
1 INTRODUCTION 
 
Zero thickness interface elements have been used 
quite successfully since the late 80s to simulate frac-
ture problems in concrete and other quasi-brittle ma-
terials (Rots 1988, Rots et al. 1990, Sluys & Berends 
1998, Carol et al. 2001, Caballero et al. 2006,). 
These interface elements, which are inserted along 
the mesh lines, exhibit double nodes and are in gen-
eral equipped with elasto-plastic or damage constitu-
tive laws involving penalty-type elastic stiffness K 
of very high but finite value. Among the advantages 
of these elements is the natural easy way in which 
they can be incorporated in standard FE codes and 
strategies.  

However, on the negative side are: 1) extremely 
high values of K used to minimize spurious interface 
compliance can generate ill-conditioning problems, 
and 2) the duplication of nodes due to the insertion 
of interfaces may increase dramatically the computa-
tional effort for the solution of the overall problem. 
In attempting to overcome these difficulties, some 
procedures have been proposed to detect crack open-
ing conditions along mesh lines of a standard FE 
mesh, and to insert interfaces only along those lines 
effectively cracked (Camacho & Ortiz 1996). How-
ever, in the literature, those procedures were limited 
to middle nodes of quadratic elements, only location 

at which the evaluation of inter-element forces be-
comes trivial.  

In this context, the authors of this paper have re-
cently proposed a new procedure for the evaluation 
of inter-element forces transmitted across the mesh 
lines concurring at a “corner” node of a standard FE 
mesh. The procedure (Ciancio et al. 2006) is based 
on a double minimization of the (unknown) stress 
tractions across such mesh lines with respect to the 
projections of the (also unknown) stress tensor at the 
same node. It can be applied to linear or quadratic 
elements and it leads to very satisfactory results in 
all examples analyzed, with the added bonus of pro-
viding also the nodal stresses and therefore fulfilling 
the role of a cheap, effective and advantageous 
stress “smoothing” technique. In the present paper, 
the authors take one step further and use that proce-
dure to evaluate crack opening conditions at the cor-
ner nodes of the mesh. The study is developed with-
out a priori systematic insertion of elastic interface 
elements, and assuming each line of the mesh as a 
potential crack, the opening of which is governed by 
a rigid-plastic model. Due to this, and to the fact that 
in the case of crack opening an interface element 
would indeed have to be inserted along that line, one 
can understand the procedure as dealing with rigid-
plastic interface element which stay totally closed 
until cracking conditions are exceeded. 
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2 BASIC CONCEPTS AND ASSUMPTIONS  

The present study assumes that continuum elements 
behave linearly elastic and all the potential cracks 
are initially closed. External load is characterized by 
an increasing load factor µ. Because the study fo-
cuses on the phenomena happening until the opening 
of the first crack at a node, the overall FE calcula-
tion may be considered as linear elastic during the 
entire study. 

2.1 Possible crack mechanisms 
The most general mechanisms of growth and propa-
gation of a crack through the interior corner node of 
a common FE mesh are illustrated in Figure 1. In 
any circumstance, the formation of a crack implies 
the separation of lines and the duplication (or tripli-
cation) of nodes. When a crack nucleates or propa-
gates through a corner node, at least two mesh lines 
separate. It means that the failure conditions must be 
simultaneously satisfied at least by two interfaces. 
This simple statement is crucial for the understand-
ing of the kinematic conditions for the formation of 
a crack. 

 
Figure 1. In a) interior corner node A of a generic FE mesh; in 
b) nucleation of a crack through node A; in c) propagation of a 
crack through node A; in d) bifurcation of a crack through A. 

2.2 Interface rigid plastic constitutive law 
As previously mentioned, each mesh line acts as a 
potential predefined path for the formation of a 
crack. Thus, each mesh line can be considered as a 
rigid-plastic interface element that remains closed 
provided that some failure opening conditions are 
not satisfied. The failure surface is defined in the 
standard way by means of a scalar function F equal 

to F(t,p), where t denotes the stress vector in terms 
of normal and shear components (σ,τ), and p de-
notes a collection of parameters which define the 
shape and the size of the surface and that in general 
evolve during the crack process.  

 
Figure 2. Failure surface F defined in the normal σ and tangen-
tial τ stress plane. The vector m is the flow rule vector associ-
ated to the tractions t and assigning the direction of the irre-
versible relative opening displacement vector w. 

 
According to plasticity, as stress tractions in-

crease at the interface, two situations may occur: 
− F(t,p)<0, i.e. stress tractions are still inside the 

rigid domain, thus the interface remains closed; 
− F(t,p)=0, i.e. stress tractions have reached the 

fracture surface (see Fig. 2).  
Note that, as in plasticity, F > 0 is not allowed, 

and that the cracking criterion F(t,p) = 0 is only a 
necessary condition for crack opening. In the case 
that the crack would start to open, the opening direc-
tion will be given by a flow rule vector m in a way 
also similar to standard plasticity, that is: 
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in which w is the relative opening displacement of 
the crack, λ is a scalar multiplier indicating the in-
tensity of the opening, and m is the direction of the 
displacement or flow rule (see Fig. 2). This direction 
may be conveniently defined as the gradient of P, 
being P the plastic potential, which is equal to F if 
the model is associated. The rest of the rigid-plastic 
crack opening model is not defined since not strictly 
required for the purpose of this study. 

3 THE THREE STAGES BEFORE THE 
OPENING OF A CRACK 

The values of stress tractions across the mesh lines 
concurrent at an interior corner node of the mesh 
must be calculated first, in order to determine the 
opening conditions of a crack through that same 
node. Simple equilibrium equations are not suffi-



cient to obtain these variables. A procedure is 
needed as a post-process of the standard FE calcula-
tion. For a purely rigid state (before any other crack 
has opened), this procedure has been recently devel-
oped by the authors of this paper (Ciancio et al. 
2006) and  it is briefly presented in the following. 

On the left side of Figure 3 an interior node of a 
generic FE mesh is represented, to which N elements 
are connected. On the right side, the nodal forces fi 
(i=1,N) obtained by a standard FE calculation and 
the nodal inter-element forces ri (that represent the 
unknowns of the problem) are reported. 

Establishing elementary equilibrium equations at 
each element tip between equilibrium nodal forces 
and the two inter-element forces on each side, and 
making a simple trivial count, one obtains that there 
are 2N unknown variables while only 2N-2 linear 
independent equilibrium equations. Thus, the inter-
element forces are undetermined and their values 
depend on two arbitrary parameters, which for the 
sake of convenience are chosen equal to the compo-
nents of one the inter-element force vectors denoted 
as r . Now, a procedure is established to determine 
these two arbitrary variables. For each interface, the 
nodal inter-element force, initially unknown, is di-
rectly related to the inter-element stresses or stress 
tractions t via the contributing area concept: 
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where Ωi stands for the contributing area (this area 
can be determined using the principle of virtual 
work in a way similar to the standard procedure to 
calculate nodal forces equivalent to external distrib-
uted forces), and Qi stands for the rotation matrix 
from the global (x,y) to the local (ni, si) reference 
system (see Fig. 3). 

 
 
Figure 3. On the left, an interior corner node of a generic FE 
mesh is illustrated. On the right, the N element f and inter-
element r nodal forces are enlightened, as well as the constant 
distribution of the inter-element stresses along the contributive 
area Ω and the local reference system (n,s). 

 
At the same point (corner node), an a priori un-

known nodal stress tensor T is defined, and the fol-
lowing minimization function is considered: 
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in which the differences between the equilibrated 
stress tractions (obtained by Equation 2) and the pro-
jections of the (unknown) nodal stress tensor, along 
the normal and tangential directions, are squared and 
summed for all the mesh lines converging onto the 
corner node. Note that, by virtue of the nodal equi-
librium equations, the inter-element equilibrated 
stress tractions may be ultimately expressed in terms 
of the two scalar variables contained in the arbitrary 
indeterminate vector r . Therefore, the scalar func-
tion in Equation 3 depends on the three components 
of T and on the two components of r . 

The missing equations are obtained by the double 
minimization of Equation 3. First, it is assumed that 
the arbitrary force r  is known, and the values of the 
components of the nodal stress tensor T that mini-
mize Φ are obtained by setting equal to zero the de-
rivatives of  Φ with respect to those same three com-
ponents. This has to be done in closed form, since 
the arbitrary force is actually not known in advance, 
and the resulting expressions are functions of those 
two arbitrary force components. Then, from the 
three new equations obtained, the components of the 
nodal stress tensor are isolated and substituted back 
into the expression of Equation 3, so that the mini-
mization function becomes actually a function of the 
two components of r only. Then a second minimiza-
tion of the function is performed, also in closed 
form, this time with respect to the two components 
of the arbitrary inter-element force r . 

The result of the above derivation turns out sur-
prisingly simple, leading to the linear system: 

⋅ − =D r d 0  (4) 
from which the values of the r  components can be 
easily obtained as the solution of a 2x2 linear sys-
tem. From these, using previous equations one can 
recover all the inter-element forces and stresses, as 
well as the nodal stress tensor. The values obtained 
in this way have been verified in several examples, 
and they turn out to be always exact for a uniform 
stress state (i.e. the nodal stress tensor T coincides 
with the prescribed stress state on the overall mesh, 
and all the stress tractions t sit on the corresponding 
Mohr circle). For a non-uniform stress state, the 
stress tractions may not sit exactly on the circle, and 
the circle itself may not coincide exactly with the 
expected stress state. However, they represent the 
best fit possible by the least square criteria em-
ployed, depending on the degree of refinement of the 
mesh and on the approximation order of the finite 
elements used (linear, quadratic, etc). In any case, 
the overall accuracy always turns out to be (at least) 
equal or (generally) better than the results obtained 
with alternative available techniques such as the 
stress average smoothing procedure. In the reference 



paper (Ciancio et al. 2006), the above theory is also 
extended to corner nodes on the domain boundary, 
as well as on the interface between two materials. 

3.1 Stage 1: cracking criterion reached by one 
single line 

The previous derivation to obtain inter-element trac-
tions is only valid while all of the resulting stress 
tractions on the mesh lines converging onto the cor-
ner node remain inside the cracking criterion in 
Mohr space, as for instance depicted on the left part 
of Figure 4. But for increasing external loads, even-
tually, one of the lines will reach the failure crite-
rion. For the first line crack at the first node in the 
FE mesh, this contact point may be easily located by 
numerical (e.g. mid-point algorithm) or analytical 
procedures (e.g. see closed-form solutions for con-
tact points in hyperbolic loading surfaces in Gens et 
al. 1988), leading to the specific value of the exter-
nal loading factor µ1, for which this condition takes 
place. From this point on, for an increasing external 
loading factor, the formulation must change since 
otherwise the cracking criterion would be exceeded 
at that crack line, something it was assumed not pos-
sible in the previous section. 

 

 
 
Figure 4. On the left: “stage 0”, i.e. the tractions are inside the 
rigid domain. On the right: “stage 1”, i.e. the nodal stresses of 
one interface tk has reached the fracture surface F(tk)=0. 

 
On the other hand, the question may arise 

whether at this point a crack may already open 
through the corner node. This is, however, not pos-
sible since kinematic compatibility at the node im-
plies that, if two element tips detached from each 
other, two (and not only one) lines at least would 
have to exhibit crack opening and therefore also 
would have to have reached the cracking criterion, 
which at this “stage 1” is not the case yet. The situa-
tion is represented in the right side of Figure 4, 
where the stress traction on one of the lines (tk in the 
example) is already on the cracking surface while 
the others are not. 

For increasing external loading factor beyond the 
first contact point (µ>µ1), the stress tensor at the 

node and the corresponding line tractions must still 
grow, except for the mesh line for which the crack-
ing criterion has been reached, for which stress trac-
tions are subjected to the condition F(tk)=0, which 
means that they can remain constant or “slide” on 
the cracking surface. 

In this way, the previous condition acts as a con-
straint on the double minimization formulation pre-
viously developed for “stage 0”. 

One way to introduce this constraint into the for-
mulation without the need of Lagrange multipliers 
consists of: 
1 choosing the arbitrary inter-element force as that 

corresponding to the line for which the cracking 
criterion has been reached, i.e. r =ΩkQktk (in-
verse of Equation 2); 

2 using a specific cracking criterion expression to 
relate the two components of the stress traction 
on that line, and therefore reducing the arbitrary 
variables from two (the components of r  in the 
global reference system x, y) to one (one compo-
nent of the stress traction). 
From the expression F(σk,τk)=0  one can obtain 

the normal component σ as a function of τ. Thus do-
ing, the tractions laying on the fracture surface F 
may be expressed in vector form as: 
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which means that the only arbitrary variable in the 
system is now the shear component τk at the line 
having reached the cracking criterion, which for 
convenience has been renamed as τ .  

By using previous relation in Equation 5, the 
original arbitrary forces r  may also be expressed in 
terms of the only unknownτ : 
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and therefore all the remaining N-1 inter-element 
forces and stresses may also be expressed in terms of 
the same single arbitrary variable τ . Under these 
conditions, the same objective function Φ as in pre-
vious subsection is considered, although now it only 
needs to be minimized with respect toτ . This is 
done by using the chain rule: 
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The last term of previous equation, renamed for 
simplicity r ’, may be simply evaluated by differen-
tiation of Equation 6. 

Taking into account now that the derivative of Φ 
with respect to r  is the same as in Equation 4, pre-
vious Equation 7 can be finally written as: 
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This actually constitutes a scalar equation from 
which the value of τ can be obtained. Once τ  is 
known, the inter-element forces of all the mesh lines 
around the corner node can be computed using 
Equation 6 and the nodal equilibrium equations. 

3.2  Stage 2: cracking criterion reached by two 
lines 

The derivation presented for “stage 1” in previous 
section, is valid as long as only one line converging 
on that node has reached the cracking criterion while 
the others still have not. But of course, if the exter-
nal loading factor µ keeps increasing (and lets re-
member here that from the structural/FE viewpoint 
this is still a linear elastic calculation, since no 
cracks have opened yet), the cracking criterion will 
eventually be also satisfied for a second potential 
crack line. Similar to previous section, the new con-
tact point may be located by numerical or analytical 
procedures, leading to the specific value of the ex-
ternal loading factor µ2 for which this second con-
tact takes place. From this point on, for an increas-
ing external loading factor, the formulation must 
change, since otherwise the cracking criterion would 
be exceeded at that second crack line, something it 
was assumed not possible in the previous section.  

On the other hand, the question may arise again 
whether at this point, with two lines converging on 
the same node having reached cracking criterion, a 
crack may already open through the corner node and 
be “visible” at the structural/FE level. However, in 
the general case these conditions are still not suffi-
cient for crack opening, due to the flow rule assump-
tions defined together with the cracking criterion in 
Section 1. The flow rule defines the direction of the 
opening for each of the cracks independently and it 
must also be satisfied simultaneously by the two 
cracks. As illustrated in Figure 5, the coincidence of 
the flow rule for the two cracking lines in the global 
coordinate system is not automatically ensured only 
by the fact that the cracking criterion is met for both 
of them. In fact, calculations show that in general 
this is not the case, which means that, in spite of sat-
isfying the failure conditions for both lines, the 
crack cannot open yet due to kinematic incompati-
bility. 

This situation of two concurring crack lines in 
failure state but without being able to open, will be 
maintained until the flow rules get realigned, which 
in general will take place for a higher loading factor 
µ3>µ2. 

The formulation for evaluating inter-element 
forces and stresses during “stage 2” with µ2<µ<µ3, 
does not require any minimization. As already said 
in previous subsections, basic equilibrium at each 

element tip between equilibrated nodal forces ob-
tained from the FE analysis and inter-element forces 
provides 2N-2 equations. The cracking criterion ap-
plied to the two cracking lines provides two addi-
tional equations, totaling 2N, which coincides with 
the number of the unknown components (two for 
each of the N inter-element forces or stresses). 

One procedure to solve the system is to write the 
failure criterion F for each of the cracking lines de-
noted by indices k and i: 
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Using Equation 2, the 2N-2 independent equa-
tions of equilibrium of the nodal forces can be re-
written in terms of N nodal inter-element stresses t. 
Adding to this system the two failure criterion equa-
tions in Equation 9 for the cracking lines i and k, one 
gets a system whose number of unknown is equal to 
the number of equations, and that, for this reason, 
may be solved in closed form. 

Note that the system coefficients involve the 
equilibrated FE forces on the concurrent element 
tips, and therefore the entire solution depends on the 
overall loading factor µ. Furthermore, the system 
may or not be linear depending on the particular ex-
pression used for the failure function F. 

3.3 Stage 3: onset of crack opening 
The formulation developed for stage 2 will be valid 
only until the kinematic compatibility for crack 
opening is achieved. This may actually happen in 
two ways: 
1 the stress tractions for one or more of the remain-

ing mesh lines (other than the two already on the 
cracking surface) also reach the cracking condi-
tion F(tl )= 0 with ,l k i≠  or 

2 the flow rules of the two cracking lines become 
parallel. 

 
Figure 5. Kinematic incompatibility when the flow rule vectors 
of two different lines concurrent to a node (k and i in the fig-
ure) are not parallel. 
 

In the first case, i.e. if one (or more) additional 
line(s) reaches the cracking criterion before the flow 
rules of the two original cracking lines of stage 2 be-
come parallel, the onset of cracking is actually rea-
ched on the only condition that the various flow 



rules constitute a set of linearly dependent vectors. 
This can be easily understood by considering that 
once cracks start opening, kinematic compatibility 
requires that the sum of the various relative dis-
placements for each opening crack should be zero. 
Given the arbitrary value of the inelastic multipliers, 
the satisfaction of this condition is practically en-
sured with three or more opening cracks, except if 
some of the flow rules would happen to be parallel, 
which could cause the remaining one to be linearly 
independent from the rest. This could happen for in-
stance in a triple crack if two of the cracking lines 
are on opposite sides of the node and have the same 
orientation (in which case in practice they could be 
considered as a single ‘through’ crack line). Except 
in these special situations, when a third line reaches 
cracking conditions the onset of cracking at the node 
is usually attained. 

If the second condition above is satisfied first (i.e. 
the flow rules of the two cracking lines from stage 2 
become parallel before any other line reaches the 
cracking criterion), that also marks the onset of 
cracking at the node. The opening crack is composed 
of two cracking lines that in general are not aligned 
and, therefore, the opening crack will exhibit a kink 
at the node, as shown in Figure 6. 

The identification of the precise loading factor µ3 
for which this second condition takes place may be 
done in two ways: 

(1) via incremental computations, i.e. by increas-
ing the external loading factor by small steps, re-
peating each time the calculations of stage 2 and 
verifying the direction of the corresponding flow 
rules until they coincide, or 

(2) via limit analysis, i.e. the loading factor µ3 
that satisfies the parallelism condition is considered 
as an unknown of the problem. 

 

 
 
 
Figure 6. Parallel condition (on the left side) of the flow rule 
vectors mi and mk of two lines concurrent to a corner node al-
lows crack opening (on the right side of the figure). 

 
Further details on this method are given in Cian-

cio et al. (in press). Independently of what method is 
used, when the flow rule coincidence is detected, 
stage 3 is achieved and the real opening of the crack 
becomes possible at FE level, marking the end point 
of the current study. 

Note that when two of the mesh lines have the 
same orientation and are located on opposite sides of 
the node, a straight crack becomes possible, and 
stage 2 and 3 may happen at the same time, i.e. 
when failure conditions are achieved for the second 
crack, at the same time flow rules turn out to be just 
parallel and the onset of crack opening is reached. In 
a similar way, under special conditions of geometri-
cal and loading symmetry, it may happen that failure 
conditions are reached simultaneously for two crack 
lines, and so stage 1 and 2 would merge as well. But 
under general conditions, the three stages should ex-
ist, as it will be illustrated in the following applica-
tion example. 

4 EXAMPLE 

The example of application consists of the mesh and 
loads depicted in Figure 7. The “corner nodes” un-
der study are the central node number 7 onto which 
four potential crack lines converge, and nodes num-
ber 4, 5, 9 and 10, onto which three potential crack-
ing lines concur. The mesh is made up of linear tri-
angles elements, which are assumed linear elastic. 
The mechanical parameters of the elastic continuum 
are: E=1000 MPa and ν=0.2. The specimen is 14 
mm wide and 18 mm high. The boundary conditions 
are represented on the left side of Figure 7. The uni-
form stress state applied along the vertical direction 
is twice the stress along the horizontal direction. A  
loading factor µ gives the increment of the applied 
load, whose nominal value is p0=20 MPa. The analy-
sis is performed in plane stress. 

 

 
 
Figure 7. Mesh used as example in Section 4. On the left: 
boundary conditions; on the right, potential crack lines. 

 
On the right side of Figure 7, the potential crack-

ing lines of the mesh are explicitly represented. The 
cracking criterion for these lines is the hyperbolic 
failure surface presented by Carol et al. 1997, thus 
that ( ) ( )2 22 tan tanF c cτ σ φ χ φ= − − + − . The pa-
rameters of the hyperbola are: χ=20 MPa, c=16.92 
MPa and tanφ=0.5. The other lines concurrent to 



nodes 4, 5, 9 and 10 are not taken into consideration 
as cracking lines.  

For the loading factor value of µ=1.0, the crack-
ing surface is reached on line 1 at node 7, as well as 
on line 1 at node 9. The tractions along the other 
lines in the mesh stay inside the cracking criterion. 
The results at this stage are shown in Figure 8 in 
which black dots represent the stress tractions t, cir-
cles represent the stress states T and hyperbolas rep-
resent the failure surface. 

 

 
 
Figure 8. Stage 1 for node 7 and 9 (one of the potential crack-
ing lines satisfies the cracking criterion); stage 0 for nodes 4, 5 
and 10 (the stresses along the cracking lines are inside the rigid 
doain). 

 
For µ=1.058855857 the situation at node 7 is the 

following: the traction vector for cracking line num-
ber 1 has been moving tangentially to the fracture 
surface until the tractions across cracking line num-
ber 4 have also satisfied the cracking criterion. This 
state represents the end of stage 2 for node 7 (as 
showed in Fig. 9) At node 9 the stresses of line 
number 1 remains on the cracking surface, but no 
other lines have reached the fracture surface for 
1<µ<1.0588558. At node 4, for µ=1.049557683, the 
stresses for line number 1 has attained the cracking 
criterion, and until µ=1.058855857 no other lines 
have reached this condition. At nodes 5 and 10 no 
lines have reached the cracking criterion. 

For µ=1.067790745, node 7 reaches the onset of 
cracking condition (stage 3) since the flow vectors 
of the cracking line 1 and 4 concurrent at this node 

become parallel. Nodes 4 and 9 remain in stage 1, 
and nodes 5 and 10 in stage 0. All this is represented 
in Figure 10. 

 
 

 
 
Figure 9. Stage 2 for node 7 (the tractions of two cracking lines 
lay on the fracture surface, but they still no satisfy the kine-
matic compatibility for the opening of a crack); stage 1 for 
nodes 4 and 9; stage 0 for nodes 5 and 10. 

 

 
 



Figure 10. Stage 3 for node 7 (the flow rule vectors of the 
cracking line number 1 and 4 are parallel); stage 1 for nodes 4 
and 9; stage 0 for nodes 5 and 10. 

 
This point would indicate the beginning of the 

non-linear analysis with one opening crack through 
lines 1 and 4, and, therefore, it marks the end of the 
current study devoted to clarify the conditions and 
stages until crack opening may occur. 

Note that, for the whole range between µ= 0 and 
the onset of crack opening at  µ=1.067790745, the 
stress state at the Gauss points of the continuum tri-
angular elements is uniform and equal to the exter-
nal applied load ( / 2,x yp pσ µ σ µ= = ). In contrast, 
during this loading process and after µ=1.0, the 
stress tractions along mesh lines that are potential 
cracks, undergo some redistribution as the cracking 
criterion is progressively reached. This has been 
shown by the different values of tractions at the 
nodes of the same mesh line for the same loading 
factor increment. 

5 CONCLUDING REMARKS 

The present study on the conditions for crack open-
ing along mesh lines concurring on a FE ‘‘corner 
node’’ is carried out in the context of a general re-
search line pursuing the development of new analy-
sis methods for fracture and cracking along mesh 
lines, which would not require to introduce double-
node interfaces along all mesh lines from the begin-
ning of the analysis, but at the same time would ver-
ify cracking conditions at ‘‘corner nodes’’ rather 
than only at ‘‘middle nodes’’ of quadratic elements 
as in existing literature (Camacho & Ortiz 1996). 
The study is based on a recent work published by the 
authors, in which a double minimization method was 
developed for the calculation of stress tractions 
along mesh lines concurrent on a corner node, with 
very few additional assumptions, mainly a crack 
opening along the mesh lines and the corresponding 
initial flow rule. The simple example presented illus-
trates some of the situations which can take place at 
nodes with four potential crack lines. The results can 
be however extrapolated easily to nodes with a dif-
ferent number of concurrent mesh lines. Additional 
details of this study may be found in Ciancio et al. 
(in press). 
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