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ABSTRACT: Drying impacts the delayed behavior of the containment vessels. Many tests of loss of mass are
available in the data base ofElectricité de Franceor in the literature and make it possible to evaluate profiles
of water content in a test tube. The macroscopic retiming of the drying parameters and the uncertainty level
on the latter force to carry out a sensitivity analysis over the lifespan of the vessel. The ranking of the input
parameters (sensitivity analysis) was carried out using an expansion of the model response onto the polynomial
chaos basis (non intrusive regression method) and computing the Sobol’ indices analyticaly from the polynomial
chaos coefficients. One is more particularly interested in the delayed vertical and tangential strains. Initially, the
parameters of Mensi’s law and the water contents actually play the most important role. Then, the parameters of
the desorption curve desorption and more particulary the initial water content are the most important parameters.

1 INTRODUCTION
Concrete drying drives the delayed behavior of con-
tainment vessels. Many tests of loss of mass are avail-
able in the data base ofElectricité de Franceor in
the literature and make it possible to evaluate profiles
of water content in a test-tube or a work. The macro-
scopic retiming of the drying parameters and the level
of uncertainty on the latter force to carry out a sensi-
tivity analysis. It means that we want to quantify the
relative importance of each input parameter. In our
case, the response is expanded onto the polynomial
chaos basis. The coefficients are evaluated from a se-
ries of deterministic finite element analysis (regres-
sion method). Sobol’ indices are computed analyti-
cally from the obtained coefficients of the response
surface.

2 PRESENTATION OF THE MODEL FOR THE
DELAYED STRAIN OF CONCRETE IN CON-
TAINMENT VESSEL

The containment of French pressurized water reactors
is ensured by two concrete vessels. The inner con-
tainment is made of reinforced prestressed concrete.
Drying impacts the delayed behavior of containment
vessels. The constitutive law, implemented in EDF’s
Finite Element Code,CodeAster1, is the result of
the previous works by L. Granger (Granger 1996)

1This code can be downloaded for free at
http://www.code-aster.org

and F. Benboudjema (Benboudjema 2002). The total
strain is a function of the temperatureT , the hydration
degreeβ, the relative humidityh and the macroscopic
stressσ. The conventional strain rate decomposition
reads:

ε̇ (T,β,h, σ) = ε̇e (σ̇) + ε̇th (T )

+ε̇as

(

β̇
)

+ ε̇ds (h,T )

+ε̇bc (σ,h) + ε̇dc

(

σ, ḣ
)

(1)

with εe: elastic strain, dependent onσ ; εth: thermal
dilation/contraction ;εas: autogenous shrinkage, be-
ing a function of the hydration degreeβ ∈ [0; 1]; εds:
drying shrinkage, dependent on the drying process
controlled by the evolution ofh; εbc: basic creep, nat-
urally being a function ofσ, but also, of the hydrous
state of the material – basic creep of pre-dried speci-
men exhibits some dependency with the equilibrated
relative humidity–;εdc: drying creep. The model pro-
posed by Bažant and Chern is assumed (Bažant and
Chern 1985). In the sealed specimens (autogenous
shrinkage and basic creep), the stress state remains
homogeneous. Therefore, the computation is done an-
alytically. Conversely, the drying specimens (loss of
weight, drying shrinkage and creep) exhibit a humid-
ity gradient responsible for an heterogeneous stress
state. Their analysis requires a numerical simulation
performed withCodeAster. The calibration of the pa-
rameters is performed on the basis of the previous ex-
perimental results and follows the procedure:
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1. the drying process is modeled through a non lin-
ear thermal analogy,where the water diffusion
coefficient D is a function of the water con-
tentC, i.e.D(C) = a · exp(b.C). With the back-
analysis of the time evolution of the specimen
loss of weight, the parametersa and b are re-
trieved.

2. The autogenous shrinkage is fitted on a simple
hyperbolic law:εas = Kasβ, with β = t/(t +
t1/2).

3. The basic creep constitutive law assumes the full
uncoupling of the spherical and the deviatoric
strains. It requires the knowledge of the strain
tensor derived from the experimental test.

4. The drying shrinkage is assumed to be propor-
tional to the loss of water content:ε̇ds = −KdsĊ.
The influence of the auto-induced creep due to
the stress gradient was found insignificant while
calibratingKds.

5. The drying creep is ultimately modeled once all
the other parameters are known. The intrinsic
drying creep constitutive equation readsε̇dc =
|ḣ|σ/ηdc.

3 NUMERICAL SIMULATION
On the basis of the previously calibrated parameters,
some numerical computations (Le Pape, Toppani, and
Michel-Ponnelle 2005) are performed on a so-called
Representative Structural Volume. This RSV is lo-
cated approximately at an equal distance from the
dome and the raft of hte containment vessel and far
enough from the equipment hatch and the tendon but-
tresses, so that homogeneous strain states may be ap-
plied in the directions of the prestressing. ZC1450 is
a simplified model; the thickness of the wall is dis-
cretized to account for the gradient of humidity. A
single element is used in the vertical and the tan-
gential direction due to the total strain homogeneity.
The prestressing is introduced by external forces. It-
erations on the effective applied prestress are com-
puted over the non linear calculation to account for
the loss of prestress induced by the concrete creep.
The temperature, humidity and prestress evolutions
follow the scenario: 15oC-60%RH inside and out-
side during building period, 35oC-45%RH inside the
containment building when the reactor is in-service.
The prestressing is applied graduously following the
building stages. Figure 1 presents the mesh used.

4 SENSITIVITY ANALYSIS METHOD
As the numerical model is quite large, a response sur-
face model has to be used to minimize the computa-
tional cost of the sensitivity analysis. The expansion
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Figure 1: Mesh of the Representative Structural Vol-
ume

onto the polynomial chaos (Berveiller 2005; Ghanem
and Spanos 1991) is relevant for sensitivity analysis
(Sudret 2006a). The non intrusive regression method
presented in the sequel only requires deterministic fi-
nite element anlyses and an analytical post-processing
of the results, which makes it appealing for the non
linear coupled problem under consideration.

4.1 Non intrusive regression method
The non intrusive method presented in this commu-
nication is based on a least square minimization be-
tween the exact solution and the solution approxi-
mated using the polynomial chaos (Isukapalli 1999;
Berveiller 2005). First the input random variables
(gathered in a random vectorU whose joint PDF is
prescribed) are transformed into a standard uniform
vector ξ (i.e. a vector whose components are uni-
formly distributed over [-1;1]). In our case, we sup-
pose that all variablesU are uniform. If theseM vari-
ables are independent, the one-to-one mapping reads :

ξi = Φ−1 (Fi(Ui)) = −1 + 2
x−Llow

Lup −Llow
(2)

where Φ is the standard uniform CDF and
{Fi(Ui), i = 1, · · · ,M} are the marginal CDF of the
Ui’s wgich expand as in Eq.(2). Suppose now that
we want to approximate a response quantityS by the
truncated series expansion:

S ≈ S̃ =

P−1
∑

j=0

SjΨj(ξ) (3)

where {Ψj, j = 0, · · · , P − 1} are P multidimen-
sional Legendre polynomials ofξ whose degree is less
or equal thanp. Note that the following relationship
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holds:

P =
(M + p)!

M !p!
(4)

Let us denote by{ξ(k), k = 1, · · · , n} n outcomes of
the standard uniform random vectorξ. For each out-

comeξ(k), the isoprobabilistic transform yields a vec-

tor of input random variablesU (k) (Eq.(2)). Using
a classical finite element code, the response vector
S(k) can be computed. Let us denote by{s(k),i, i =
1, · · · ,Nddl} its components. Using Eq.(3) for thei-th
component, one gets:

s̃i(ξ) =

P−1
∑

j=0

si
jΨj(ξ) (5)

where(si
j) are coefficients to be computed. The re-

gression method consists in finding for each degree
of freedomi = 1, · · · ,N the set of coefficients that
minimizes the difference:

∆si =

n
∑

k=1

[

s(k),i − s̃i(ξ(k))
]2

(6)

These coefficients are solution of the following linear
system:
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(7)

Note that theP × P matrix on the left hand side may
be evaluated once and for all. Moreover it is indepen-
dent on the mechanical problem under consideration.
The crucial point in this approach is to properly se-
lect the regression points,i.e. the outcomes{ξ(k), k =
1, · · · , n}. Note thatn ≥ P is required so that a so-
lution of (7) exist. (Isukapalli 1999; Berveiller 2005)
choose for each input variable the(p + 1) roots of
the (p + 1)-th order Legendre polynomial, and then
built (p + 1)M vectors of lengthM using all possible
combinations. Then they selectn outcomes{ξ(k), k =

1, · · · , n} out of these(p + 1)M possible combina-
tions. (Sudret 2006a) presents a method to obtain the
minimum number of points that allows the left matrix
to be invertible.

4.2 Computation of the Sobol’ indices
Global sensitivity analysis aims at quantifying the un-
certainty in the model output due to the uncertainty
in the input parameters. More precisely, the so-called
ANOVA techniquesaim at decomposing the variance
of the output as a sum of contributions of each input
variable, or combinations thereof. Many papers have
been devoted to this topic in the last twenty years. A
good state-of-the-art of the techniques is available in
(Saltelli, Chan, and Scott 2000).

Consider a scalar response quantitysk (i.e. a com-
ponent ofS in Eq.(3)). The Sobol’ decomposition of
its varianceD reads (Sobol’ 1993):

D ≡ Var
[

sk
]

=
n

∑

i=1

Di +
∑

1≤i<j≤n

Dij + · · ·+ D12...n

(8)

where each termDi1i2...is represents the part of the
variance associated with the combination of variables
{i1, i2, . . . , is} . The Sobol’ indices are nothing but
the normalized version of these partial variances:

δi1i2...is = Di1i2...is/D (9)

They sum up to 1 and thus represent the fraction of the
response variance that may be attributed to the combi-
nation of input variables{i1, i2, . . . , is}. Monte Carlo
estimates of these so-called partial variances are usu-
ally used, leading to an unaffordable computational
cost when the reponse is the result of a finite element
analysis.

Alternatively, (Sudret 2006a; Sudret 2006b) shows
that the decomposition of the total variance is straight-
forward once the model response has been expanded
onto the polynomial chaos basis.

First remember that each multivariate polynomial
in Eq.(3) is completely defined by a list ofM non-
negative integers{α1, · · · , αM} as follows:

Ψj(ξ) ≡ Ψα(ξ) =

M
∏

i=1

Pαi
(ξi) , αi ≥ 0 (10)

wherePq(.) is theq-th Legendre polynomial. Let us
denote byIi1, ..., is the set ofα multi-indices such that
only the indices(i1, . . . , is) are non zero:

Ii1, ..., is
=

{

α :
αk > 0 ∀k = 1, . . . , n, k ∈ (i1, . . . , is)
αj = 0 ∀k = 1, . . . , n, k /∈ (i1, . . . , is)

}
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(11)

Note thatIi corresponds to the polynomials depend-
ing only on parameterxi. Using this notation, the
P − 1 terms in Eq.(3) corresponding to the polyno-
mials{Ψj , j = 1, . . . , P − 1} may now be gathered
according the parameters they depend on:

sk = sk
0 +

n
∑

i=1

∑

α∈Ii

sk
α Ψα(xi)

+
∑

1≤i1<i2≤n

∑

α∈Ii1,i2

sk
α Ψα(xi1 , xi2) + . . .

+
∑

1≤i1<···<is≤n

∑

α∈Ii1,...,is

sk
α Ψα(xi1 , . . . , xis)

+ · · ·+
∑

α∈I1,2...,n

sk
α Ψα(x1, . . . , xn)

(12)

Thus the Sobol-PC sensivity indices of thek-th com-
ponent of the response vector:

δk
i1...is =

∑

α∈Ii1,...,is

(sk
α)2 E

[

Ψ2
α

]

/Var
[

sk
]

(13)

where the total variance ofsk is easily obtained from
the PC coefficients:

Var
[

sk
]

=

P−1
∑

j=1

(sk
j )

2 E
[

Ψ2
j

]

(14)

In the sequel, the first order Sobol-PC sensitivity
indices are computed.

5 SENSITIVITY ANALYSIS OF THE DRYING
MODEL ON THE DELAYED STRAIN OF
CONCRETE IN CONTAINMENT VESSEL

The macroscopic retiming of the drying parameters
and the level of uncertainty on the latter force to carry
out a sensitivity analysis. It means that we want to
quantify the relative importance of each input param-
eter.

5.1 Presentation of the random variables
In this sensitivity analysis, we take into account 7
random variables (gathered in Table 1). The humid-
ity in the intersapce between the two concrete ves-
sels is called outside humidity. The desorption curve
(cf. Fig.2) relates the water content to the humidity. It
is usually difficult to get data about this curve. Thus

it is important to take this parameter into account in
the sensitivity analysis. The empirical curve on Fig.2
is not that of the concrete of the vessel under con-
sideration. It is difficult to model this parameter by a
random variable. We make the choice to enclose this
curve by two lines, which are defined with two ran-
dom variables: the initial humidityC0 and the absorp-
tion abscissaABSH .

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.2  0.4  0.6  0.8  1

W
at

er
 c

on
te

nt
 (

l/m
3 )

Humidity [−]

Empirical desorption curve
Linear desorption curve
Linear desorption curve

Figure 2: Desorption curve

The first step in the sensitivity analysis is to ex-
pand the evolution of delayed strain onto the poly-
nomial chaos basis. As all input random variables are
uniform, the polynomial chaos is built from Legen-
dre polynomials. (Sudret 2006a) shows that an order
2 gives the best ratio accuracy/efficiency for comput-
ing Sobol’ indices. In our case, which involves 7 ran-
dom variables, we have 36 coefficients to compute.
n = 56 finite element analyses are enough to obtain
the whole expansion of delayed strain onto the poly-
nomial chaos by using the non intrusive regression
method presented in section 4.1.

5.2 Results of the sensitivity analysis
Figures 3 and 4 show the evolution of the Sobol’ in-
dices for each input parameter versus time on the tan-
gential and vertical strains. One can first of all no-
tice that fort ∈ [0; 5] years, the Sobol’ indices vary
a lot. This corresponds to the date when the installa-
tion of prestressing is modelled. The parametersQ,
CINT andCEXT have a relatively low index both for
the tangential and the vertical strains. On the other
hand, the other parameters play a considerable role.
As it can be seen on each figure, the reduction of the
importance ofC0, a andb (all three directky influenc-
ing drying) coincide with the increase in importance
of ABSH . This could mean that when drying reaches
a certain level, it is the desorption curve which plays
the most important role. This means that the role of
drying process decreases in time and that its variabil-
ity has no influnece on the amplitude of the delayed
strains after a certain time. This implies that the very
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Table 1: Presentation of input random variables

Parameter notation Type of distribution Lower limit Upper limit
Initial humidity C0 Uniform 116.4l/m3 135.8l/m3

Outside humidity CEXT Uniform 65.61l/m3 80.19l/m3

Inside humidity CINT Uniform 49.12l/m3 54.28l/m3

Thermal activation energy Q Uniform 4465K 4935K
Parametera of the drying
process

a Uniform 1.05 · 10−13m2/s 1.95 · 10−13m2/s

Parameterb of the drying
process

b Uniform 0.06118m3/l 0.06762m3/l

Desorption abscissa ABSH Uniform 0 0.6

fine modeling of the kinetics of drying is not neces-
sary when one is only interested in the delayed strains
in the long run.
The figure 5 presents the temporal evolution of the
coefficients of variation of the tangential and verti-
cal deformations. One notices that these coefficients
of variation are relatively low (lower than 4 %). That
means that the importance of drying on the differed
deformations is relatively low.

6 CONCLUSION
This paper presents a sensitivity analysis of concrete
drying in the delayed behavior of containment ves-
sels. Only the parameters influencing drying are de-
scribed by random variables. The analysis of sensitiv-
ity was carried out using the non intrusive method of
regression, which makes it possible to have a stochas-
tic response surface of the delayed strains. The Sobol’
indices, which allow to rank the input variables ac-
cording their weight in the response variance, are cal-
culated in an analytical way from the coefficents of
the response surface rank. The input random parame-
ters are:

• Initial humidity;

• Outside humidity;

• Inside humidity;

• Thermal activation energy;

• Two parameters of Mensi’s law;

• The curve of desorption.

The response variables are the tangential and ver-
tical delayed strain computed over the time range
[0,60 years]. As far as the tangential and vertical de-
layed strains are concern, it appears that the param-
eter which has the most importance is the curve of
desorption, which utilizes two random variables, in
particular the initial humidity. However we have little
information on this curve, so it would be intersting to
experimentally determine this curve for the concrete

mix of the containment vessel. The two parameters of
Mensi’s law are rather important until approximately
40 years. Then their importances decrease. The ini-
tial water contentC0 also plays a part in drying when
one considers this parameter coupled with the outside
humidityCEXT . The inside humidity and the thermal
activation energy almost do not have importance over
the lifespan of the vessel. It should be also noted that
the coefficients of variation of the delayed strains are
relatively low (less than 4 %). That means that the im-
portance of drying on the delayed strains is relatively
low. This does not deteriorate in anything the results
on the Sobol’ indices which do not depend on the vari-
ance of the response quantity considered.
Finally, the analysis shows that it is necessary to accu-
rately determine the desorption curve and the param-
eters of Mensi’s law to get accurate prediction of the
delayed strains.
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Figure 3: Evolution of Sobol’ indices for tangential strains
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Figure 4: Evolution of Sobol’ indices for vertical strains
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