
1 INTRODUCTION  

Although models are more and more sophisticated 
and relatively appropriate to represent the macro-
scopic mechanical behavior of concrete structures, 
they are not usually fully pertinent for providing in-
formation on the characteristics of the cracks: open-
ing, orientation and spatial distribution. The knowl-
edge of these characteristics is of great importance 
if, for example, the durability of the structure is con-
sidered. It is now well known that the properties of 
transfer of the material, gas or liquid permeabilities 
or diffusion coefficients, are impacted by cracks: 
openings or the density of cracks are essential fac-
tors that have to be taken into account in the model-
ing of physical transfers. This can be considered as 
an important condition for estimating the lifespan of 
the structure, through an accurate prediction of its 
durability. In terms of modeling, difficulties appear 
in the link which must be set up between the local 
description of the mechanisms and the global re-
sponse of the structure, essentially when their com-
bination is challenged through a robust and reliable 
modeling. 

 
 

 
2 MODELLING CRACKING PROCESSES AT 

DIFFERENT SCALES 

The starting point of this study is the execution of a 
broad numerical experimentation aimed at studying 
the tensile behavior of a large range of concretes. 
These numerical simulations are based on the dis-
crete and probabilistic approach developed by Rossi 
and co-workers. (Rossi & Richer 1987, Rossi & Wu 

1992, Rossi et al. 1996, Rossi & Ulm 1997). This 
model is designed to describe the onset and the 
propagation of cracks and also to take into account 
volume effects. The model is based on the hypothe-
sis considering that the mechanical properties of the 
concrete, like the young modulus and the tensile 
strength, are related to the major heterogeneity, rep-
resented by the coarsest grain, and the initial defects 
influencing the (mechanical) quality of the cement 
paste. These observations are detailed in 
(Rossi et al. 1994), where authors conclude that the 
young modulus and tensile strength are statistical 
variables following normal (Gaussian) laws and de-
pending on only two parameters: the first one is the 
ratio between the volume of the specimen and the 
volume of the coarsest grain (Vs/Vg) and the second 
is the compressive strength of the concrete (fc). The 
characteristics of the statistical distributions, mean 
values and standard deviations, are then given by 
empirical formulas deriving from the experimental 
observations. The reader will find their mathematical 
expressions in the previous references, for example. 
One can note that these formulas can be rigorously 
considered as valid in a limited domain correspond-
ing to the one which was experimentally explored, 
i.e. for Equation 1 and Equation 2: 
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where dφ  = diameter of the coarsest grain. And: 

700010 ≤≤ gs VV  (2) 

One can also notice that this domain of validity 
can cover large ranges of concrete formulations and 
of laboratory specimen geometries. 
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The numerical implementation of this model 
takes place in the general framework of the finite-
element method. The uncracked concrete is modeled 
using massive triangular elements while contact 
elements, which interface them, represent cracks. 
Then the model accounts for cracks as geometrical 
discontinuities. The stochastic process is introduced 
at the local scale by considering that cracks are open 
in the material with different energy dissipations due 
to the heterogeneity of the material. Considering that 
the local behavior of concrete can be elastic -
 perfectly brittle, the random space distribution of 
local fracture energies can be replaced by a random 
space distribution of local tensile strengths. Since 
the mechanical properties are considered as random 
variables, they are distributed on the mesh according 
to distribution characteristics following the empirical 
formulas. 

The model is actually implemented in 2D in the 
expert version of the finite element code CESAR-
LCPC (Humbert 1989). 

The underlying, and basic, idea of the model is 
then to consider a finite element volume like a mate-
rial volume and to assume that physical mechanisms 
influencing the cracking processes remain the same 
whatever the scale of observation. Then the volume 
of the specimen (Vs), in empirical formulas cited 
above, is replaced by the volume of the element (Ve), 
and the young modulus and the tensile strength of 
the finite (material) element are deduced from these 
formulas. According to the local and probabilistic 
character of the approach, the volume of the element 
must be sufficiently small in comparison to the vol-
ume of the meshed structure or in comparison to the 
zone size where stress gradients can develop. This 
can lead to very small ratios Ve/Vg being out of the 
initial domain of validity. In fact, Tailhan and co-
workers (Tailhan 2006) have shown that the evolu-
tions of the mean values and the standard deviations 
given by the empirical formulas with respect to the 
compressive strength become false and physically 
inadmissible for ratios Vs/Vg smaller than one. Then, 
they have proposed to perform an inverse analysis to 
determine the extrapolation of the empirical formu-
las to the small ratios Ve/Vg domain. Note that a 
similar work was performed in (Fairbairn et al. 
2000), but for larger ratios Vs/Vg. 

The principles of this inverse analysis are summa-
rized in the diagram (Figure 1). For a given concrete 
type and a given volume of specimen (1), the mean 
value and the standard deviation (2) of the distribu-
tions of mechanical properties (young modulus and 
tensile strength) at the level of the finite elements are 
researched in order to obtain mean values and stan-
dard deviations (3) computed on the global re-
sponses of the specimen, in accordance with the pre-
diction given by empirical formulas (4) in their 
validity domain.  

 

 
Figure 1. Principle of the inverse analysis 
 
 

Many simulations are performed with different 
geometries of specimens, different diameters of 
coarsest grain and different values of compressive 
strength. 15 computations are performed for each 
configuration, so that a statistical analysis of the re-
sults can be done. Simulations are also performed in 
2D plane stress. For a sake of simplicity, our atten-
tion is only focused on the tensile strength, which is 
considered to be the only random variable. The elas-
tic properties of the materials are maintained con-
stant and are deduced from classical estimation for-
mulas: 

2.0110003 == νandfE c  (3) 

Meshes, which are used in this inverse analysis, 
are shown in Figure 2. For all computations, the 
thinness of the meshes remains the same: ratios be-
tween the sizes of the elements and the sizes of the 
meshes are kept constant and equal to 1.74 10-3. 

 
 
 
 

 
Figure 2. Meshes used in the inverse analysis. (H=0.276 m and 
S = 1.910-2 m²) 

 



 
The Ve/Vg ratios, which are examined, are equal 

to 10, 1 and 0.1. The values for fc used in the simu-
lations are: 40 MPa,  80 MPa, and 100 MPa. 

All the results of this study are reported in (Tail-
han 2006). They mainly show the feasibility of the 
method.  

Another complementary study is currently under 
development, in which an optimization procedure is 
used to automatically determine the distribution 
characteristics at the element scale. This procedure 
is based on the so-called Nelder-Mead algorithm, it-
self based on the simplex method (Mathews 2004). 
All the details of the study will be soon published. 

However, we report here some of the major re-
sults of the initial study. For example, Table 1 shows 
results obtained for one type of concrete 
(fc = 40 MPa) and different ratios Ve/Vg (0.1, 1, 10). 
They clearly show the auto coherence of the model: 
if one imposes, at the level of the element, the mean 
values and standard deviations indicated in this ta-
ble, one obtains, at the level of the global mesh rep-
resenting the specimen, mean values and standard 
deviations similar to those predicted by empirical 
formulas (Rossi 1994). 

 
 

Geometries H/4,S/4 H/4,S/4 H,S 

dφ (m) 0.022 0.010 0.012 
Ve/Vg 0.1 1 10 
Vs/Vg 58.9 574.2 5809.3 
Mean value and standard deviation imposed at the level 
of the element: 
m(ft) 6.7 5.6 4.3 
σ(ft) 3.0 2.7 1.1 
Mean value and standard deviation obtained for the con-
cerned specimen: 
m(ft) 3.4 2.8 2.5 
σ(ft) 0.7 0.25 0.2 
Mean value and standard deviation given by the empiri-
cal formulas: 
m(ft) 3.8 2.9 2.2 
σ(ft) 0.6 0.3 0.14 
Table 1. Auto coherence of the model after the inverse analy-
sis. Results obtained for fc = 40 MPa. 

 
 
Figure 3 also shows the availability of the model 

to represent scale effects: results also correspond to 
one type of concrete (fc = 40 MPa) and different ge-
ometries. One can observe that the peaks of all the 
curves are different, although the concrete is the 
same. The tensile strength increases when the vol-
ume of the material decreases, which is in accor-
dance with the model hypotheses. A similar remark 
can be made on the post-peak behavior which ap-
pears to be less brittle for small volumes of material. 
Taking into account the heterogeneity of the mate-
rial, the post-peak behavior can be related to local 

stress concentration. For small volumes of material, 
the zones, where stresses are concentrated, are of a 
size relatively close to the one of the specimen. Lo-
cal failure can occur if stresses reach inadmissible 
values. But, these values are related to inner defects 
of the material. The more important the size of the 
concentrated stress zone is, the greater is the number 
of inner defects taking place in the cracking process. 
This can also explain the more diffuse crack pattern 
in the case of small volumes of material. One can 
also note that coarsest grains are playing an impor-
tant role in limiting the crack propagation, or by 
bridging the crack lips leading to an increase of dis-
sipated energy by the cracking process. 
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Figure 3. Illustration of the size effects on the axial tensile be-
haviour of concrete (in the case of  fc = 40 MPa) for different 
sizes of specimens. Each curve represents the mean curve of 15 
simulations, (from Tailhan 2006). 

 
 

 
Figure 4. Mesh used for the simulation of the wedge splitting 
test performed in Denarié 2000. 

 
 
Another interesting result recently obtained using 

this model is reported below. The wedge splitting 
test performed in (Denarié 2000) is simulated here. 
Input data of the model are relatively simple: the 
young modulus, the compressive strength and the 



diameter of the coarsest grain. The diameter is given 
by the formulation of the concrete; the young 
modulus and the compressive strength are experi-
mentally determined. Therefore, these parameters 
are: E = 25200Mpa, fc = 50Mpa, dφ = 8mm. 

Figure 4 shows the mesh which is used. And Fig-
ure 5 shows the comparison between experimental 
and numerical results, in terms of mean curves. And 
finally, figure 6 shows an example of the crack path 
obtained at the end of the simulation. 
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Figure 5. Comparison between experimental and numerical re-
sults for the wedge splitting test. 

 
 
 

 
Figure 6. Crack path at the end of the simulation. 

 
 
 
All these results clearly illustrate the availability 

of the model to represent cracking processes and 
volume effects in cementitious composites. 

The strong points of the model are then, firstly, 
the low number of input data which can be easily de-
termined by very classical experimental tests, and 
secondly, the fact that the model can give local in-
formation on cracks (crack mouth opening, cracks 
distribution …) 

Its weak point is essentially the fact that this 
model is not really well suited for the simulation of 
big structure behavior (impressive number of ele-
ments, high computation costs). 

 
 
 

3 A SIMPLIFIED MACROSCOPIC MODELING 
OF CRACKING PROCESSES AND VOLUME 
EFFECTS 

One way to avoid these problems could be to com-
bine the robustness and efficiency of a macroscopic 
modeling of the behavior of concrete structures with 
the strong points of the discrete and probabilistic 
model, described in the preceding section. 

One way to achieve this task is to perform a large 
numerical experimentation campaign and analyze its 
results. This point is actually being examined in pure 
tension. 

On the bases of results such as those shown in 
Figure 3, pre-peak and post-peak responses are ex-
amined in statistical terms. Mean values and stan-
dard deviations of characteristics quantities describ-
ing pre- and post-peak behaviors are identified. 
These quantities can be for example the tensile 
strength and something like a “density of inelastic 
deformation energy”, represented by the area under 
the curve stress-inelastic strain. 

Therefore, a series of n computations per configu-
ration (geometry and type of concrete) can be per-
formed. They use the previous probabilistic and dis-
crete cracking model and process results of each of 
them as indicated above. Figure 7 shows the re-
sponse of the simulation in terms of stress – strain 
mean curve for the HS specimen (see Figure 3) and 
for fc = 30 MPa and Ve/Vg = 10. Each point of this 
curve represents the mean value of points of 30 dif-
ferent simulations. 
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Figure 7. Axial stress vs. Axial strain curve for the HS speci-
men (see Figure 3) and corresponding to fc = 30 MPa and 
Ve/Vg = 10. 

 
The post-peak behaviors of  the 30 simulations 

are considered to begin at the maximum stress of 
each simulated stress – strain curve. The “inelastic 
strain” is then computed as the difference between 
the total strain and the elastic strain, i.e.: 

Eelin
σεεεε −=−=  (4) 



For each simulation, a curve stress – inelastic 
strain is obtained, and the area under this curve is 
computed: 

∫=
lim

0

in

indW
ε

εσ  (5) 

where W = area and εin lim = limit inelastic strain. 
This limit corresponds to a certain value of inelastic 
strain at which one can consider the total failure of 
the specimen. 
Therefore, W can be considered as a random variable 
and a mean value and a standard deviation can be 
computed for W. The evolutions of this mean value 
and this standard deviation are plotted versus the 
inelastic strain on Figure 8 and Figure 9 (for one 
type of concrete: fc = 30 MPa and dφ  = 0.015) 
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Figure 8. Evolution of the mean value of W vs. inelastic strain. 
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Figure 9. Evolution of the standard deviation of W vs. inelastic 
strain 
 

One can observe on figure 9 the increase of the 
dispersion when the strain also increases. This can 
be interpreted by the fact that when the crack propa-
gates through the specimen, the resisting section de-

creases, then the ratio V/Vg also decreases and there-
fore, according to the hypotheses of the model, the 
dispersion consequently increases. 

The macroscopic model which is used in this 
study is relatively simple. It is based on the classical 
framework of the elasto-plasticity. The concrete, 
submitted to a pure tension, is assumed to follow an 
elasto-plastic behavior. A very simple criterion is 
adopted: the plastic strain begins to occur when the 
maximal principal stress is reached. Therefore, the 
plastic strain evolves as long as a limit value is 
reached. This limit value corresponds to the value of 
W at which the concrete is considered as being to-
tally failed. As shown in Figure 8 and Figure 9, the 
mean value and the standard deviation of W depend 
on the size of the specimen, then, they also depend, 
for one type of concrete, on the ratio Vs/Vg. 
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Figure 10. Comparison between both approaches: macroscopic 
(dashed line) and discrete (solid line) for the H,S specimen and 
a concrete formulation given by fc = 30 MPa and dφ  = 0.015 

 
 

 
Figure 11. Example of crack pattern at the end of a simulation 
for the H,S specimen and a concrete formulation given by 
fc = 30 MPa and dφ  = 0.015 
 

 
Considering, again, a finite element volume like a 

material volume and assuming that physical mecha-
nisms influencing the cracking processes remain the 
same whatever the scale of observation, the tensile 
strength and the density W are randomly distributed 
on the elements. And again, a series of 10 simula-
tions is performed. Results in terms of mean curve 



are compared to results obtained using the discrete 
approach (Figure 10). And an example of crack pat-
tern is also shown on Figure 11. 

 
 
 

4 CONCLUSION 

On the basis of a probabilistic and discrete model-
ing, the cracking processes occurring in concrete 
specimens under tension are analyzed. They clearly 
show that the behavior of concrete is highly influ-
enced by its inner heterogeneity and the initial de-
fects in the material, exhibiting therefore, strong 
volume effects. This approach is based on the main 
hypothesis that the physical mechanisms taken into 
account in the model at the scale of the material are 
representative of the one at the scale of the speci-
men. This kind of approach makes it possible to per-
form a real numerical experimentation of the axial 
behavior of the material. Pre- and post-peak behav-
iors are then analyzed in statistical terms. Mean val-
ues and standard deviations of the tensile strength 
(and also those of the young modulus) are related to 
the compressive strength and to the ratio volume of 
material to volume of the coarsest grain. The analy-
sis of the post-peak behavior can lead to the same 
remark concerning the mean evolution and the dis-
persion which were noted. 

On that bases, principles of a simplified macro-
scopic modeling of the uniaxial behavior of concrete 
are given. This kind of approach will deal mainly, in 
the long term, with the structural analysis. 
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