
1 INTRODUCTION  

The occurrence of cracks in reinforced concrete 
structures is inevitable because of the low tensile 
strength of concrete. Cracks form when the tensile 
stress in concrete exceeds its tensile strength. Crack-
ing in reinforced concrete structures has a major in-
fluence on structural performance, including tensile 
and bending stiffness, energy absorption capacity, 
ductility, and corrosion resistance of reinforcement. 
Cracking at the service load should not extend to 
such a limit that it spoils the appearance of the struc-
ture or leads to excessive deformation of the mem-
bers. This may be achieved by specifying an allow-
able limit on crack width values. In order to assure a 
satisfactory performance of the structure even under 
service loads, an important limit state i.e., the limit 
state of serviceability (cracking) is introduced into 
the limit state design procedure.  This limit state is 
assumed to be satisfied if crack widths in a concrete 
member are within a maximum allowable limit. 
While the need for a crack limit state has been uni-
versally agreed on, the formulae for predicting the 
crack width extensively vary in the various codes of 
practice. Inspection of crack width prediction proce-
dures proposed by various investigators indicates 
that each formula contains a different set of vari-
ables. A literature review also suggests that there is 

no general agreement among various investigators 
on the relative significance of different variables af-
fecting the crack width, despite the large number of 
experimental work carried out during the past few 
decades. Taking all the parameters into account in a 
single experimental program is not normally feasible 
due to the large number of variables involved, and 
the interdependency of some of the variables.  

In this paper, an attempt is made to predict an ex-
pression for crack width by incorporating a bilinear 
strain softening function and all the variables which 
influence crack widths. The proposed formulas are 
also compared comprehensively with the test results 
available in the literature (Hognestad, 1962; Kaar 
and Mattock, 1963; Clark, 1956).  To access the 
relative performance of the proposed crack width 
equation, it is compared with the international codes 
of practice. 

2 CRACK WIDTH  EXPRESSION  

Gerstle et al (1992) developed simplified assump-
tions that allow analytical solutions for flexural 
cracks in singly reinforced beams in bending while 
retaining the significant features of the fictitious 
crack model (FCM) which was introduced by 
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Hilllerborg et al. (1976).  The FCM has the potential 
of being very useful in understanding the fracture 
and failure of concrete structures.  It   assumes that 
the fracture process zone at the crack tip is long and 
infinitesimally narrow.  The fracture process zone is 
characterized by a normal stress versus a crack 
opening displacement curve which is considered as a 
material property.  The shape of this stress-crack 
opening displacement (softening) curve can be either 
linear/bilinear/tri-linear or a power law.  Gerstle et 
al.(1992) assumed a linear softening relation in his 
formulation and predicted the crack width as a prod-
uct of a constant C (a function of brittleness of con-
crete or a function of reinforcement) and critical 
crack opening displacement CODcr ( a function of 
the softening curve or the fracture energy).  This ex-
pression for crack width does not explicitly include 
such parameters as the diameter/perimeter of rein-
forcement which influences the values of crack 
widths.  In the literature, bilinear softening seems to 
describe the behavior of concrete in tension more 
appropriately than the linear softening.  An attempt 
is made here to work out an expression for crack 
width based on bond mechanics (bar slip included), 
and formulated as the product of the crack spacing 
times the mean strain in the reinforcement by incor-
porating the bilinear softening function.   

2.1 Significance of the strain softening curve 

The stress-crack opening law for concrete in tension 
is found to have a descending branch in the post-
peak region.  The simplest idealization for this be-
havior is a linear softening relation, but it is more re-
alistic to consider a bilinear softening relationship. A 
typical bilinear shape of the softening curve is 
shown in Figure 1.  Linear softening seems to be an 
obvious choice when the data describing the actual 
material behavior is limited.  However, linear soften-
ing proved to overestimate structural capacity. 
Therefore, bilinear curves have been accepted as 
reasonable approximation of the softening curve for 
concrete, although there seems to be no agreement 
about the precise location of the kink point.  In the 
literature, several researchers have given the kink 
positions (break points) on the basis of experiments, 
and there are quite a few simple methods to identify 
any bilinear softening to fit particular experimental 
data (Guinea et al. 1994).  Brincker and Dahl (1989) 
reformulated the substructure method introduced by 
Petersson (1981) for the three point bending speci-
men in order to obtain complete load displacement 
relations.  From the sensitivity analysis of their 
method using linear, bilinear and tri-linear models, it 
is evident that the shape of the stress crack opening 

displacement relation has significant influence on 
the results. However, tri-linear approximation does 
not seem to deviate significantly from the bilinear 
approximation indicating the sufficiency of the bi-
linear approximation. In this study, the crack width 
is calculated considering specific kink posi-
tions(break points)  as suggested by Brincker and 
Dahl (1989), having the value of k1 = 0.308 and k2 = 
0.161.  

 

Figure 1. Typical bilinear stress versus crack    opening dis-
placement curve 

2.2 Proposed methodology using a flexural 
cracking model which incorporates the bilinear 
softening function in   tension with non linearity of 
concrete in compression 

The main assumptions of the model are as follows: 

1. Plane sections remain plane before and after 
deformation within the central elastic band. 

2. The beam is considered rigid outside the cen-
tral elastic band. 

3. Fictitious crack surfaces remain plane after 
deformation. 

4. The stress versus crack opening displacement  
curve is assumed as bilinear softening in tension. 

5. Concrete is homogeneous, isotropic and non-
linear elastic. 

6. The steel has a perfectly plastic material 
model. 

7. The reinforcement can slip with respect to 
concrete within the central elastic band (2ka). 

8. The centroid of the steel is located at the bot-
tom of the beam and the concrete cover below the 
steel    level is deliberately neglected for simplicity 
in the derivation of the expressions. 

As shown in Figure 2, this model considers a vary-
ing central elastic band whose width varies k times 
the length of crack from the crack surface.  The 
width of the central elastic band considered is 2ka, 
i.e., at a distance of ka on either side from the crack 
surface, where k is a constant and a is the crack 
length.  The beam is considered rigid outside the 



central elastic band.  The model is capable of pre-
dicting the flexural behavior of concrete beams 

Figure 3, shows an idealization of the deformed 
shape (greatly magnified) of a crack in a reinforced 
concrete beam, together with normal stress distribu-
tion considering a bilinear stress crack opening dis-
placement relationship.  

 

 

 
 

 
 
 
 
 
Figure 2.  Schematic diagram of the beam showing central 
elastic band width 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Schematic of stress variation (Case I - Stage I) 
 
 

Two cases are considered and they are as follows: 

i) Case I, the fictitious crack is not sufficiently 
open to relieve the normal stress at its mouth 
i.e., (CMOD < CODcr).  Case I is further 
subdivided into two stages, viz. Stage I (just 
before the kink) , and Stage II (just after the 
kink), and  

ii) Case II, in which the fictitious crack is suffi-
cient open to relieve the normal stress at its 
mouth (CMOD > CODcr).  

 
 

2.3 Normalization of Parameters 

− Crack mouth opening displacement   

                     C =
cr

CMOD
COD

                                                   

− Crack length  = A = a
h

 

− Distance from crack tip to neutral axis  

                          S= s
h

 

− Distance from neutral axis to top fiber of beam  

                      T= t
h

 

−  Material-scale parameter for concrete=  

               β = t

c cr

 f  h
E  COD .

                 

− Material parameter(for reinforcement), nα ρ=  
   
Where, m is the applied moment, n = Es/Ec is the 
modular ratio, ρ  is the geometric reinforcement ra-
tio and α is the mechanical reinforcement ratio. 

Deriving on similar lines to that suggested by Ger-
stle et al., (1992) the expression for the crack mouth 
opening displacement (CMOD) is obtained at vari-
ous stages of loading as equal to constant C multi-
plied by critical crack opening displacement 
(CODcr). The CMOD is nothing but the crack width 
at any point of loading in the reinforced concrete 
flexural member at the level of steel.  

CMOD = C*CODcr 
 

 From the derivation of the flexural cracking model 
with bilinear softening in tension and nonlinearity in 
compression, we have the strain at the bottom of the 
beam which is also equal to the strain at the level of 
steel.  
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Substituting (3) in (1), 
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As  we  know,  

t
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and φ = Diameter of the reinforcing bar. 

Using the above relationships, we get 
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Where, CMOD = Maximum crack width at the level 
of steel & 1k   2k  = Kink Positions(Break points). 
Therefore, Maximum crack width in the above ex-
pression is a function of nine variables viz: rein-
forcement ratio ( )α , brittleness of concrete ( )β , ten-
sile strength of concrete ( )tf , stress in steel ( )sf , 

diameter of bar ( )φ , perimeter of bar ( )επφ , cross 
section dimensions of the beam (b, h) and the strain 

in steel ( )sε , which directly influence the crack 
width prediction and hence exhibits a physically re-
alistic expression.  The crack width in question is at 
the level of the reinforcement.  The crack width at 
the bottom of the beam with the reinforcement cover 
shall be equal to [(h-x) / (d-x)] times the crack width 
at the level of steel, where, h and d are overall depth 
and effective depth respectively and x is the neutral 
axis position  from the top fiber. In the above ex-
pression for crack width Eq. 7 is derived from a 
flexural cracking model considering bilinear strain 
softening in tension and non-linearity of concrete in 
tension and  one of the assumptions is that there is a 
complete slip between the crack face and the steel.  
However, this need not be the case and the predic-
tions made using Eq. 7 are likely to be conservative 
estimates of the crack width.  Further, it can be un-
derstood physically that there cannot be a complete 
loss of bond between the steel and concrete in ordi-
nary bond conditions. Therefore, in order to account 
for this anomaly, a restraining bond force is intro-
duced against complete loss of bond between the 
steel and concrete, to predict crack width values that 
are realistic.  The effect of this crack closing force 
on the predicted values of the crack width is dis-
cussed in the following section. 

3 CRACK WIDTH CORRECTION  

Assuming total loss of bond at the bar-concrete in-
terface within the distance + kA from the cracked 
plane is too conservative, since there is the restrain-
ing action due to bond.  Therefore, in order to realis-
tically model cracking and to avoid any crack-width 
overestimation, it is necessary to introduce a re-
straining force at the level of the reinforcement and 
to find the crack-closing displacement at that level. 
This is done using the expression as given in the 
hand book stress intensity factors (Gdoutos 2003),  
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3  for plane stresses and  

k = ( )ν43−  for plane strains 
 

( )νμ +
Ε= 12 = Rigidity Modulus, 15.0=concreteν ,     

r = distance to the crack tip.  

1
totalΚ = Stress intensity due to applied load ‘P’ and 

tensile stress ‘ tf ’ of concrete. 



 
Figure 4. Schematic of the restraining force and the crack clos-
ing stresses 

     

The stress intensity factor KI is calculated from 
Dugdale’s model (Gdoutos 2003). According to this 
model there is a fictitious crack equal to the real 
crack (L) plus the length of fracture process zone 
(C). The crack is loaded by a restraining force (P) at 
the level of steel and an additional crack closing 
stress which is equal to the tensile strength of con-
crete. Therefore, the stress intensity factor K1 

(total) 

acting at tip of the fictitious crack is expressed as: 

 
K1

(P)+K1
( tf )=K1

(total)                                         (9)                                                                                                  
 
K1

 (P) = Stress intensity factor due to applied loads 
P is 

( )

( )[ ] 2/11 **2
*2

LC
P

+
Ρ

=Κ
π

                             (10)                                                                                      

Where,  
C = length of fictitious crack obtained from the    

model. 
L = Real crack obtained from the model. 
P = Restricting force  
P = ( ) 09.0**2* tfDΒ  when D/B = 1. 

   =  ( ) 2.0**2* tfDΒ    when D/B = 2. 

   =   ( ) 26.0**2* tfDΒ  when 2 < D/B < 3. 

P =   ( ) 13.0**2* tfDΒ  when 3 < D/B<3.5. 

   =   ( ) 15.0**2* tfDΒ  when 3.5 < D/B< 4. 

    =   ( ) 41.0**2* tfDΒ  when D/B = 4.  

B = Width of the beam in mm.    
D = Overall depth of the beam, mm. 

=tf  Tensile strength of concrete in N/mm2. 
 
K1 

( tf ) =  The stress intensity factor due to tensile 
stress ( tf ) acting along the length of the fracture 
process zone. 
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Here, =tf  Cohesive force acting over the ficti-
tious region. 

 
 
Substituting Eq.10 and Eq.11, in Eq. 9 
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Substitutingθ π= , in Eqn. 8, we obtain the ex-
pression for the crack closing displacement at the 
level of steel as            
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Substituting K1 

(total) from Eqn. 12 into Eqn. 13 
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The restricting force P used in the expression is 
calculated as the product of the effective area of 
concrete Act around the reinforcement contributing to 
this effect and the maximum tensile stress ft of con-
crete.  The restricting force P for various combina-
tions of depth to width ratio (D/b) is calculated and 
it is substituted in Eq (3.10) to obtain the stress in-
tensity factor due to an applied load. Therefore  the 
crack is loaded by a restricting force (P) at the level 
of steel and an additional crack closing stress which 
is equal to the tensile strength of concrete and the 
stress intensity factor K1 

(total) acting at the tip of the 
fictitious crack  will be the combination of the stress 
intensity factor due to the applied load and stress in-
tensity factor due to tensile stress ( tf ) acting along 
the length of the fracture process zone. Therefore, 
the maximum crack width at the level of steel is 
computed as the difference in the crack width values 
with a complete loss of bond and the crack closing 
displacement due to the restricting force. 



i.e.,     (CMOD) w c f = CMOD w o c f - θU        (15) 

Where, (CMOD) w c f = Maximum Crack width with 
closing force    

CMOD w o c f = Maximum Crack width without clos-
ing force    

θU = Crack closing displacement due to closing force 

4 RESULTS AND DISSCUSSION 

In order to assess the soundness of the proposed ex-
pression (Equation 7 and 15), they are compared 
with the test results available in literature (Kaar and 
Mattock, 1963; Hognestad, 1962; Clark, 1956) and 
also with the expressions adopted in the international 
codes of practice. 

4.1 Test results of Kaar and Mattock 

Kaar and Mattock (1963) of the Portland Cement 
Association (PCA) modified the CEB equation 
(1959) to express the maximum crack width at the 
level of reinforcement on the concrete surface. Two 
full scale T-beams and a half and quarter scale 
model of one of these beams were tested. The T-
beam specimens were loaded by hydraulic rams un-
der the center diaphragm and were restrained by tie 
rods near the beam ends. This loading arrangement 
was used to simulate a negative moment region in a 
continuous T-beam. A 40-power microscope gradu-
ated in thousandths of an inch hydraulic actuators 
placed at mid-span was used to measure crack width. 

4.2 Test results of Hognestad 

Hognestad (1962) tested reinforced concrete mem-
bers with high-strength deformed bars and con-
cluded that (i)the mechanism of crack formation is 
such that a wide experimental scatter must inher-
ently occur. (ii) both maximum and average crack 
width are essentially proportional to the stress in 
steel and (iii) the crack  width that developed in the 
case of beams reinforced with state-of-the-art de-
formed bars was less than one half of that for plain 
bars. He reported crack widths at the centroid of re-
inforcement for steel stresses ranging from 20000 
lb/in2 (137.9 N/mm2) to 50000 lb/in2 (344.7 N/mm2) 
for every 10000 lb/in2 (68.9 N/mm2) increments.  

4.3 Test results of Clark  

Clark (1956) tested 54 specimens and reported 
maximum crack width and spacing for steel stresses 
ranging from 15000 lb/ in2 (103.4 N/mm2) to 45000 
lb/ in2 (310.2 N/mm2) at every 5000 lb/ in2 (34.5 
N/mm2) increment.  Crack widths on the tensile face 
were determined by the use of Tuckerman optical 
strain gages, strains in the tensile reinforcement 
were measured with electrical resistance strain 
gages.  The location and extent of cracks were ob-
served and recorded.  A number of R/C Slabs and 
beams with different geometries and bar arrange-
ments were tested in 4-point bending.   

4.4 Consolidated test results 

The proposed method for predicting the maximum 
crack width is compared using the test results re-
ported in the literature (Hognestad 1962), Kaar and 
Mattock (1963), (Clark 1956). For each beam, the 
theoretical crack width obtained by means of the 
proposed expression is divided with the correspond-
ing experimental crack width i.e., (Wcal/Wexp) and 
the average ratio is obtained at steel stress of  275.8 
N/mm2 (40000 Psi ). The respective standard devia-
tion and coefficient of variation are also obtained as 
shown in the Table 1.   

4.5 Comparison of the crack widths from the 
proposed expression along with the Codes of 
Practice with reference to the test results of 
Hognestad 

In order to assess the relative performance of the 
proposed expression (Equation 7 and  15), the aver-
age crack width ratios, standard deviation and coef-
ficient of variation are obtained for the test results of 
Hognestad (1962) and compared with the corre-
sponding values obtained from the expression 
adopted for crack width prediction in the interna-
tional codes of practice. 

4.6 Discussion of  the test results 

From the results obtained (Tables 1 & 2) the follow-
ing points are noted: 
 
From Table 1, it is observed that an average crack 
width ratio of 1.081 and the coefficient of variation 
of 22.71% is obtained at kink position of (K1=0.308 
K2=0.161) for the test results of Hognestad (1962), 
indicating that theoretical values of crack width ob-



tained from the proposed expression is closer to the 
experimental results.  
 
For the test results of Kaar and Mattock, the pro-
posed expression produces a crack width ratio of 
1.093 with a standard deviation 0.226 and a coeffi-
cient of variation of 20.714% at kink position of 
(K1=0.308 K2=0.161) These values indicate that the 
crack width predicted by the proposed expression is 
consistent and reliable, and that the coefficient of 
variation is lower.  

 
For the test results of Clark, the proposed expression 
provides a crack width ratio of 1.154 at kink position 
of (K1=0.308 K2=0.161).  The deviation of theo-
retical crack width from experimental crack width 
was 0.284 with a coefficient of variance of 24.614%. 
 
From Table 2, it can be observed that the BS 8110 
equation underestimates the crack width by 27.4% 
for the test results of Hognestad at a steel stress of  
275.8 N/mm2 (40000 Psi ) with an average crack 
width ratio of 0.726 and a coefficient of variation of  
29.46%. 
 
The Model code equation 1990 also underestimates 
the values of crack width by 38% for the test results 
of Hognestad at a value of steel stress equal to 275.8 
N/mm2 with an average crack width ratio (Wcal/Wexp) 
and coefficient of variation as 0.620 and 43.55% re-
spectively. 
 
The Gergely and Lutz equation which is based on a 
statistical analysis provides an average crack width 
ratio of 0.892 with a coefficient of variation of 
23.57% at a steel stress of 275.8 N/mm2 (40000 Psi ) 
for experimental values of Hognestad. It can be ob-
served that even though the coefficient of variation 
is lower, the average crack width is still underesti-
mating by 10.8%. 
 
For the test results of Hognestad, the Chinese code 
underestimates the values of crack width by 16.7% 
with a coefficient of variation of 24.02% at a steel 
stress of  275.8 N/mm2 (40000 Psi). The average 
crack width ratio is 0.833, which clearly shows that 
even though the coefficient of variation is lower, the 
crack width ratio still underestimates. 
 

From Table 2, it is also observe that the proposed 
expression provides better crack width ratio (1.081) 
and coefficient of variation (22.708%).  These statis-
tics indicate that this proposed expression is able to 
predict consistent crack width values with a signifi-

cantly lower coefficient of variation as compared to 
the crack width values provided by the codes. 

 
Table 1. Statistical comparison of the proposed expression at 
kink positions (break points) of bilinear curve (K1=0.308 
K2=0.161) with the reported test results. 
 

(Crack width ratio)Wcal/Wexp for 
Bilinear (K1=0.308 K2=0.161) 

 Source 
 

No. of 
observa-

tion 
 

Avg Std. 
Dev 

C.O.V 

Clark 15 1.154 0.284 24.614 

Kaar & 
Matock 6 1.093 0.226 20.714 

Hognesta
d 27 1.081 0.246 22.708 

 
 
Table 2. Statistical comparison of various codes with the      
proposed method.  
 

(Crack width ratio)Wcal/Wexp for 
Bilinear (K1=0.308 K2=0.161) 

 

Source  

No of 
observ-
ation 

 

Avg Std. 
Dev 

C.O.V 

BS 8110 
equation 32 0.726 0.214 29.46 

Model code 
equation 32 0.620 0.270 43.55 

Gergely 
and Lutz 
equation 

32 0.892 0.210 23.57 

Chinese 
code equa-
tion 

32 0.833 0.200 24.02 

Bilinear 27 1.081 0.246 22.708 

 
The graphical illustration of the statistical compari-
son of the proposed expression at kink position 
(break point) of the bi-linear curve (k1 = 0.308  &  k2 
= 0.161)  as given in Table 1 is presented in Figure 5 
and the graphical illustration of the statistical com-
parison of the various codes with the proposed 
method as given in Table 2 is presented in Figure 6. 
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Figure 5. Graphical representation of the average crack width 
ratio and Coefficient of variation with reference to test results 
of various investigators.  
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Figure 6 Comparison of Average crack width ratio and Coeffi-
cient of variation of proposed expression along with various 
codes of practice using the test results of Hognestad (1962). 

5 CONCLUSION 

In the present study an expression is developed to 
predict crack width in R/C beams, taking advantage 
of the cohesive-crack model.  This expression is a 
function of the brittleness of concrete (a function of 
the tensile strength of concrete, beam depth, elastic 
modulus of concrete and the fracture energy), rein-
forcement ratio, crack length, bar diameter, stress in 
steel and Young’s modulus of steel. To assess the 
validity of the expression, it was compared with 
other test data on crack width and crack spacing and 
also with various international codes of practice.  
The results show that the proposed approach ob-
tained from the model using the bi-linear softening 
makes it possible to evaluate more accurately the 
crack width, compared to other formulations.  Fur-
thermore, the proposed approach has a rational and 
mechanically-sound basis, since it is rooted in con-
crete fracture mechanics.  
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