen:

Aijkl =
1

2
(wikwjl +wilwjk)

and

Āijkl =
1

2
(w̄ikw̄jl + w̄ilw̄jk) (5)

The nominal, secant constitutive law can be derived
by the definition of A :

σij = Āijklσ
eff
kl

= ĀijklE
0
klmnε

eff
mn

= ĀijklE
0
klmnĀopmnεop (6)

Substituting (5) yields

σij = w̄ipw̄jqw̄krw̄lsE
0
pqrsεkl (7)

σ = E(E0,w) : ε = E(E0,φ) : ε (8)

with the secant stiffness

Eijkl = w̄ipw̄jqw̄krw̄lsE
0
pqrs

= Λ0φ̄⊗ φ̄ + 2G0φ̄⊗ φ̄ (9)

and the elastic isotropic parameters Λ0,G0. The prod-
uct ⊗ means:
a⊗a = 1

2
(aikajl + ailajk)ei ⊗ ej ⊗ ek ⊗ el. Finally,

a remark on the symmetry of the secant stiffness.
Equating (6) with (8) reads

Eijkl = ĀijmnE
0
mnopĀklop (10)

and with E0
mnop = E0

opmn the major symmetry of the
secant stiffness follows:

Eijkl = ĀijmnE
0
opmnĀklop = ĀklopE

0
opmnĀijmn

= Eklij



2.2 Evolution rule, principle of maximum energy
dissipation

The goal of this section is the derivation of an evo-
lution rule for the damage, where φ is the damage
variable. With (8), the Helmholtz free energy results
for elastic degrading material:

ρ0ψ(ε,E) =
1

2
ε : E(E0,φ) : ε

The internal variables are ε and φ, and the thermody-
namically conjugate variables are σ and Yφ:

σ = ρ0
∂ψ

∂ε
= E : ε ,Yφ = ρ0

∂ψ

∂φ

The total differential is

ρ0ψ̇ = ε : E : ε̇ + ρ0
∂ψ

∂φ
: φ̇

If this is inserted in the Clausius-Duhem inequality
for isothermal processes, then

ρ0ψ̇ ≤ σ : ε̇

yields

0 ≤ [σ − ε : E] : ε̇− ρ0
∂ψ

∂φ
: φ̇

whereby the dissipative portion Pdis of the process be-
comes clear as below:

Pdis = −ρ0
∂ψ

∂φ
: φ̇ = −Yφ : φ̇

In order to be able to work with a positive quantity,
−Yφ is chosen as the dual variable to φ. At the basis
of thermodynamic derivation is the theory of maxi-
mized energy dissipation.Pdis shall be maximized un-
der the constraints of ζk = 0, k = 1,2,3 by means of
a Lagrange maximization. The constraints ζk are the
loading functions Fk that distinguish elastic material
response from progressive damage. The basis is the
function Ξ with the Lagrange Multipliers λ̇k:

Ξ = Pdis +
3∑
k=1

λ̇k ζk = −Yφ : φ̇ +
3∑
k=1

λ̇k ζk

∂Ξ

∂(−Yφ)
= 0 →

φ̇ =
3∑

k=1

λ̇k
∂ ζk

∂(−Yφ)
=

3∑
k=1

λ̇k
∂ Fk

∂(−Yφ)
(11)

Given this, the evolution rule applies for given load-
ing functions Fk. At this point the loading functions
Fk are introduced as constraints, however, nothing
is known about the variables comprising the loading
functions. The following considerations suggest the
definition Fk(−Yφ):

• The derivatives ∂Fk

∂(−Yφ)
must exist to calculate the

damage evolution φ̇,

• The definition of F (−Yφ) yields a symmetric
tangent stiffness, (Carol et al. 1994); this is ad-
vantageous.

Furthermore, (11) constrains the freedom of the de-
sign of the loading functions. The equation λ̇k > 0
is valid for the Lagrange Multipliers. The derivative
∂Fk

∂(−Yφ)
> 0 must hold true because it is only possible

for damage to increase, which means φ̇ > 0. This is
valid for all partial derivatives in this case.

2.3 Pseudo log damage rate

In the last section the inverse φij of the integrity tensor
was defined as the damage variable and the conjugate
quantity −Yφ was suggested to be a variable of the
damage surfaces. Utilizing (Carol et al. 2001), −Yφ =

−ρ0
∂ψ

∂φ
becomes

−Yφ = −Y φ
pq =

−ν0

E0
(σklφkl)σpq +

1 + ν0

E0
σpkφklσlq

with the Young’s modulus E0 and Poisson’s ratio ν0

of the intact, isotropic material. A physical meaning
of −Y φ

pq is, however, difficult to recognize and for this
reason a definition of F (−Y φ

pq) is disadvantageous.
Hence, the “pseudo-logarithmic damage tensor rate ”

L̇rs = 2w̄rpφ̇pqw̄rs (12)

is introduced as a modified damage variable in (Carol
et al. 2001) that is only defined as a rate tensor, in
general. The advantage is found in the dual quantity to
L̇ij , which is a simple and physically comprehensive
quantity by which the loading surface is defined:

−Yik =
1

2
σeffij ε

eff
jk

Refer to (Carol et al. 2001) for the detailed derivation
of −Yik. For example, the first invariant of −Yik is
the stored elastic energy. Transformation of −Yik into
the principal axes yields the stored effective, elastic
energy −Yα in the principal directions dα. The dis-
sipation potential with these quantities, (Carol et al.
2001), is

Pdis = −YijL̇ij ,
and maximization leads to the evolution rule for L̇ij :

L̇ij =

3∑
k=1

λ̇k
∂ Fk

(∂ − Yij)
(13)

Additionally, (12) must be solved for φ̇pq for subse-
quent derivations.

φ̇pq =
1

2
wprL̇rswsq (14)



2.4 Loading surfaces

A loading function must contain both a loading state
descriptive component defined in −Yij and a compo-
nent describing the current material state. Since L̇ij is
only defined as a rate tensor, φij is used as the variable
of the second component; this results in a formulation
Fk(−Yij , φij) for the loading surfaces. Because this
formulation is complicated due to its second-order
tensor components, the loading functions are deter-
mined in the eigenvalues of −Yij and φij. This also
enables a simple decoupling, and the proposed struc-
ture becomes:

F1(−Y1, φ1) , F2(−Y2, φ2) , F3(−Y3, φ3)

Because the subsequent derivations are the same for
all three loading surfaces Fk, only the determination
of F1(−Y1, φ1) is demonstrated. Basically, the struc-
ture of F1 is assumed to be

F1(−Y1, φ1) = f1(−Y1)− r1(φ1) (15)

if the loading portion is f1(−Y1) and the material de-
scriptive state is r1(φ1). For this approach, the follow-
ing material specific assumptions are found:

• Concrete reacts with energy dissipation only on
tensile loadings. In this way f1(−Y1) becomes
f1(−Ŷ1) with

−Ŷ1 =
1

2

〈
σeff1

〉〈
εeff1

〉
and the Mac Auley brackets 〈..〉.

• In the uniaxial case concrete has the ability to
store added elastic energy up to a value of ut =
1
2

f2
t

E0 , with the mean tensile strength ft. Once the
value of ut is exceeded the concrete responds
by dissipating a portion of the additional energy
through the formation of crack surfaces. In the
uniaxial tension case −Ŷ1 = 1

2

f2
t

E0 is valid at the
elastic boundary whereby the following form of
f(−Ŷ1) is suitable:

f1(−Ŷ1) = −Ŷ1

Based on these assumptions, (15) becomes

F1(−Ŷ1, φ1) = −Ŷ1 − r1(φ1) (16)

The derivation of a damage evolution r1(φ1) is the
next step. This approach is based on the requirement
that the actual physical behavior of normal concrete
be simulated in uniaxial tension; in particular, the
fracture energy GF must be accurate. It is valid for
the uniaxial tensile case

σeff1 = σ1φ1 , εeff1 =
ε1
φ1

and in the case of progressive damage the loading fun-
tion is:

F1 = −Ŷ1 − r(φ1) =
1

2
σ1ε1 − r1(φ1) = 0 (17)

Now an approach for σ1(ε1) is formulated for σ1 in
(17) that models the tensile behavior of normal con-
crete. The first step is a modification of the stress-
crack opening relationship after (Gopalaratnam &
Shah 1985):

σ1 = fte
−kw (18)

with the crack opening w in [m] and a parameter
k. Assuming a maximimum crack opening of wc =
0.15mm, at which point stress can no longer be trans-
ferred enables the determination of k for given frac-
ture energy GF and tensile strength ft.

Gf =

∫ wc

0

σ1dw =

∫ wc

o

fte
−kwdw

In order to obtain a stress-strain law, the crack open-
ing w must be related to a process zone width h,
which corresponds in FE-calculations to the element
size in the damage direction.

σ1 = fte
−kε1·h

Furthermore, taking into account the fact that soften-
ing is not supposed to begin before the tensile strength
is reached yields:

σ1 = fte
−k(ε1−ft/E0)·h (19)

With this, the relationship σ1(ε1) for (17) is given. Ap-
plying the uniaxial tensile conditions to (7) results in:

σ1 =
E0

φ2
1

ε1 (20)

Comparing (20) with (19) and solving for ε1 provides

ε1(φ1) =
1

k h
W (

k hft φ
2
1e

k h ft
E0

E0

)

using the Lambert function W (..). Inserting ε1(φ1)
into (19) yields an expression σ1(φ1). To obtain the
formulation of the damage evolution r1(φ1), the ex-
pressions ε1(φ1) and σ1(φ1) need only be employed
in (17). This provides the damage evolution

r1(φ1) =
1

2
σ1(φ1) ε1(φ1) =

0.5

k h
V1fte

(−k( 1
k h

V1− ft
E0

)h)

with Z = e
(

k h ft
E0

) and V1 = W (
khft φ2

1Z

E0
). Inserting

r1(φ1) into (16) and parallel procedures for the sur-
faces F2 and F3 yield the three sought-after loading
functions:

Fk(−Ŷk, φk) = −Ŷk − 0.5

k h
Vkfte

(−k( 1
k h

Vk− ft
E0

)h) (21)



3 ALGORITHM

3.1 System of constitutive equations

A system of constitutive equations can be developed
that can be solved conveniently by using the equations
of the last section. The introduction of (13) in (14)
yields the evolution rule of φij

φ̇pq =
1

2
wpr

3∑
k=1

λ̇k
∂ Fk

∂(−Yrs)wsq

=
1

2
wpr(λ̇1N

1
rs + λ̇2N

2
rs + λ̇3N

3
rs)wsq

with the abbreviation N k
rs = ∂Fk

∂(−Yrs)
. Adding the equa-

tions (8) and (21) completes the system of constitutive
equations. Using an implicit Euler scheme leads to

Rσ = 0 = −σn+1 + En+1(φn+1) : εn+1

RF1 = 0 = (−Ŷ1)n+1 − r1((φ1)n+1)

RF2 = 0 = (−Ŷ2)n+1 − r2((φ2)n+1)

RF3 = 0 = (−Ŷ3)n+1 − r3((φ3)n+1)

Rφ = 0 = −φn+1 + φn +
1

2
wn+1 ·NN ·wn+1

with n + 1 defined as current time and n defined as
the previous point in time. Furthermore, the abbre-
viation NN = (Δλ1N1 + Δλ2N2 + Δλ3N3) is intro-
duced. The unknown variables in the system of con-
stitutive equations are σn+1,φn+1 and Δλ, and εn+1

is considered as a paramter. In the interest of sim-
plification and clarity, time indices will no longer be
included unless absolutely necessary. The system of
equations is solved by a Newton-Raphson-Method:

Φiδpi+1 = −Ri

pi+1 = pi + δpi+1

with

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂Rσ

∂σ
∂Rσ

∂φ
∂Rσ

∂λ1

∂Rσ

∂λ2

∂Rσ

∂λ3

∂RF1

∂σ
∂RF1

∂φ
∂RF1

∂λ1

∂RF1

∂λ2

∂RF1

∂λ3

∂RF2

∂σ
∂RF2

∂φ
∂RF2

∂λ1

∂RF2

∂λ2

∂RF2

∂λ3

∂RF3

∂σ
∂RF3

∂φ
∂RF3

∂λ1

∂RF3

∂λ2

∂RF3

∂λ3

∂Rφ

∂σ
∂Rφ

∂φ
∂Rφ

∂λ1

∂Rφ

∂λ2

∂Rφ

∂λ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

R = [ Rσ RF1 RF2 RF3 Rφ ]
T

p = [ σ φ Δλ1 Δλ2 Δλ3 ]
T

The discrete partial derivatives of Φ are presented in
the sections that follow.

3.2 The partial derivatives of Rσ

We begin with ∂Rσ

∂σ :

∂Rσ

∂σ
= −I4,s = −I⊗ I = −1

2
(δikδjl + δilδjk)

with the symmetric fourth order identity tensor I4,s,
the second order identity tensor I and the Kronecker
delta δij. The determination of ∂Rσ

∂φ
is more compli-

cated:

∂Rσ

∂φ
=
∂E : ε

∂φ̄
:
∂φ̄

∂φ
= (

∂E
∂φ̄

: ε) :
∂φ̄

∂φ
(22)

First, calculating ∂E

∂
¯φ

by using (9):

∂E
∂φ̄

= Λ0(φ̄⊗ I4 + K6) + 2G0(φ̄⊗ I4 +
1

2
(R6 + S6))

with K6 = φ̄klδioδjpei ⊗ ej ⊗ ek ⊗ el ⊗ eo ⊗ ep, R6 =
φ̄jlδimδknei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en and S6 =
φ̄jkδimδlnei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en.
The right term in (22) is

∂φ̄

∂φ
= −φ−1⊗φ−1

The following is valid for the partial derivatives
∂Rσ

∂λ1
, ∂Rσ

∂λ2
and ∂Rσ

∂λ3
:

∂Rσ

∂λ1
=
∂Rσ

∂λ2
=
∂Rσ

∂λ3
= 0

3.3 The partial derivatives of RF1,RF2 and RF3

Initially, the process begins with ∂RF1

∂σ

∂RF1

∂σ
=

∂f1

∂(−Y)
:
∂(−Y)

∂σeff
:
∂σeff

∂σ
. (23)

The factors are obtained

∂f1

∂(−Y)
= t1 ⊗ t1 = N1

∂(−Y)

∂σeff
=

1

2
(I⊗ εeff) ,

∂σeff

∂σ
= w⊗w

using the principal direction t1 of −Y. The deriva-
tives ∂RF2

∂σ and ∂RF3

∂σ are executed in the same manner.
Therefore, they are not presented. Calculating ∂RF1

∂φ
is

the next step:

∂RF1

∂φ
=
∂f1

∂φ
− ∂r1
∂φ



For the first term ∂f1

∂φ
= 0 holds true, and for the sec-

ond term
∂r1
∂φ

=
∂r1
∂φ1

t1 ⊗ t1

with the eigenvector t1 of φ and

∂r1
∂φ1

=
V1 fte

(−k( V1
k h

− ft
E0

)h)

k h(1 + V1)φ1
(1−X)

with Z = e
(

k h ft
E0

) and V1 = W (
khft φ2

1Z

E0
) holds true.

Again, the derivatives ∂RF2

∂φ
and ∂RF3

∂φ
are calcu-

lated in the same manner. Finally, the derivatives
∂RF1

∂λ1
, ∂RF1

∂λ2
, ∂RF1

∂λ3
, ∂RF2

∂λ1
, ∂RF2

∂λ2
, ∂RF2

∂λ3
, ∂RF3

∂λ1
, ∂RF3

∂λ2
and

∂RF3

∂λ3
are all zero.

3.4 The partial derivatives of Rφ

Finally, the last row of Φ is calculated. One begins
with
∂Rφ

∂σ
=
∂ 1

2
Δλw ·NN ·w

∂σ
= 0

with NN = (Δλ1N1 + Δλ2N2 + Δλ3N3) .

Next, ∂Rφ

∂φ
is calculated as such

∂Rφ

∂φ
= −∂φ

∂φ
+
∂ 1

2
Δλw ·NN ·w

∂φ

= −I4,s +
1

2
Δλ

∂A : NN
∂φ

with A = w⊗w. Applying the Leibniz-rule,
e.g., (Bertram 2005), to the right term yields

1

2
Δλ

∂A : NN
∂φ

=
1

2
Δλ(

∂A
∂φ

: NN + A :
∂NN
∂φ

) (24)

The partial derivatives ∂A
∂φ

and ∂NN
∂φ

are:

∂A
∂φ

=
∂A
∂w

:
∂w
∂φ

=
∂w⊗w
∂w

:
∂w
∂φ

(25)

First the calculation of the left term
∂w⊗w
∂w

= P6 + Q6 + w⊗ I4 (26)

with P6 = 1
2
wjlδimδknei ⊗ ej ⊗ ek ⊗ el ⊗ ei ⊗ em ⊗

en,Q6 = 1
2
wjkδimδlnei ⊗ ej ⊗ ek ⊗ el ⊗ ei ⊗ em ⊗ en

and then the right side
∂w
∂φ

=
1

2 Iw3 (Iw1 I
w
2 − Iw3 )

[
Iw1 φ⊗φ− (Iw1 )2(φ⊗w+

w⊗φ) + (Iw1 I
w
2 − Iw3 )(φ⊗ I + I⊗φ)

+((Iw1 )3 − Iw3 )w⊗w − (Iw1 )2Iw2 (w⊗ I + I⊗w)

+((Iw1 )3Iw3 + (Iw2 )(Iw1 I
w
2 − Iw3 ))I⊗ I

]

based on (Rizzi & Carol 2001), with the invariants
Iw1 , I

w
2 and Iw3 of w . For the chosen loading functions

∂NN
∂φ

results in ∂NN
∂φ

= 0. Finally, ∂Rφ

∂λ1
,
∂Rφ

∂λ2
and ∂Rφ

∂λ3
re-

main to be determined:

∂Rφ

∂λk
= 0.5w ·ΔλkNk ·w

4 BENCHMARKS

This material model was implemented in the FE
code being developed at the Institute of Concrete
Structures. To verify the model two simulations of
plain concrete structures were performed. First the
L-shaped-panel test of (Winkler 2001) and subse-
quently the double-egde notched specimen experi-
ment of (Nooru-Mohamed 1992) were simulated.

4.1 L-Shaped-Panel

The geometry with the chosen discretization is shown
in Figure 1. The specimen is loaded by displace-
ment u and the corresponding force is labeled with
F . The discretization is performed using four node
elements in the plane stress case. According to
(Winkler 2001), the material properties are E0 =
25850N/mm2, ν = 0.18 and ft = 2.7N/mm2. Given
the variation of values for Gf between 65N/m and
90N/m, a calculation was performed at each extreme;
Gf = 65N/m and Gf = 90N/m. The nonlinear field
problem was solved by means of a modified Newton-
Raphson-Method. Figure 2 shows the resulting load-
displacement curves; the experimental results are in-
dicated in gray. The simulated peak loads are repre-
sentative of the experimental peak load in particular
when Gf = 65N/m. However, the simulated load-
displacement relationship is too stiff. The damage
paths of the two simulations are very similar; there-
fore the path for Gf = 90N/m is given in Figure 3
only. Comparing the experimentally observed crack
pattern in Figure 4 with the simulated damage path
shows a good correspondence.

4.2 Double-Egde Notched Specimen

The geometry of the specimen is shown in Figure 5.
Steel plates were attached in order to simulate the load
introduction as uniformly as possible. Compared to
the experimental setup, additional steel plates were
attached at the lower left and upper right sides of
the concrete specimen. These plates were necessary
due to load introduction problems experienced at the
lower left and upper right-hand corners of the con-
crete specimen. The steel had a high Young’s modulus
for modeling the much larger dimensions of the steel
frame in the experiment. The material parameters of
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the concrete chosen were E0 = 33000N/mm2, ν =
0.2, ft = 3.0N/mm2 and Gf = 110N/m. The spec-
imen was loaded following load path 4B in (Nooru-
Mohamed 1992). In the first step, the shear load F
was applied by being divided into two single loads.
In the second step, the force F was held constant
while the displacements u were applied. The dis-
cretization was performed using four node elements
in the plane stress case. The summary of the result-
ing forces corresponding to prescribed displacements
u is labeled with P . Figure 6 shows the resulting
load-displacement curves; the experimental results

Figure 3: Damage path for Gf = 90N/m

Figure 4: Experimentally observed crack pattern
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Figure 5: Geometry of the Double Egde Notched Specimen

are shown in gray. The calculated peak load overes-
timates the experimental result. The damage path is
represented in Figure 7 and the experimentally ob-
served crack pattern is shown in Figure 8. The over-
lapping damaged ranges conform to the experimental
macro cracks.

5 CONCLUSIONS

This paper presented an orthotropic model for the ten-
sile behavior of concrete in general three-dimensional
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Figure 6: Load-displacement curves



Figure 7: Damage path

Figure 8: Experimentally observed crack pattern

formulation with the pseudo-log damage rate, sug-
gested by (Carol et al. 2001) as the chosen damage
variable. This model contains three decoupled loading
functions in which every loading function takes into
account one of the three principal directions of the
orthotropic damage. This approach simplifies the for-
mulation of the loading functions significantly com-
pared to a coupled formulation. The evolution rule
for damage is derived by using the principle of max-
imum energy dissipation. The introduction of a pro-
cess zone width allows for the calculation of arbitrary
FE discretizations. The calculation of the L-Shaped-
Panel test showed a correct peak load and softening
behavior. The simulation of the cracked areas was also
realistic. The overestimation of the initial stiffnes in
Figure 2 may be explained by the fact that the rota-
tional elastic stiffness of the specimen-steel connec-
tion was not considered. Calculating the double-edge
notched specimen test showed a good simulation of
the macrocracks, but the peak load was overestimated.
The main difference between the tests of (Nooru-
Mohamed 1992) and (Winkler 2001) is the combined
mode I and mode II loading in the experiment of
Nooru, whereas the specimen in (Winkler 2001) is
loaded predominantly as in mode I only. The good
results when calculating the tests of Winkler show the
capability of the model to simulate mode I loading.
However, mixed mode loading showed deficiency of
the model. The results of the two simulations give
an impression of the capabilities and problems of the
proposed model, but, further studies are necessary to
correctly evaluate the accuracy of the model and to

suggest modifications. Furthermore, the unilateral ef-
fect in the behavior of concrete will be included.
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