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ABSTRACT: A constitutive law which incorporates creep and fracture behavior for the analysis of time-
dependent cracking of concrete structures is briefly presented. The constitutive model is composed of two
parts acting in series: a Maxwell chain for the creep of uncracked concrete and a recent version of the mi-
croplane model (M4), which includes the rate-dependence of fracturing associated with the activation energy
of bond ruptures, for the cracking. The proposed formulation is applied to the simulation of the size effect of
single notched specimens in direct tension for quasi-static fracture in the time domain with different loading
rates. The numerical results reveal clearly the link between the size of the fracture process zone (FPZ) and the
rate loading.

1 INTRODUCTION

The load carrying capacity of a concrete structure
under sustained constant load can be considerably
smaller with respect to that of the same structure in-
stantaneously loaded. This can be explained by the
interaction between cracking and creep, which may
lead to an increase of damage with a reduction of
the ultimate load capacity. Moreover, it is well-known
that fracture propagation is rate-sensitive, due to the
fact that the rupture of interatomic or intermolecular
bonds is a thermally activated process (Bažant 1995).
Wu & Bažant (1993) used the activation energy pro-
cess of bond ruptures in order to capture the strength
increase with loading rate in a wide range of quasi-
static loading rates.

In the last years a significant progress has been
made in the modeling of fracture and damage of ce-
mentitious materials. To understand and model the
creep rupture of concrete different approaches can be
found in the literature (among others Bažant 1992,
Bažant & Jiràsek 1993, van Zijl et al. 2001, Zhou &
Hillerborg 1992, Zhang & Karihaloo 1992, Carpinteri
et al. 1995).

In the present paper two different sources of time-
dependence in concrete have been considered, a
rate dependence of crack propagation, introduced in
a three-dimensional constitutive model for concrete
such as the microplane model M4, and a linear creep
model for the prediction of the viscoelastic behav-
ior of uncracked concrete. In the present approach

the non-linear creep of concrete may be regarded as
a consequence of the redistribution of stresses due
to creep and, related to it, the increase of damage.
Both sources of time-dependence (creep and rate-
dependence of crack growth) play an important role
in the lifetime of the concrete structures. The predic-
tion capability of this model is demonstrated through
the experimental data available in the literature (Zhou
1992). Moreover, the effectiveness of the proposed
model is demonstrated through the analysis of single
notched specimens in direct tension under different
loading rates, which reveals clearly the link between
the size of the fracture process zone (FPZ) and the
rate loading.

2 COMPUTATIONAL MODEL FOR LONG-
TERM BEHAVIOR OF CONCRETE

The stress increment over a time step ∆t, ∆σ =
σ(t + ∆t) − σ(t), in a linear visco-elastic material
can be written as (Bažant & Wu 1974)

∆σ = Dve∆εve + σ∗ (1)

with

Dve =

[
E0(t

∗) +
N∑

n=1

En(t∗)τn

∆t

(
1− e−

∆t
τn

)]
D (2)

and σ∗ = −
N∑

n=1

(
1− e−

∆t
τn

)
σn(t) (3)



where D is a dimensionless matrix obtained from the
linear elastic stiffness matrix divided by the Young
modulus, ∆εve is the visco-elastic strain increment in
the time step ∆t, En(t∗) is the stiffness modulus of
the element n, constant in the range t ≤ t∗ ≤ t + ∆t,
τn is the relaxation time of the element n and σn(t)
is the initial stress in the element n at the time t. The
model is equivalent to a Maxwell chain model with
time-dependent element stiffnesses which, for exam-
ple, can be determined through the Solidification The-
ory (Carol & Bažant 1993).

Assuming the additivity of strains, the strain rate
can be expressed as follows

ε̇ = ε̇ve + ε̇cr + ε̇sh + ε̇t (4)

where ε̇ is the total strain rate, ε̇ve is the visco-elastic
strain rate, ε̇cr is the cracking strain rate, ε̇sh is the
shrinkage strain rate, and ε̇t is the thermal strain rate.
Substituting the strain rate with the strain increment
over a finite time step and recalling Equation 1 one
gets

∆σ = Dve∆εve + σ∗ =

Dve
(
∆ε−∆εcr −∆εsh −∆εt

)
+ σ∗ (5)

In the following, shrinkage and thermal strain, which
are not essential in the present application, will be dis-
regarded (∆εsh = ∆εt = 0).

The evolution of the cracking strain is assumed to
be governed by the Microplane Model M4 (Bažant et
al, 2000a). This constitutive model has an explicit for-
mulation that gives the stress tensor for a given strain
tensor

σ = fM4

(
εel−cr

)
(6)

in which εel−cr is the elastic and cracking deforma-
tion and fM4 is a function which represents the mi-
croplane model formulation. According to Equation
6, the stress increment for a given strain increment
∆εel−cr in the time step can be written as

∆σ = fM4

(
εel−cr + ∆εel−cr

)−σinitial (7)

where σinitial is the initial stress at the beginning of
the time step. Since the stress increment can be writ-
ten as ∆σ = E∆εel, the cracking strain increment is

∆εcr = ∆εel−cr − E−1[fM4

(
εel−cr + ∆εel−cr

)
+

−σinitial] (8)

where E is the linear elastic stiffness matrix. Substi-
tuting Equation 8 into Eq. 5 one obtains

∆σ = Dve[∆ε−∆εel−cr+

−E−1
(
fM4

(
εel−cr + ∆εel−cr

)−σinitial
)
] + σ∗ (9)

Since the viscoelastic model and the Microplane
Model M4 are coupled in series, the viscoelastic stress
increment and the Microplane model M4 stress incre-
ment must be the same. After some mathematical ma-
nipulations Equations 5 and 9 become an equation in
the only unknown ∆εel−cr

fM4

(
εel−cr + ∆εel−cr

)− DveE−1

fM4

(
εel−cr + ∆εel−cr

)
+ Dve∆εel−cr = b (10)

where b = Dve
(
ε− E−1σinitial

)
+ σ∗ + σinitial is a

vector of constants in each time step. The previous
set of nonlinear equations must be solved iteratively.
At a certain iteration i of the solution algorithm the
residual is

r(∆εel−cr) = fM4

(
εel−cr + ∆εel−cr

)−DveE−1

fM4

(
εel−cr + ∆εel−cr

)
+ Dve∆εel−cr − b (11)

Taking a Taylor expansion of the residual about the
current value of the elastic-cracking strain, εel−cr

i ,
dropping the terms which are of higher order than
linear in ∆εel−cr, and setting the resulting residual
equal to zero, one obtains a linear system of equations
for ∆εel−cr which represents the linearized model of
the nonlinear equation (11). The proposed linearized
model is quite powerful, but it still has the disadvan-
tage of requiring the calculation of the tangent stiff-
ness matrix (Jacobian matrix). To overcome this prob-
lem, the initial (elastic) stiffness matrix for the mi-
croplane model M4 is employed and the Jacobian ma-
trix becomes equal to the elastic stiffness matrix E.

In the Newton procedure, the solution of the non-
linear equation is obtained by iteratively solving a se-
quence of linear models. The new value for the un-
known in each step of the iteration is obtained as
εel−cr

i+1 = ∆εel−cr + εel−cr
i and it is continued until the

convergence criterion is met. The convergence crite-
rion used to terminate the iteration is based on the
magnitude of the unknown increments ∆εel−cr.

Using the initial stiffness matrix the convergence
to the solution of the iterative procedure is always
assured, but it is very slow in the nonlinear regime.
Therefore, to accelerate the convergence Broyden’s
method has been adopted (Press et al. 1996). In the
proposed iterative procedure the first three iterations
are performed using the Newton procedure with the
initial linear stiffness matrix. If the convergence cri-
terion is not met after these three iterations, starting
from that point Broyden’s method is adopted and the
convergence to the solution is obtained in one to two
iterations. Once ∆εel−cr is known, one can calculate
the other unknowns ∆εcr, ∆εve and ∆σ

∆σ = fM4

(
εel−cr + ∆εel−cr

)−σinitial (12)



∆εcr = ∆εel−cr −E−1∆σ and

∆εve = ∆ε−∆εcr (13)

At convergence the visco-elastic strain tensor is ob-
tained according to Equation 13, which also enables
the calculation of the internal stresses of the Maxwell
chain elements. For the first element one finds

σ0(t + ∆t) = σ0(t) + DE0(t
∗)∆εve (14)

while for the others

σn(t + ∆t) = σn(t)+[
D

En(t∗)τn

∆t
∆εve −σn(t)

](
1− e−∆t/τn

)
(15)

More details on the proposed formulation can be
found in Di Luzio (in prep.).

3 RATE DEPENDENT MICROPLANE MODEL
M4

The microplane model is a three-dimensional macro-
scopic constitutive law for modelling quasi-brittle
materials which exhibit softening. In the microplane
model the material law is characterized by simple re-
lations between the stress and strain components on
planes of various orientations. In the present paper
a recent version of the microplane model for con-
crete, proposed and tested by Bažant and coworkers
(Bažant et al. 2000a; Caner & Bažant 2000) called
M4, is used. The microplane model M4 has the in-
elastic behavior characterized on the microplane level
by the so-called stress-strain boundaries, which may
be regarded as strain-dependent yield limits and ex-
hibit strain softening. The original formulation of the
microplane model M4 (Bažant et al. 2000a) has been
slightly modified as reported in Bažant et al. (2004)
and Di Luzio (in press).

The formulation proposed by Bažant (Bažant 1993,
Bažant 1995), in which the rate dependence of a co-
hesive crack is described by the activation energy the-
ory, is adopted. According to this theory the rate ef-
fect dependence is nonlinear. The rate-dependence is
introduced in the microplane model M4 as proposed
by Bažant et al. (2000b). The macroscopic strain soft-
ening function σ = F (ε) may be written as

F (ε) = F 0(ε) [1 + C2asinh(ε̇/C1)] (16)

F (ε) represents the stress-strain boundary (tensile
normal stress; compressive volumetric stresses; ten-
sile and compressive deviatoric stresses; and the cohe-
sion in the friction boundary) on the microplane cor-
responding to strain rate ε̇ and F0(ε) has the meaning
of the static stress-strain boundary that corresponds

Figure 1: Maxwell chain fit to relaxation data.

to a vanishing strain rate. Equation 16, which trans-
forms the static boundary F0(ε) to a rate-dependent
boundary, represents a vertical scaling of the bound-
ary curve. The rate effect on the frictional yield sur-
face is also applied as a vertical shift of the horizontal
asymptote.

It is known that the concept of softening continuum
leads to serious problems, i. e. the boundary value
problem becomes ill-posed and the numerical calcu-
lations cease to be objective, exhibiting pathological
spurious mesh sensitivity and unrealistic damage lo-
calization. To suppress it and to prevent the damage
from localizing into a zone of zero volume, the sim-
plest remedy is to adjust the post-peak slope of the
stress-strain diagram as a function of the element size
(this was done in the crack band model of Bažant &
Oh 1983). This type of localization limiter is adopted
in the microplane model M4, in which the microplane
limit curves are assumed as functions of the crack
band width h. For solid eight node elements the crack
band width is assumed to be equal to the average el-
ement size h = V 1/3, where V is the volume of the
finite element.

4 NUMERICAL SIMULATIONS OF BENDING
TESTS

The experimental investigation of Zhou (1992) has
been considered for validating the proposed compu-
tational framework. The beams were sealed to avoid
shrinkage and and subjected to three-point bending
tests. Initially the parameters of the microplane model
were calibrated on the basis of the mechanical prop-
erties of the concrete: Young modulus of 36GPa
and tensile strength of 2.8MPa. The parameters of
a Maxwell chain model with 7 elements were cali-
brated through the least square method, by fitting the
experimental relaxation curve obtained from cylindri-
cal notched tensile specimens (Fig. 1). Since the re-
laxation tests were performed over a short time (1
hour) and all of the other tests have a short duration, a
non-aging material behavior has been assumed. Zhou



Figure 2: Three-point-bending tests by Zhou (1992):
a) load vs deflection curves for different deflection
rates; b) time to failure under sustained loads.

(1992) also studied the influence of loading rate on the
peak strength through three-point-bending tests under
displacement control on smaller beams (cross section
of 50x50mm2 and length of 600mm) with different
deflection rates (from 0.05µms−1) to 50µms−1). To
fit these test data the rate parameters were varied in a
trial-and-error fashion until a satisfactory agreement
was found.

After the calibration of the model parameters, a
displacement-controlled three-point-bending test was
simulated with a deflection rate of 5 µms−1, after
which the creep tests were conducted on the same
type of specimen by increasing the central force to
a predefined level and then sustaining it. Four load
levels of 76%, 80%, 85% and 92% of the maxi-
mum load capacity of the displacement-controlled
case have been considered. The failure in the creep
tests occurred in a such a way that the displacement-
controlled curve describes very well the failure en-
velope characterizing the deformation at failure un-
der sustained load. The numerical procedure goes on
until equilibrium is no longer ensured for the sus-
tained load level, i.e. the load bearing capacity of
the specimen is exceeded. When this happens, the

Figure 3: a) Sample geometry of the tensile direct
test, b) distribution of the maximum principal crack-
ing strain at the peak for different loading rates and
sizes.

Newton-Raphson iterative procedures are no longer
able to reach convergence. The numerical results are
presented in Figure 2, showing a good agreement with
experiments.

5 NUMERICAL ANALYSIS OF SIZE EFFECT
TESTS AT VARIOUS LOADING RATES

The proposed computational framework, calibrated
on the basis of the experimental data studied in the
previous section, has been used to predict the influ-
ence of loading rate on geometrically similar speci-
mens. As already pointed out from experimental in-
vestigations (Bažant & Gettu 1992), the lower the
loading rate the more brittle the fracture propagation,
which means that the size effect curve has a signif-
icant shift toward the right as the loading rate de-
creases. This physical phenomenon can be explained
by a reduction of the damage distribution (FPZ) as the
loading rate decreases.

The direct tensile test has been adopted for these
simulations, because a constant crack mouth open-
ing displacement rate can be imposed. Figure 3a
shows the specimen geometry. The finite element



Figure 4: Load versus time for fast (a) and slow (b)
loading rates for different sizes (d).

meshes for five different specimen sizes, with size ra-
tio 1:2:4:8:16, are shown in Figure 3b. The smallest
specimen depth is d = 38mm, and the largest one is
d = 608mm. The thickness is b = 38mm for each size.
The specimens were loaded through a constant dis-
placement velocity of 510−3 mm/s and of 510−8 mm/s
for the faster and the slower loading rates, respec-
tively. The maximum principal cracking strain distri-
bution at the peak for different loading rates and sizes
is depicted in Figure 3b, which reveals clearly that the
damage and the energy dissipation for each size are
more spread out for high loading rates. The volume
in which the energy is dissipated (FPZ) is reduced for
very slow loading rates by the effect of creep. For both
fast and slow loading rates, Figures 4a, b report the
numerical load versus time curves.

Let us apply now to the results of the numerical
simulations (expressed in terms of nominal stress at
maximum load σN = Pmax/db) Bažant’s size effect
law (Bažant & Planas 1998):

σN =
σ0√

1 + d/d0

(17)

in which the constants σ0 and d0 can be determined
from the numerical (or experimental) results. Rewrit-
ing Equation 17 in the plot Y = (1/σN)2 versus
X = d, the size-effect-law appears as a straight line
Y = AX + C in which σ0 = 1/

√
C and d0 = C/A.

Figure 5: Size effect law (S.E.L.) for fast and slow
loading rates. Comparison of the two size effect re-
sults with the shift toward the right as the loading be-
comes slower.

The coefficients A and C have been determined per-
forming a linear regression of Y versus X, getting
A = 4.52510−4 MPa−2/mm and C = 0.157 MPa−2

(from which σ0 = 2.525 MPa and d0 = 346.66 mm)
for the fast series and A = 1.47610−3 MPa−2/mm and
C = 0.282 MPa−2 (from which σ0 = 1.884 MPa and
d0 = 191.0 mm) for the slow series. Figure 5 clearly
shows that by reducing the loading rate the size effect
curve has a shift toward the right with a change in the
mode of failure, i.e. the fracture becomes more brittle
as the loading becomes slower. This is confirmation
that fracture propagation and the size effect are time
dependent processes for concrete.

6 CONCLUSIONS

The microplane model M4 with rate dependence, cou-
pled with a linear viscoelastic element, is capable of
predicting the interaction between fracture and creep
in concrete. The proposed time-dependent model has
been verified for experimental tests of up to 3 hours in
duration (Zhou, 1992). It has been shown that the in-
clusion of both sources of time-dependence, i.e. creep
and rate-dependence of crack growth, must be consid-
ered to obtain the correct prediction of life expectancy
under a constant loads.

The proposed constitutive model is also able to cap-
ture the increase of concrete brittleness as the loading
rate becomes slower, which appears with a significant
shift toward the right (toward LEFM in the size effect
plot) as the loading rate decreases. This phenomenon
is explained in the numerical simulations with a re-
duction of the size of the FPZ as the loading rate be-
comes slower.
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