
1 INTRODUCTION 
 

For structural design and assessment of reinforced 
concrete members the non-linear finite element (FE) 
analysis has become an important tool. However, to-
day, design and assessment for shear and torsion are 
still made using simplified analytical or empirical 
design methods based on sectional forces and mo-
ments. The current calculation method for reinforced 
concrete members subjected to combined shear and 
torsion, in the European Standard EC2 
CEN/TC250/SC2 (2004), adds stresses from shear 
and from torsion linearly without taking into account 
deformations and compatibility within the member. 
However, earlier research indicates that there is a 
redistribution even within concrete members without 
transverse reinforcement, see Gabrielsson (1999) 
and Pajari (2004), and that this could be modelled 
with non-linear FE analyses, see Broo et al. (2005) 
and Broo (2005). Nonlinear FE analyses of concrete 
members with transverse reinforcement subjected to 
shear have been studied by several researchers, for 
example Ayoub & Filippou (1998), Yamamoto & 
Vecchio (2001), Vecchio & Shim (2004) and Kettil 
et al. (2005). In recent research projects, failures due 
to shear and torsion was successfully simulated with 
nonlinear FE analyses, also for members with trans-
verse reinforcement, see Plos (2004). A higher load 
carrying capacity compared to conventional analysis 

was shown. Thus, a more favourable load distribu-
tion, compared to conventional analysis, was found 
when the structure was analysed in three dimensions 
and by including the fracture energy associated with 
concrete cracking. Modelling R/C and P/C members 
subjected to shear and torsion needs to be further 
studied and verified in order to be reliable and prac-
tically applicable. 

The aim of this study is to work out a modelling 
method to simulate the shear-induced cracking and 
the shear failure of R/C and P/C members. The mod-
elling method should be possible to use for analyses 
of more complicated structures, for example box-
girder bridges, subjected to bending, shear, torsion 
and combinations of these load actions. Engineers 
using commercial nonlinear FE programs, not espe-
cially designed for shear analysis, should be able to 
use the modelling method in their daily practice. 
Further aims are to determine the most important pa-
rameters that need to be accounted for in the mate-
rial model or in the material properties used.  

The different contributions to the nonlinear re-
sponse of shear are concisely presented and dis-
cussed, as well as the different approaches to shear 
modelling. The proposed FE approach to R/C and 
P/C modelling is also shown to fit quite well some 
available test results concerning concrete beams 
loaded in bending, torsion and shear. 
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ABSTRACT: Today, the nonlinear finite element method is commonly used by practicing engineers, al-
though design and assessment for shear and torsion in reinforced concrete structures are still made using 
methods based on sectional forces. By modelling the shear behaviour, using 3D nonlinear FEM, higher load 
carrying capacity and more favourable load distribution was shown, compared to conventional analysis. A 
modelling method using four-node curved shell elements with embedded reinforcement was evaluated in this 
study. Tests of reinforced and prestressed beams loaded in bending, shear and torsion were simulated. The in-
crease in shear capacity, in addition to the reinforcement contribution, was modelled with a relationship for 
concrete in tension according to the modified compression field theory and compared with the use of a rela-
tionship related to the fracture energy of plain concrete. The results show that evaluations of the load-carrying 
capacity or crack width will be on the safe side, if only the fracture energy is used to define the concrete in 
tension.  



2 SHEAR BEHAVIOUR 

2.1 The non-linear response in shear 
Both shear forces and torsional moments cause shear 
stresses that could result in cracks in a concrete 
member. Cracks due to shear stresses are usually in-
clined compared to the direction of the reinforce-
ment. To satisfy the new equilibrium after shear 
cracking, longitudinal reinforcement and transversal 
reinforcement or friction in the crack is required. Af-
ter cracking the shear stresses are transmitted by 
compression in the concrete between the inclined 
cracks, by tension in the transverse reinforcement 
crossing the inclined cracks, by tension in the longi-
tudinal reinforcement, by compression in the com-
pressive zone and by shear transfer in the crack. The 
visual shear cracks are preceded by the formation of 
micro-cracks. The micro-cracking reduces the stiff-
ness of the member and a redistribution of stresses 
can occur resulting in strut inclinations smaller than 
45°, Hegger et al. (2004). Due to the rotation of the 
struts more transverse reinforcement can be acti-
vated. The rotation of the compressive struts can 
continue until crushing of the concrete between the 
inclined cracks occurs, Walraven & Stroband 
(1999). Possible failure modes due to shear cracks 
are either crushing of the concrete between two 
shear cracks or sliding along a shear crack. It is 
well-known that the shear capacity is larger than 
what can be explained by the reinforcement contri-
bution determined from a truss model. This increase 
in shear capacity is due to tension stiffening, dowel 
action, and aggregate interlock, and is also known as 
the concrete contribution.  

After cracking, concrete can transmit tensile 
stresses due to tension softening and for reinforced 
concrete also due to tension stiffening. Tension sof-
tening is the capability of plain concrete to transfer 
tensile stresses after crack initiation. In a reinforced 
concrete member subjected to tensile forces, the 
concrete in between the cracks carry tensile stresses 
transferred from the reinforcement through bond, 
thus contributing to the stiffness of the member. This 
is known as the tension stiffening. The tension-
stiffening effect increases the overall stiffness of the 
reinforced concrete member in tension compared to 
that of a bare reinforcing bar. Due to the bond action 
there are still high transverse tensile stresses in the 
compressive struts. Cracked concrete subjected to 
high tensile strains in the direction normal to the 
compression is softer and weaker than concrete in a 
standard cylinder test, Vecchio & Collins (1986), 
Vecchio & Collins (1993) and Belarbi & Hsu 
(1995). 

The complex behaviour of reinforced concrete af-
ter shear crack initiation has been explained in sev-
eral papers, for example ASCE-ACI Committe 445 
on Shear and Torsion (1998), Vecchio & Collins 
(1986), Pang & Hsu (1995), di Prisco & Gambarova 

(1995), Walraven & Stroband (1999), Zararis 
(1996), Soltani et al. (2003). Several mechanisms 
contribute to the non-linear response in shear: bridg-
ing stresses of plain concrete (tension softening), in-
teraction between reinforcement and concrete due to 
bond (tension stiffening), aggregate interlocking, 
dowel action, and reduction of concrete compressive 
strength due to lateral cracking. The stress equilib-
rium can be expressed in average stresses for a re-
gion containing several cracks or in local stresses at 
a crack. The local stresses normal to the crack plane 
are carried by the reinforcement and by the bridging 
stresses of plain concrete (tension softening). Along 
the crack plane, the shear stresses are carried by fric-
tion due to aggregate interlocking and dowel action. 
The stresses will depend on the crack width, the 
shear slip, the concrete mix-design (strength, grad-
ing curve and maximum aggregate size) and of 
course the reinforcement (type, diameter and spac-
ing), fib (1999).  

2.2 Modelling of the non-linear shear response 
Several analytical models that are capable of pre-
dicting the nonlinear response in shear has been pre-
sented. for example the modified compression field 
theory (MCFT), Vecchio & Collins (1986), the dis-
tributed stress field model (DSFM), Vecchio (2000), 
the cracked membrane model (CMM), Kaufmann & 
Marti (1998), the rotating-angle softened truss 
model (RA-STM), Pang & Hsu (1995), the fixed-
angle softened truss model (FA-STM), Pang & Hsu 
(1996), and the softened membrane model (SMM), 
Hsu & Zhu (2002). All these models are based on 
the smeared approach, i.e. the influence of cracks is 
smeared over a region and the calculations are made 
with average stresses and average strains. Stress 
equilibrium, strain compatibility and constitutive 
laws are used to predict the shear force for chosen 
strains. Some models use a rotating crack concept 
and thus no relationship between shear stress and 
shear strain is needed. Others are based on a fixed 
crack concept including a relationship for average 
shear stresses and average shear strains. Most of the 
models are also implemented in finite element pro-
grams. Soltani et al. (2003) propose a model that 
calculates local stresses and strains at the crack 
plane, separating the contribution from tension sof-
tening, tension stiffening, aggregate interlock and 
dowel action, to predict the nonlinear shear re-
sponse. 

If the shear-induced cracking and shear failure is 
modelled with a nonlinear FE program, not espe-
cially designed for shear analysis, parts of the con-
crete contribution needs to be accounted for by 
modifying the constitutive relationships used. The 
required modifications depend on the modelling phi-
losophy, on crack representation (fixed or rotating 



cracks) and on how the interaction between rein-
forcement and concrete is modelled. 

Modelling the reinforcement and the interaction 
between reinforcement and concrete can be more or 
less detailed. When modelling larger structures, i.e. 
box-girder bridges, the reinforcement can be mod-
elled as embedded in the concrete elements. The 
embedded reinforcement adds stiffness to the FE 
model, but the reinforcement has no degree of free-
dom of its own. Hence, the reinforcement is per-
fectly bonded to the surrounding concrete and no 
slip can occur. Embedded reinforcement can be ap-
plied to any type of finite element that represents the 
concrete. In this case the above-mentioned effects of 
the concrete contribution, must be taken into account 
in the constitutive relations describing the materials 
behaviour, e.g. in the concrete tensile response or in 
the reinforcement response. Different ways of doing 
this for the tension stiffening effect has been pro-
posed by Lackner & Mang (2003) and Kaufmann & 
Marti (1998). Relationships for tensile stresses ver-
sus crack openings in plain concrete are based on 
fracture mechanics and related to the fracture en-
ergy, Gf; an example is the relation proposed by 
Hordijk, as described in TNO (2002). In Figure 1 the 
curve by Hordijk is compared with the expression by 
Collins & Mitchell (1991) as described below. 
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Figure 1. Different tension-softening relations used, for the 
four-point bending beam. For the curve by Hordijk the fracture 
energy is smeared over a length of 107 mm (the crack band 
with, h), which corresponds to the mean crack spacing ob-
tained in the test. 

 
For reinforced concrete members subjected to 

shear also the contribution from dowel action and 
friction due to aggregate interlock can be accounted 
for in the constitutive relations. Such relationships 
that link average tensile stresses to average tensile 
strains for orthogonally reinforced cracked concrete 
have been established trough shear panel tests, Vec-
chio & Collins (1986) and Pang & Hsu (1995). The 
relationship 
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is the one used in the modified compression field 
theory (MCFT), Collins & Mitchell (1991). Here σc1 

is the mean principal tensile stress, fctm, the mean 
tensile concrete strength and ε1 is the mean principal 
tensile strain. This relationship has later been modi-
fied by Bentz (2005). 

The relationship should be limited so that no con-
crete tensile stress is transmitted after the reinforce-
ment has started to yield. This is a problem when 
modifying the relationship for the concrete tensile 
response in a FE program since there is no obvious 
link between the steel strain in the reinforcement di-
rection and the concrete strain in the principal stress 
direction. Hence, the cracked concrete can transfer 
tensile stresses in the principal stress direction even 
after the reinforcement in any direction yields. 

The relationships by Collins & Mitchell (1991), 
Pang & Hsu (1995) and Bentz (2005) were estab-
lished for analysis of orthogonally reinforced con-
crete specimens subjected to shear. However, more 
general applicability for members with deviating re-
inforcement or specimens subjected to, for instance, 
bending or tension is not shown and is likely doubt-
ful. In Broo et al. (2006) some of the shear panels 
tested by Vecchio & Collins (1986) and Pang & Hsu 
(1995) were analysed with the FE program Diana, 
TNO (2002), and the use of the tension softening 
curve by Hordijk and a curve according to MCFT, 
Equation 1, were compared. The results showed that 
– by merely considering plain-concrete fracture en-
ergy - the capacity was underestimated and the aver-
age strains, i.e. the crack width, were overestimated. 
On the other hand, if the concrete contribution was 
modelled with the expression from MCFT, the ca-
pacity was overestimated and the average strains 
underestimated for most specimens, except for the 
panels tested by Vecchio & Collins (1986). It should 
be mentioned that results from these panel tests are 
included in the test results, used to calibrate the ex-
pression in the MCFT. This means that the concrete 
contribution to shear capacity can be accounted for 
by modifying the constitutive relationship used for 
concrete in tension. However, caution is recom-
mended in order not to overestimate the capacity. If 
no modification of the tension-softening curve is 
done, the shear capacity will at least not be overes-
timated. Moreover, it was found that it is important 
to include the reduction of compression strength due 
to lateral cracking if the failure mode is crushing of 
the concrete between the shear cracks. In the analy-
ses presented here, the results obtained by using 
Hordijk’s tension-softening curve and MCFT’s 
curve are compared for a reinforced concrete beam 
subjected to bending and shear and a prestressed 
box-beam subjected to bending, shear and torsion. 

3 MODELLING TECHNIQUES 

To investigate the general applicability of the mod-
elling method worked out for shear panels in Broo et 



al. (2006) for members with non-orthogonal rein-
forcement and subjected to mixed loading, two beam 
tests were modelled. In all analyses, the concrete 
was modelled with four-node curved shell elements. 
For the specimens modelled here, plane-stress ele-
ments or even beam elements would have been more 
appropriate, but the aim was to work out a modelling 
method that can be used also for more complicated 
structures, for which curved shell elements are more 
suitable. Full interaction was assumed between the 
reinforcement and the concrete, which was modelled 
with a constitutive model based on nonlinear frac-
ture mechanics. A rotating crack model based on to-
tal strain, see TNO (2002), was used in all analyses. 
In the analyses of the beams, concrete compressive 
stresses localise into one element, whose size does 
not correspond to the size of the specimens used to 
calibrate the compression relationship by 
Thorenfeldt as described in TNO (2002). Hence, if 
the relationship by Thorenfeldt was used the model 
could not predict the response. This disadvantage 
was overcome by modelling the concrete in com-
pression with an elastic-ideal plastic relationship. 
The reduction of the hardening in compression due 
to lateral cracking was modelled according Vecchio 
and Collins, as described in TNO (2002).  For the 
tension softening, two approaches to account for the 
concrete contribution from tension stiffening, dowel 
action and friction due to aggregate interlock were 
compared. The curve by Hordijk, see TNO (2002), 
merely based on plain-concrete fracture energy is 
compared with the expression in Equation 1, taken 
from the MCFT, Collins & Mitchell (1991), which 
attempts to take also the concrete contribution into 
account, see Figure 1. The concrete material proper-
ties for the beams analysed are presented in Table 1. 
The concrete tensile strength, fct, the concrete 
modulus of elasticity, Ec, and the fracture energy Gf 
were calculated according to CEB (1993), from the 
mean cylinder compressive strength, fcm, reported 
from the tests. For the curve by Hordijk the fracture 
energy is smeared over a length, h, the crack band 
with that corresponds to the mean crack spacing ob-
tained in the test. 
 
Table 1.  Material properties for concrete used in the analyses. ______________________________________________ 
Test      fcm  fctm  Ec   Gf   h        ___  ___  ___  ___  ___ 
      MPa  MPa  GPa  Nm/m2 m ______________________________________________ 
NSC 3    27.3  2.16  30.05     88.9  0.107 
Beam 5    24.9  1.97  29.14 47.3  0.050 _____________________________________________ 
 

The constitutive behaviour of the reinforcement 
and the prestressing steel was modelled by the von 
Mises yield criterion, with an associated flow law 
and isotropic hardening. In Table 2 the material 
properties of the reinforcement used for the beam 
analyses are presented. No hardening parameters 
were presented for the reinforcement used in the 

box-beam test; the values presented in Table 2 are 
mean values taken from several other test reports us-
ing the same kind of reinforcement, from the same 
laboratory and the same time period.  

 
Table 2.  Material properties for reinforcement and prestressing 
strands used in the analyses. ______________________________________________ 
Test  Dim and Qual. fy  fu  εsy  εs2  εsu  Es          ___ ___ ___ ___ ___ ___  
         MPa MPa ‰  ‰  ‰  GPa ______________________________________________ 
NSC 3 φ 8 K500 ST  574 670 3.1 29.3 99  199.8  
              φ 20 K500 ST 468 600 2.4 21.5 132 195.6  
Beam 5 ½" St 150/170 1840   -    -    -    -      -  
       φ 8 Ks40s   456 600* 2.09   -   150* 218    
      φ 16 Ks60   710 900* 3.05   -  110* 233 _____________________________________________ 
*  Values taken as mean value of test values from several other 
reports using same kind of reinforcement from the same time 
period. 

4 ANALYSES OF P/C BOX-BEAM 

4.1 FE model 
A prestressed box-beam (Beam 5) provided also 
with ordinary longitudinal and transverse reinforce-
ment tested by Karlsson & Elfgren (1976) was ana-
lysed. The box-beam was subjected to bending, 
shear and torsion and the final failure was due to 
large opening of a shear and torsion crack in the 
loaded web. Figure 2 shows the dimensions and 
support conditions of the simulated box-beam. 
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Figure 2. Test set-up, geometry and reinforcement of the 
prestressed box-beam, Beam 5, Karlsson & Elfgren (1976). 

 
Due to symmetry only half the beam was mod-

elled, as shown in Figure 3, using curved shell ele-
ments and material properties as described above. 
The box-beam was reinforced as shown in Figure 2. 
The prestressing strands and the longitudinal rein-
forcement with dimension 8 mm were modelled as 
embedded bars, TNO (2002). All other reinforce-



ments were modelled as embedded grids, TNO 
(2002). 
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Figure 3. Restraints and finite-element mesh used to model the 
box-beam tested by Karlsson & Elfgren (1976). Dashed lines 
mark the cross-sections that are stiffened and tied to keep the 
cross-section in plane. 

 
The support conditions of the model are shown in 

Figure 3. In the test the box-beam was supported on 
roller bearings with a load distributing support plate. 
In the analyses, the nodes in the centre of the sup-
ports were fixed in the vertical direction. The nodes 
on each side of this node were forced to have the 
same vertical displacement but in opposite direction, 
thus enabling a rotation and simulating a free sup-
port with a distribution length equal to the support 
plate in the test.  

Stiffeners at the support and at the mid-span 
where the load was applied were taken into account 
in two ways. All shell elements for the box wall and 
flanges in the area of the stiffeners were given a 
thickness twice the thickness of the elements outside 
these parts. The density of the concrete was also 
modified to maintain the correct self-weight of the 
box-beam. Furthermore, all nodes in each cross-
section of the stiffened areas were tied so that each 
cross-section remained plane. 

In the box-beam test the load was applied in steps 
of 40 kN up to 320 kN. Thereafter, the load was in-
creased by controlling the mid-deflection in steps of 
1-2.5 mm. In the analyses, the load was applied as a 
prescribed deformation of the loading node, i.e. the 
bottom corner node in the symmetry section. The 
box-beam analysis had to be performed in two 
phases. In the first phase the loading node was not 

supported; here the prestressing force (110 kN) was 
released and the self-weight was applied. In the sec-
ond phase, the loading node was supported vertically 
at the location obtained in the first phase. Thereafter, 
the loading was applied by increasing the vertical 
displacement of the loading node. An implicit solv-
ing method was used. Iteration was made with con-
stant deformation increments of 0.1 mm. For each 
increment equilibrium was found using the BFGS 
secant iteration method, TNO (2002). The analysis 
was continued if the specified force, energy or dis-
placement convergence criterion was fulfilled, ac-
cording to default values, see TNO (2002). If the 
convergence criterion was not fulfilled within 
twenty iterations, the analysis was continued any-
how. Afterwards the convergence criteria ratios 
were checked.  

4.2 Results 
The applied load versus vertical displacements from 
the analyses and the test are compared in Figure 4. 
The results show, as expected, that if only the frac-
ture energy of plain concrete was taken into account, 
the capacity was underestimated and the vertical de-
flections were overestimated. However, when the 
concrete contribution was modelled with the expres-
sion from MCFT, the capacity was still underesti-
mated but the fitting of the results was satisfactory 
for the vertical deflections.  
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Figure 4. Comparison of results from test and analyses of a 
prestressed concrete box-beam subjected to bending, shear and 
torsion; applied load versus mid-span displacement. 

 
In the test, the first crack, going in transverse di-

rection across the top flange, occurred at a load of 
240 kN due to bending. This crack propagated 
downwards in the most loaded web at a load of 280 
kN. At a load of 320 kN the first shear and torsion 
crack appeared near the support. The final failure, at 
a load of 510 kN, was due to large opening of a 
shear and torsion crack in the loaded web. The angle 
of the cracks in the most loaded web varied between 



45 and 60 degrees, while they remained vertical in 
the other web. The crack propagation and the crack 
pattern from both analyses agree well with those ob-
served in the test. 

In Figure 5, the load versus steel stresses for one 
strand and one stirrup, from the test and the analy-
ses, are compared. The steel stresses increases first 
when the box-beam starts to crack. In the analysis 
with the tension softening modelled according 
MCFT the steel stresses increase is slower which 
corresponds better with the steel stresses measured 
in the test. 
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Figure 5. Comparison of results from test and analyses of a 
prestressed concrete box-beam subjected to bending, shear 
and torsion; applied load versus steel stresses in; a) a stirrup 
in the loaded web and 400 mm from the load b) the top 
prestressing strand in the loaded web and the most loaded sec-
tion. 

5 ANALYSES OF P/C BEAM 

5.1 FE model 
A R/C beam loaded in four-point bending, NSC3, 
tested by Magnusson (1998) was modelled with 
curved shell elements. The beam was subjected to 
bending and shear and failed in bending due to 
yielding of the longitudinal reinforcement and crush-
ing of the concrete in the compressive zone in the 

mid-span part of the beam. Figure 6 shows the ge-
ometry and support conditions of the simulated 
bending beam.  
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Figure 6. Test set-up, geometry and reinforcement of the R/C 
beam loaded in four-point bending, NSC3, Magnusson (1998). 

 
Due to symmetry only half the beam was mod-

elled, as shown in Figure 7, using curved shell ele-
ments and material properties as described in Sec-
tion 3.  The beam was reinforced as shown in Figure 
6. The longitudinal reinforcement and the stirrups 
between the support and the load were modelled as 
embedded bars, TNO (2002). The stirrups in the 
middle part of the beam were modelled as an em-
bedded grid, TNO (2002).  

 
Figure 7. FE mesh used to simulate the R/C beam loaded in 
four-point bending. 

 
In the test the beam was supported on roller bear-

ings with a load distributing steel plate. In the analy-
ses, the node in the centre of the support was fixed 
in the vertical direction. The nodes on each side of 
this node were forced to have the same vertical dis-
placement but in opposite direction, thus enabling a 
rotation and simulating a free support with a distri-
bution length equal as the support plate in the test.  

The loading of the bending beam was controlled 
by displacement both in the test and in the analysis. 
In the analysis the loading was applied by increasing 
the vertical displacement of the loading node in 
steps of 0.1 mm. In the test the load was distributed 
by a loading plate. In the analyses, this was simu-
lated by locking the nodes on each side of the load-
ing node to the loading node, in such a way that their 
vertical displacement remained in a plane.  

In the bending beam analyses, large compressive 
strains localised in one element, which was also sub-
jected to large lateral tensile strains due to a flexural 
shear crack. This flexural shear crack was also ob-
served in the test, but there it did not go into the 
compressive zone. Consequently, reducing the com-
pressive strength due to lateral strains resulted in an 
unreasonable response. Therefore, for these analy-
ses, the compressive strength was not reduced. In 

Q 



these analyses, the loading was applied by increas-
ing the vertical displacement of the loading node. 
An implicit solving method was used. Iterations 
were made with constant deformation increments of 
0.1 mm. For each increment, equilibrium was found 
using the BFGS secant iteration method, TNO 
(2002).  The analysis was continued if the specified 
energy convergence criteria was fulfilled, according 
to default value, see TNO (2002). However, if the 
convergence criterion was not fulfilled within 
twenty iterations, the analysis was continued. After-
wards the convergence criteria ratios were checked. 

 

5.2  Results 
The applied load versus vertical displacements from 
the analyses and the test are compared in Figure 8. 
These results show that, if tension softening is mod-
elled according to MCFT, the behaviour was too 
stiff and the capacity was overestimated. Hence, the 
cracked concrete transfers tensile stresses even if the 
longitudinal reinforcement yields. 
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Figure 8. Comparison of results from test and analyses of the 
R/C beam loaded in four-point bending; applied load versus 
mid-span displacement. 

 
With only the fracture energy of plain concrete 

taken into account, the capacity is very well esti-
mated and the behaviour is just a little bit to stiff. 
The conclusion is that if a tension softening curve 
including the concrete contribution to shear capacity 
is used, it needs to be modified, so that no tensile 
stresses are transferred when the reinforcement 
yields. Otherwise the capacity will be overestimated 
for the parts of a member, which are subjected to 
tension or bending. 

6 CONCLUSIONS 

It is well-known that the shear capacity is larger than 
what can be explained by the reinforcement contri-

bution determined from a truss model. This increase 
in shear capacity is due to tension stiffening, dowel 
action, and friction due to aggregate interlock, and is 
also known as the concrete contribution. If the 
shear-induced cracking and shear failure is modelled 
nonlinear with a FE program, not especially de-
signed for shear analysis, parts of the concrete con-
tribution needs to be accounted for by modifying the 
constitutive relationships used. 

In the analyses presented here the use of the ten-
sion-softening curve by Hordijk and a curve accord-
ing to MCFT are compared for a prestressed box-
beam subjected to bending, shear and torsion, and 
for a reinforced concrete beam subjected to bending 
and shear.  

The commercial FE program Diana was used to 
model a test of a box-beam that failed in shear. It 
was shown that four-node curved shell elements 
with embedded reinforcement can describe the 
nonlinear shear response also for P/C members 
loaded in bending, shear and torsion. The results 
show that – by merely considering plain-concrete 
fracture energy – the capacity is underestimated and 
the vertical deflections are overestimated. However, 
when the concrete contribution was modelled with 
the expression from MCFT, the capacity was still 
underestimated but the fitting of the results was sat-
isfactory for the vertical deflections. 

By modelling a test of a R/C beam loaded in four-
point bending that failed in bending it was found 
that, when the tension softening was modelled ac-
cording to MCFT, the behaviour was to stiff and the 
capacity was overestimated. Hence, the cracked con-
crete transferred tensile stresses even when the lon-
gitudinal reinforcements yield. This implies that an 
analysis of a concrete member subjected to shear, 
torsion, and bending will be on the safe side when 
evaluating the load-carrying capacity or crack width, 
if only the fracture energy is used to define the 
unloading branch of the concrete in tension. 
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