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ABSTRACT: This paper is focused on the influence of structural size and geometry on the size and shape of
the fracture process zone (FPZ), and consequently on the progress of the fracture energy dissipated within the
FPZ during the fracture process in structures made of quasi-brittle materials. The effect of structural geometry
on its fracture behaviour is described here by two-parameter fracture mechanics, in particular by the constraint
of stress near the equivalent elastic crack tip. The local fracture energy concept is evolved. Attention is paid
to finding the intermediate stage of the fracture when there is no direct influence of the specimen boundary
on the FPZ size and shape (and consequently the value of fracture energy dissipated within it). The research
was conducted by means of numerical simulations of fracture tests in two testing configurations with different
constraint conditions. The features of the distribution of local/averaged fracture energy along the specimen
ligament are discussed. Based on the courses of these functions, it is shown that the size and shape of the FPZ
are strongly influenced by structural size and geometry.

1 INTRODUCTION

Tensile failure of quasi-brittle materials like concrete
typically starts with the development of a zone of in-
elastic material behaviour at a point within a structure
with the strongest stress concentration. In this fracture
process zone (FPZ) the material failure takes place
via many mechanisms on many levels of the material
structure. During failure propagation the FPZ changes
its location within the structure, and therefore also its
shape and size, and an opened stress-free crack re-
mains behind it. Since the size of the FPZ is large
in comparison to the usual dimensions of structural
members, a nonlinear theory covering the energy dis-
sipation of fracture mechanisms in the FPZ must be
employed in the structural analysis, design and as-
sessment of structures made of quasi-brittle materials.

Cohesive crack models are those most widely used
and are relatively the simplest ones which are able
to include the energy dissipation phenomena of con-
crete fracture. The efficient and reliable employment
of these models within the structural analysis depends
on successful tuning of the material model using ap-
propriate material parameters. Although the experi-
mental techniques for the determination of these char-
acteristics are simple in principle, their direct applica-
tion to the material model is usually incorrect due to
the influence of specimen size and geometry on the
gained material property.

The determination of the parameters of cohesive
crack models has been refined in several aspects over
the last two decades. The main effort was devoted
to the determination of “true” fracture energy GF ,
i.e. the value of fracture energy independent of the
size and geometry of the specimen (Duan et al. 2002,
2003a,b, Karihaloo et al. 2003). Such methods are be-
ing developed to eliminate the main drawbacks of the
direct application of the “work-of-fracture method”,
recommended by RILEM (1985), which is usually
used for the determination of fracture energy GF as
the essential parameter of the cohesive crack models.
The crucial disadvantage of the RILEM method is, as
was already mentioned, the dependence of the deter-
mined fracture energy on the specimen size and ge-
ometry, and moreover, within one geometry the value
decreases with decreasing ligament length.

The RILEM fracture energy therefore cannot be
generally regarded as the material property GF . Let
us denote it as Gf for this moment. The dependence
of Gf on specimen geometry and size is caused by
the change in the size and shape of the FPZ during
fracture propagation, which causes a change in the
amount of energy dissipated in the zone. This alter-
ation is prescribed by the location and distance of the
FPZ in relation to the free surfaces of the body. The
energy dissipated in the FPZ corresponding to cer-
tain size, geometry and boundary conditions of the
structure is known as the local fracture energy gf
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(Hu & Wittmann 1992). Its distribution along liga-
ments is not constant, which is the reason for the non-
uniform distribution of fracture energy Gf along the
ligament, as reported e.g. by Hu & Wittmann (1992,
2000), Trunk & Wittmann (2001), Duan et al. (2002,
2003a,b), and Hu & Duan (2004).

The most considerable change in the local frac-
ture energy gf is close to the beginning and the
end of the entire fracture process through the speci-
men ligament. In the beginning the FPZ develops, its
size grows and is influenced (limited), as well as its
shape, by the front free surface of the specimen (Hu
& Wittmann 2000). Therefore, the amount of energy
dissipated in the FPZ is lower at the beginning of the
fracture than the average value of gf dissipated far-
ther in the material where the FPZ is not directly in-
fluenced by the specimen’s boundaries. It is also well
understood that the value of gf decreases again when
the FPZ approaches the back free surface of the spec-
imen, because the size of the FPZ decreases. Also for
this phenomenon an appropiate model was developed;
the distribution of the local fracture energy along the
specimen ligament is modelled by a bi-linear function
(e.g. Duan et al. 2002, 2003a,b, Hu & Duan 2004).
However, the characteristics of the transitional point,
from which the decrease of gf starts are described
by the model rather schematically. Moreover, the util-
ity of this model has only been demonstrated on ge-
ometries where the fracture process ends in a region
of high constraint of stress (three-point bending and
wedge splitting specimens – Duan et al. 2002, 2003a,
Karihaloo et al. 2003). This paper tries to answer the
question of whether and how much the location of the
transitional point is dependent on specimen geometry
and size.

The intermediate stage in the fracture process (in
cases when the structure is large enough) is least in-
fluenced by the boundaries of the structure; therefore
this part should be exploited for the evaluation of the
true fracture energy, as proposed by Bažant (1996).
It is usually assumed that in this stage of the fracture
process the FPZ size is more or less constant and char-
acteristic of the material. However, generally even in
the intermediate stage the change in the size and shape
of the FPZ may be considerable. The alteration of
the FPZ in this stage is influenced by the stress dis-
tribution through the structure rather than directly by
its free surfaces (boundary effect). Nevertheless, the
stress distribution within the structure is, of course,
affected by the structural geometry. This phenomenon
is another topic of this proposed paper.

This paper is focused on the influence of structural
size and the characteristics of stress constraint at the
crack tip (which is a consequence of structural geom-
etry) on the size and shape of the FPZ, and conse-
quently on the variation of the local fracture energy

gf dissipated within the FPZ during the fracture pro-
cess in structures/specimens made of quasi-brittle ma-
terials. Attention is paid in particular to finding the
intermediate stage of the fracture when there is no di-
rect influence on the FPZ size and shape (and conse-
quently the value of gf ) from the specimen’s bound-
aries. The research was conducted by means of the
analyses of fracture test simulations in two testing
configurations with different constraint conditions.

2 FRACTURE ENERGY CONCEPT
Fracture energy is defined as the energy needed to
create a crack surface of unit area. According to
the “work-of-fracture method” (RILEM 1985), the
fracture energy is calculated as the area under the
whole load vs. load-point-displacement curve (P–d
diagram) recorded during the fracture test (possibly
extrapolated to the space for larger displacement than
measured) and divided by the area of the initial speci-
men ligament. For a specimen of width W , breadth B,
with an initial crack of length a0, the fracture energy
is calculated as

Gf =
1

(W − a0)B

∫
P dd . (1)

This method is based on the cohesive crack model ap-
proach (for concrete fictitious crack model by Hiller-
borg et al. 1976).

2.1 Non-constant fracture energy distribution
The fracture energy Gf determined according to the
RILEM method depends, within one geometry, on
the relative notch depth α0 = a0/W , as was discov-
ered in many experiments and summarized by Kari-
haloo et al. (2003). The non-constant distribution of
the local fracture energy gf along the specimen lig-
ament is the reason for this phenomenon. Since the
courses of Gf (α) from these published experiments
are only monotonously decreasing, a bilinear model
for the distribution of gf along a specimen ligament
was proposed (Duan et al. 2002, 2003a,b). This model
approximates the dependence of gf vs. the initial lig-
ament length W − a wia a bilinear function governed
by two parameters: the “true” fracture energy GF and
a transitional ligament length a∗l . At sufficient dis-
tance from the specimen’s free surface, the value of
fracture energy is constant and can be regarded as the
material property GF . From a specific point, whose
distance to the specimen’s back face is equal to a∗l , the
value of the fracture energy decreases and at the back
face it is zero. As a consequence, a simple method for
the determination of the “true” fracture energy from
a low number of tests was derived (Karihaloo et al.
2003). The value of GF determined by this method is
reported to be, at least within one geometry, indepen-
dent of the relative notch depth α0.
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Let us note that the bilinear fracture energy distri-
bution model and subsequently the simple method for
the determination of the “true” specific fracture en-
ergy has been introduced only for three-point bend-
ing (SEN-TPB) and wedge splitting testing configu-
rations which are characterized by high constraint (in
case of SEN-TPB only for longer cracks, see Fig. 3).

2.2 Local fracture energy
The local fracture energy gf is the specific energy
which dissipates in a FPZ of an actual size and shape
that corresponds to the size, shape and boundary con-
ditions of the specimen at a certain time point in
the fracture process. The distribution of this quan-
tity along the specimen ligament is generally far from
constant. As was noted above, its value is influenced
considerably by the relation of the boundaries of the
FPZ to the specimen’s boundaries.

The energy dissipated from the beginning of the
fracture process to its certain step i can be calculated
as

Wf,i =
∫ di

0
P dd− 1

2
P 2

i Ci , (2)

where P = load, d = load-point-displacement and
C = d/P = specimen compliance. Wf is referred to
as a work of fracture. For fracture energy it is true
that:

Gf,i =
1

∆aiB
Wf,i , (3)

where ∆ai = ai − a0 = equivalent elastic crack ex-
tension at time point i. As is obvious from Eq. 3, the
fracture energy Gf,i is an averaged value of the instan-
taneous specific work of fracture dissipated from the
beginning of fracture to its i-th step. The RILEM Gf

is the averaged fracture energy of the fracture process
through the entire specimen ligament.

In contrast, the local fracture energy is a spe-
cific work of fracture dissipated between two close-
together steps of the fracture process:

gf,i =
1

(∆ai −∆ai−1)B
(Wf,i −Wf,i−1) . (4)

The mutual relation between the calculation of Gf,i

and gf,i is illustrated in Fig. 1.
Note that at each point in the fracture process, the

value of gf is equal to the value of the fracture re-
sistanceR calculated asR = Ke

I/E, where Ke
I = the

stress intensity factor at an equivalent elastic crack tip.

3 FRACTURE PROCESS ZONE AND CRACK
TIP STRESS FIELD

The effect of the size and geometry of the testing
specimen on the value of the determined fracture en-

Figure 1: Calculation of work of fracture from a load–
displacement diagram

ergy Gf is a consequence of the change in the local
fracture energy gf during the fracture process. The
reason for the phenomenon most probably consists in
the change in the shape and size of the FPZ ahead of
the tip of the progressing macroscopic crack.

The relationship between the fracture behaviour of
a pre-cracked body and its geometry can be described
by means of two-parameter fracture mechanics based
on the power series expression of the crack tip stress
field which was introduced by Williams (1957). For
the stress tensor it is true that:

σij =
∞∑

n=1

(
An

n

2

)
r

n
2
−1 fij(n, θ) , (5)

where An = coefficients, fij = known functions and
r, θ = polar coordinates. Two-parameter linear elas-
tic fracture mechanics (LEFM) deals with the first two
terms of the series; the singular one which is appropri-
ate to the stress intensity factor KI of classical frac-
ture mechanics, and the constant one corresponding
with the T -stress:

σij =
KI√
2πr

fij(θ) + Tδ1iδ1j , (6)

where δkl = Cronecker delta.
In brittle and elasto-plastic materials, the size and

shape of an inelastic zone ahead of a crack tip is
generally governed by the stress multiaxiality at the
crack tip. The multiaxiality differs for different ge-
ometries and is the reason for the so-called constraint
effect, i.e. pre-cracked bodies with different geome-
tries might exhibit considerably different fracture be-
haviour, even if they are characterized by the same
stress intensity factor. For an explanation of the con-
straint effect not only singular but also higher order
terms of the Williams’ series must be taken into ac-
count. The T -stress is employed as a crucial compo-
nent in this theory because it can serve as a measure of
the stress constraint near the crack tip. When the con-
straint is low (T negative), the inelastic zone is rela-
tively large and is oriented in the direction of the crack
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Figure 2: Shapes of plastic zone for different constraint
conditions

growth, while in contrast, for high constraint (T pos-
itive) the inelastic zone is smaller (constrained) and
it is set in the opposite direction (see Fig. 2). Equiva-
lently to the T -stress a dimensionless biaxiality factor
B can be used for characterizing the constraint effect
as B = T

√
πa/KI (Leevers & Radon 1982).

The straightforward application of the two-
parameter LEFM in the field of quasi-brittle materi-
als is not possible, since no single sharp crack and
plastic zone ahead of its tip exists in these materi-
als. Failure mechanisms characteristic of the FPZ in
quasi-brittle materials differ substantially from failure
mechanisms appropriate to brittle and ductile materi-
als, which implies significant differences between the
shapes of nonlinear zones in these mentioned materi-
als. However, the relation of local fracture energy to
the parameters that enable a more accurate description
of the stress field near the macroscopic crack may be
useful within the explanation of the effect of speci-
men geometry and size on local fracture energy. Two-
parameter LEFM tools have already been employed in
connection with the equivalent elastic and/or cohesive
crack approach for capturing the effect of structural
geometry on the R-curve shape (Veselý & Keršner
2004, 2006).

4 NUMERICAL ANALYSES OF FRACTURE
TESTS

4.1 Goal and description of the analyses
The progress of both local and averaged fracture en-
ergy during the fracture process through the specimen
ligament is studied in this section. The possible influ-
ence of specimen size and geometry on both expres-
sions of the fracture energy is investigated.

Two testing configurations were chosen for the
study as representatives of two different types of
stress constraint at the crack tip: single edge notched
beam under three point bending (SEN-TPB – Fig. 4)
and double edge notched panel under tension (DEN-T
– Fig. 5). While DEN-T is characterized by low con-
straint in the entire domain of the definition of α, the
constraint is rather high in the case of SEN-TPB, es-

DEN-T
SEN-TPB

α [-]

B
[-

]

1.00.80.60.40.20.0

1.5

1.0

0.5

0.0

-0.5

-1.0

Figure 3: Plot of B(α) function for SEN-TPB and DEN-T
testing configurations

pecially for long cracks. The plot of B against α is
displayed in Fig. 3 (data from Knésl & Bednář 1998).

For each geometry, five sizes (depths of specimens:
W for SEN-TPB and 2W for DEN-T) were consid-
ered: 80, 160, 320, 640, and 1280 mm. Only the mid-
dle and both outside sizes are present in the proposed
paper. Breadth b of all sizes and both geometries was
equal to 80 mm. Other dimensions of the specimens
can be derived from schemes on Fig. 4 and 5. Five
notch lengths α0 for each specimen size were taken
into account: 0.1, 0.3, 0.5, 0.7, and 0.85.

The discussed fracture tests were performed virtu-
ally as numerical simulations using the commercial
FEM package ATENA (Červenka et al. 2003). The
analyses were conducted in a plain stress state with
a fracture–plastic constitutive model. The fracture
model is based on the classical orthotropic smeared
crack formulation and crack band model, and it em-
ploys the Rankine failure criterion and exponential
softening (Červenka et al. 2003). The parameters of
the material model were generated by the software
for the input cubic compressive strength of concrete
fcu = 61 MPa. The most important parameters of
the fracture model that influence fracture behaviour
are tensile strength ft = 3.719 MPa, fracture energy
GFEM

F = 92.98 Jm−2 and an exponential type of soft-
ening traction–separation law with the crack opening
at the complete release of stress wc = 0.1285 mm.

4.2 Results and evaluation of fracture energy
Load–displacement diagrams from numerical simula-
tions are displayed in graphs a), b), and c) on Fig.
4 and Fig. 5 for the SEN-TPB and DEN-T test-
ing configuration, respectively. Descending branches
of the P–d diagram predicted using LEFM from
GFEM

F used in numerical simulations are plotted in
the graphs as well (dotted line, labelled as LEFM).

Fracture energy was determined from the P–d dia-
grams. For each P–d diagram, the following quanti-
ties were calculated:

(i) Averaged fracture energy Gf for the very last
point of the curve was calculated from Eq. 3, where
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Figure 4: SEN-TPB testing configuration: Load–deflection diagrams from numerical simulations for considered specimen
sizes W and relative notch lengths α0 (graphs a), b), and c)) and appropriate courses of local fracture energy gf and average
fracture energy G∗

f as functions of relative effective crack length α (graphs e), f), and g)). Values of fracture energy G∗∗
f

for different sizes and relative notch lengths (graph d)).
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Figure 5: DEN-T testing configuration: Load–displacement diagrams from numerical simulations for considered specimen
sizes 2W and relative notch lengths α0 (graphs a), b), and c)) and appropriate courses of local fracture energy gf and
average fracture energy G∗

f as functions of relative effective crack length α (graphs e), f), and g)). Values of fracture
energy G∗∗

f for different sizes and relative notch lengths (graph d)).
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Figure 6: Crack opening stress profiles – SEN-TPB (left) and DEN-T testing configurations

∆a was assumed equal to W − a (the ligament
is completely broken). It is the same value as the
RILEM Gf using Eq. 1. This fracture energy is de-
noted G∗∗

f and the values for individual relative notch
lengths and individual sizes are plotted in graphs d)
on Fig. 4 and Fig. 5 for SEN-TPB and DEN-T, re-
spectively.

(ii) Averaged fracture energy Gf for each point of
the curve was calculated from Eq. 3, where equiva-
lent elastic crack extension ∆a at the point was deter-
mined from the secant specimen compliance accord-
ing to the effective crack model (Nallathambi & Kar-
ihaloo 1986). This fracture energy is denoted here as
G∗

f . Since the function of geometry used in the pro-
cedure of calculating ∆a is limited (in this case by
α = 0.92 for both considered geometries), the courses
of the G∗

f (α) functions plotted in graphs d), e), and f)
on Fig. 4 and Fig. 5 end at a point of fracture process,
where the unbroken ligament is formed by 8 % of the
specimen depth. The points which correspond to the
end points of the G∗

f (α) functions are marked in the
appropriate P–d diagram by the empty diamond sign.

(iii) Local fracture energy gf for each point in the
curve was calculated from Eq. 4. The equivalent elas-
tic crack extension ∆a was assumed to be the same
as in item (ii). The courses of the gf (α) functions
are plotted also in graphs d), e), and f) on Fig. 4 and
Fig. 5. The course of GFEM

F is also displayed in these

graphs (horizontal dotted line).

4.3 Opening stress profiles
The stress field within the specimens during the
test was analyzed. The profiles of the crack open-
ing stress σ at particular steps of the fracture process
are displayed in Fig. 6 for the SEN-TPB (left) and
DEN-T (right) testing configuration, respectively. The
progress of the shape of iso-areas of the crack open-
ing stress can be illustrated by the sequence of shots.
The shots are created for the specimens with the rela-
tive notch lengths α0 = 0.1, 0.3, 0.5, and 0.7 (from top
to bottom) at stages in the fracture process appropri-
ate to the actual relative equivalent elastic crack α =
0.15, 0.4, 0.65 and 0.9 (from left to right). Points ap-
propriate to these stages are emphasized on the curves
in graphs b) and e) in Fig. 4 and Fig. 5 by black cir-
cles. There are three contour iso-stress areas depicted
on the shots: dark grey (σ ∈ (1,2) MPa), middle grey
(σ ∈ (2,3) MPa), and light grey (σ > 3 MPa). Note
that the tensile strength of the concrete used in the
simulations was equal to ft = 3.719 MPa.

Sections a) and b) of Fig. 6 correspond to the mid-
dle size of the specimens. For the other specimen sizes
the evolution of the iso-stress contour shape remains
similar contrariwise to its size. Section c) of Fig. 6
compares the two outside SEN-TPB specimen sizes
with the chosen α0 = 0.3 at the selected stage of frac-
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ture (α = 0.65) with an appropriate case for the mid-
dle size. The compared shots of sections a) and c) are
marked by black squares, similar to the points appro-
priate to these stages on curves in graphs a), b) and c)
on Fig. 4. In section d) of Fig. 6, the crack tip regions
of both the middle and the largest size are zoomed
in in such a way that the scale of the shots remains
equal to the shot of the smallest specimen size (sec-
tion c) left). The appropriate shots of Fig. 6 compared
in the section d) are marked by black triangles. These
comparisons are similarly performed in sections b), e)
and f) for the DEN-T configuration; an example with
α0 = 0.3 and α = 0.4 is displayed.

5 CONCLUSIONS
The following conclusions were obtained from the
present numerical study:

(i) The size and shape of the FPZ of fractured quasi-
brittle materials are strongly influenced by the size
of specimen and its structural geometry. The parame-
ter of the constraint of stress at the equivalent elastic
crack tip can be employed to characterize this effect.

(ii) The values of the fracture energy averaged over
the entire ligament (RILEM definition) correspond to
the value of the fracture energy used as the input in
the simulations. A slight decrease in “RILEM” frac-
ture energy is only observed in the case of SEN-TPB
geometry for increasing α0.

(iii) Local fracture energy approaches the value of
the fracture energy used in the simulations for very
large specimens only. It is evident that for a high/low
constraint this value is reached from above/below. An
intermediate stage in the fracture process exploitable
for the evaluation of the true fracture energy was
found only for the largest size of SEN-TPB specimens
with short notches.

(iv) Both considered geometries are substantially
different from the crack tip stress constraint point of
view. From the crack opening stress profiles depicted,
it is possible to suppose the FPZ is constrained in
size when approaching the high stress constraint area
(SEN-TPB for α > 0.5). Low constraint of FPZ size
is evident in the case of DEN-T geometry or for SEN-
TPB with very short cracks (α < 0.2).

The conclusions of this research will be investi-
gated using other geometries covering an even larger
range of stress constraint near the crack tip than was
presented in this study.
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Červenka, V. et al. 2003. ATENA Program Documentation,
Theory manual. Prague: Cervenka Consulting.

Duan, K., Hu, X.-Z. & Wittmann, F.H. 2002. Explanation
of size effect in concrete fracture using non-uniform en-
ergy distribution. Mater. Struct., 35: 326–331.

Duan, K., Hu, X.-Z. & Wittmann, F.H. 2003a. Boundary
effect on concrete fracture and non-constant fracture en-
ergy distribution. Eng. Fract. Mech., 70: 2257–2268.

Duan, K., Hu, X.-Z. & Wittmann, F.H. 2003b. Thickness
effect on fracture energy of cementitious materials. Cem.
Concr. Res., 33: 499–507.
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