
1 INTRODUCTION  
 
The simulation of the failure process in complex 
reinforced structures is a big challenge. Several 
physical phenomena must be considered. For 
example, for high velocity impacts and explosion 
events near concrete structures, high pressures and 
high strain rate loading occur locally around the 
projectile and around the explosive charge. Such 
phenomena generate pore collapse mechanisms that 
dissipate a large amount of energy. Irreversible shear 
strains under high pressure can also be observed 
driving a significant part of the material response. 
Under a high pressure regime in porous material, the 
elastic response becomes non linear and pressure 
dependent. For soils, rocks and concrete, the water 
content inside the open voids is very important. This 
parameter can control the pressure volume 
relationship and heavily influences the shear 
material response.  

At some distance from the projectile or the 
explosive charge, the physical phenomena change 
progressively to become structure oscillations at 
moderate strain rate levels. The material response is 
now driven by an increase of concrete damage due 
to crack opening mechanisms, crack closure effects 
and friction phenomena related to differential 
displacements at the crack tip level. The material 
 

model has to account for all of these effects such as 
stiffness deterioration, recovery of stiffness due to 
crack closure, or permanent strains and frictional 
stresses that generate hysteretic loops during 
unloading and reloading paths. All these 
mechanisms must be implemented together in a 
unique material model able to simulate a large range 
of dynamic problems.  

Different kinds of models are proposed to 
simulate the behaviour of concrete structures 
including plasticity (Ottosen 1979), damage (Mazars 
1986, 1989, Jirasek 2004) or fracture based 
approaches (Bazant et al. 1996). Nevertheless, very 
few are able to simulate crash tests (Krieg 1978, Van 
Mier & al 1991).  

The ability of the constitutive model to reproduce 
the real material behaviour is not the only challenge. 
Numerical aspects, related to the algorithm used to 
compute the stress tensor at the local level or related 
to the computation of structural displacements at the 
global level in a finite element analysis are also very 
important. At each level, the computational 
procedure has to be numerically efficient and robust.  

This paper gives some details of the numerical 
procedure used to perform numerical simulations of 
concrete structures under severe loadings. Examples 
are given and finite element results are compared to 
experimental data.  
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ABSTRACT: Realistic dynamic description and modelling of material failure is one of the actual problems in 
structural mechanics. Analyses of failure processes require the use of complex FE analyses and advanced 
constitutive models. For modeling of concrete it is necessary to capture several important phenomena such as 
damage and ductility (possibly softening), rate effects … This implies the description of the concrete 
behaviour with constitutive equations as refined as possible. In this work a coupled damage and plasticity 
model including the effective stress concept is used to solve time dependent problems. This is done using an 
explicit procedure contributing to a reduction of the computational time. Such a procedure requires no 
iterations and no tangent stiffness matrix. Stability is automatically assured by using small time increments. 
This strategy has been successfully applied during the last years to model a large range of severe loadings on 
complex reinforced concrete structures. The mean model concepts are presented in this paper and some 
examples of numerical simulations are given and compared to experimental data. 



2 DAMAGE AND PLASTIC MODEL FOR 
CONCRETE : PRM CRASH MODEL 

2.1 The scalar damage model (PRM model) 

2.1.1 Constitutive relations 
To simulate the behaviour of concrete at a moderate 
stress level, a two scalar damage model has been 
proposed from works by J. Mazars (1986), C. 
Pontiroli (1995), A. Rouquand (1995 & 2005). The 
named PRM model simulates the cyclic behaviour of 
concrete. This model distinguishes the behaviour 
under tension and the behaviour under compression. 
Between theses two loading states a transition zone 
is defined by (σft, εft). Where σft and εft are 
respectively the crack closure stress and the crack 
closure strain. The main equations of the PRM 
model for a uniaxial loading are :  

under traction:          (σ - σft) = E0 ⋅ (1-Dt) ⋅ (ε-εft) (2)  

under compression: (σ - σft) = E0 ⋅ (1-Dc) ⋅ (ε-εft)  

E0 is the initial Young’s modulus. Dt evolves as well 
in tension as in compression through the variable 
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if not; xi = ει are the principal strain components in 
compression and xi = (ε-εft)i in tension. ε~  is an 
indicator of the local state of extension (positive 
strain state), responsible of damage. The general 
evolution of damage is an exponential form driven 
by ε~  : Dt = fct (ε~ , ε0t, At, Bt), ε0t, At, Bt are 
material parameters. ε0t is the tensile damage 
threshold. Dc is driven by the same 
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same function: Dc = fct (ε~ , ε0c, Ac, Bc).  
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Figure 1. Stress strain curve for a tensile - compressive loading  

 

Initially εft = εft0 is a material parameter. Afterwards 
εft is directly link to Dc. σft = f(εft, Dc) gives the 
stage where the transition between the two kinds of 
damage occurs. The corresponding response for a 
uniaxial cyclic loading is given figure 1. 

We can observe that the behaviour can be described 
by the classical equation : σd = E0 (1-Di) εd          
with i = t, c, εd  = ε − εft and σd  = σ − σft  

The general 3D constitutive equation of the model 
relating strain and stress tensors (in bold) is reported 
below : 

(   − ft  ) = 0 (1-D) (   −  ft)  or                            (1)
(   − ft  )= (1-D) [ λ0 trace(    −  ft)11  + 2μ0 (   −  ft)] 
where ft and ft are the crack closure stress and 
strain tensors used to manage permanent effects;  0 
is related to the initial mechanical characteristics of 
the material. D, the damage remains a scalar and is 
issued from a combination of the two modes of 
damage : 

D = αt Dt + (1- αt)Dc                                            (2)

αt evolves between 0 and 1 and the actual values 
depend on  (   − ft).  For more details see Mazars 
(1986). 
This formulation is an explicit one. It has been 
implemented into “ABAQUS explicit” and is used 
for dynamic structural simulations. In order to avoid 
depending mesh size solutions, a Hillerborg method 
has been used (Hillerborg 1976) which allows to 
control the dissipation of energy in each element. 

2.1.2 Strain rate effects - Internal friction damping 
It is well known that concrete is strain rate 
dependent particularly by pure tensile loading. This 
effect is accounted for using dynamic thresholds 
(ε0t

d and ε0c
d) instead of static one's (ε0t

s and ε0c
s). 

Dynamic thresholds are deduced from the static ones 
through a dynamic increase factor R=ε0

d /ε0
s. Its 

value for a compressive dynamic loading takes the 
following form: 

)50.2  ,0.1min( cb
cc aR ε&+=                 (3) 

And for a dynamic tensile loading :  

]0.10  ),9.0  ,0.1( [max min 46.0εε && tb
tt aR +=     (4) 

ac, bc and at, bt are material coefficients defined by 
the user. For a high strain rate, the tensile dynamic 
increase factor is supposed to follow an empirical 
formula : 46.09.0 ε&  that agrees very well with the 
experimental data obtained by Brara & Klepaczko 
(1999) on a particular micro concrete. Figure 2 
illustrates the evolution of the compressive (dashed 



line) and tensile (continuous line) dynamic increase 
factors versus the strain rate. 

 
Figure 2. Strain rate effects (PRM damage model). 

 
 
For cyclic loading, as the one encountered during 

an earthquake loading, friction stresses induce 
significant dissipated energy during unloading and 
reloading cycles. To account for this important 
phenomenon an additional damping stress is 
introduced in the model: 

 damping damage 
ft ft σ σ σ σ σ + − = − ) ( 

   
(5)

 
The damping stress generates a hysteretic loop 

during the unloading and the reloading cycle. This 
stress is calculated from the damping ratio 
ζ  classically defined as the ratio between the area 
under the closed loop and the area under the linear 
elastic-damage stress curve : 
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Ah is the loop area under the stress strain curve, E0 
(1-D) is the current material stiffness. εmax is the 
maximum strain before unloading, εft is the closure 
strain that defines the transition point between 
compression and tension.  

The damping stresses are computed in such a way 
that the damping ratio ζ is related to the damage D 
according to the relation : 
ζ = (β1 + β2D)                           (7) 

β1 is a damping ratio for an undamaged and 
perfectly elastic material. β1 + β2 is the damping 
ratio for a fully damaged material. β1 and β2 are 
material parameters. Usually β1 can be chosen equal 
to 0.02 and β2 can be chosen equal to 0.05. Figure 3 
shows, for cyclic tensile or compressive loading, the 
strain stress curve including damping stresses. 
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Figure 3. Cyclic loading including damping stresses. 

2.2 Plastic model with effective stresses 

The previous damage model is very efficient to 
simulate the behaviour of concrete for unconfined or 
low confined cyclic loading (Rouquand 2005). For 
very high dynamic loads leading to a higher pressure 
level, an elastic plastic model is more appropriate. 
For example, the impact of a projectile striking a 
concrete plate at 300 m/s induces local pressures 
near the projectile nozzle of several hundred MPa. 
The previous damage model cannot simulate the 
pore collapse phenomena rising at this pressure 
level. It also cannot model the shear plastic strain 
occurring in this pressure range. To overcome these 
limitations, the elastic and plastic model proposed 
by Krieg (1978) has been chosen to simulate this 
kind of problem. From this simple elasto-plastic 
model a first improvement has been introduced in 
order to simulate the non linear elastic behaviour 
encountered during an unloading and reloading 
cycle under a high pressure level. A second 
improvement has been made to account for the water 
content effects introducing an effective stress theory 
as described by C. Mariotti (2002). This effect 
induces change on the pressure volume curve and on 
the shear plastic stress limit. 

2.2.1 The modified Krieg model (dry material) 
The Krieg model can be applied to describe the 
behaviour of a dry material. The improvements 
made here concern the elastic behaviour which is 
now non linear and pressure dependent. This non 
linearity increases as the pore collapse phenomena 
progresses. Figure 4 shows a typical pressure 
volume curve used in the modified Krieg model. For 
pressure values under P1, the behaviour between 
pressure and volume is linear and elastic. For a 
pressure greater than P1, the pore collapse 
mechanism becomes effective. During the loading 
process, the pressure-volume response follows a 
curve identified from experiments. During the 
unloading, the behaviour is elastic but non linear. 
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The bulk modulus becomes pressure dependent. It is 
equal to Kmax at the first unloading point and 
decreases to Kmin when the tensile pressure cut-off 
Pmin is reached (this value is generally negative, 
which means that traction is necessary to recover the 
initial volume). This pressure cut-off becomes 
smaller and smaller as the maximum pressure Pmax 
increases. When Pmax is close to P1, Kmax is close to 
Kmin and also closed to the initial bulk modulus Kp. 
When Pmax reaches Pcons, Kmax becomes equal to 
Kgrain and Kmin becomes equal to K0grain. So the non 
linearity becomes more and more important as the 
pore collapse phenomena progresses.  
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Figure 4. Pressure volume behaviour in the modified elastic 
and plastic Krieg model. 

When Pmax becomes greater than Pcons, the pore 
collapse phenomena is achieved because all the 
voids are removed from the material. At this 
pressure level the material is consolidated and the 
behaviour becomes purely elastic and non linear.  

2.2.2 Improvement of the Krieg model for partially 
saturated materials 

2.2.2.1 Pressure volume behaviour 
Many concrete and geologic media have an open 
porous structure. The water can move through the 
porous media from one void to another. 
Consequently, the void can be partially or totally 
filled with water. This induces significant changes in 
the material response and particularly on the relation 
between pressure and volume.  

 
 
 
 
 
 

 

Figure 5: simplified geologic media of a partially saturated 
material. 

To understand more easily the water effect on a 
geologic medium, the material structure can be 

studied as a mixture of a solid medium with a void 
partially filled with water as shown in figure 5. 

For high dynamic loads, the time scale is very low 
(few milliseconds or less) so the water has no time 
to move inside the material and undrained 
conditions can be considered. Figure 6 shows the 
generic response of a partially saturated material. 
This response is given in terms of pressure versus 
the volume change. For a dry material, the pressure 
volume response follows the solid curve shown on 
figure 6. When the pressure is sufficient to remove 
all the voids, the response is given by the thick 
dashed curve. In case of a partially saturated 
material, the relation between pressure and volume 
is given by the response of the dry material until all 
the voids (part of the pores without water) are 
removed from the medium. Thereafter, the thin 
dashed curve gives the response of the solid and 
water mixture. The intersection of the large dashed 
curve with the horizontal axis gives the porosity of 
the dry material. The intersection of the dashed light 
curve with the horizontal axis gives the “free 
porosity” εvps of the partially saturated material. 
Consequently, when the material becomes more and 
more dry, the thin dashed curve moves to the right. 
In the modified plastic model presented here, the 
knowledge of the water content ratio η (water 
volume divided by the total volume) is sufficient to 
deduce all the improvements of the material 
behaviour.  
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Figure 6. Water content effect on pressure volume relationship 

When the pressure reaches the particular value 
Pvps corresponding to the intersection of the solid 
line with the thin dashed line, all the voids of the 
partially saturated medium are removed, so the 
medium becomes a two phase mixture of liquid and 
solid. To define the behaviour of this solid and water 
mixture (thin dashed curve) the pressure is assumed 
to increase in the same way in the two phases (solid 
and liquid phases). So an iterative procedure as to be 
run in order to find the relative volume changes of 
each phase. This procedure gives a pressure 
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difference equal to the consolidation pressure of the 
partially saturated material Pvps when the total 
volume change of the two phases (εv - εvps) is known. 
Liquid behaviour is described using the Mie 
Gruneisen equation of state and the solid phase 
behaviour is the non linear elastic model briefly 
described in § 2.2.1. 

2.2.2.2 Shear behaviour 
Water content has an effect on the shear behaviour. 
In the Krieg model, the plastic shear strength q0 
(computed as the Von Mises stress) is pressure 
dependent (see figure 7). As the pressure increases, 
the shear yield stress increases too. This effect is the 
consequence of the porous structure of the material. 
During the pore collapse phenomena the void 
volume decreases, the pressure increases so the 
contact area of the solid grains inside the material 
matrix increases and the shear forces inducing 
sliding motions between the solid grains also 
increase. When all the voids are removed, the shear 
strength remains constant and becomes pressure 
independent because the contact area cannot 
increase any more. The material becomes 
“homogeneous” and the shear strength reaches a 
limit that is material dependent. For a partially 
saturated material, the behaviour remains similar to 
the behaviour of a dry material until all the voids are 
removed. Thereafter we suppose that water pressure 
and solid grain pressure increase together in the 
same way. So the pressure difference between the 
two phases remains constant, contact forces and 
contact areas at the micro scale level maintain 
constant and the shear strength remains also 
constant.  

At this point, the effective stress concept can be 
introduced. The shear strength is related to the 
effective pressure and this effective pressure is taken 
equal to the interstitial pressure. For a dry material, 
the effective pressure is always equal to the total 
pressure. But for a partially saturated material, the 
effective pressure is the total pressure like in dry 
material until all the voids are removed. After 
consolidation the interstitial (or the effective) 
pressure does not increase any more and 
consequently the shear yield strength remains 
constant. As the water contents increase, the 
pressure level Pvps decreases and then the shear 
strength q0 also decreases. Figure 7 illustrates the 
effect of the effective pressure concept. The solid 
line gives the shear yield strength versus the 
pressure for a dry material. For a partially saturated 
one, the shear strength follows the solid line until the 
pressure Pvps is reached. Afterwards the shear 
strength does not increase and it follows the dashed 
horizontal line.  
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Figure 7. Shear yield strength versus pressure for a dry and a 
partially saturated material (q is the Von Mises stress). 

2.3 Coupling procedure for the damage and the 
modified  Krieg model : PRM crash model 

The scalar damage model has been coupled with the 
modified Krieg model. The coupling procedure 
ensures a perfect continuity between the two model 
responses. The predicted stresses correspond to the 
damage model response if the maximum pressure is 
too low to start the pore collapse phenomena or if 
the shear stress is too low to reach the shear yield 
stress. If not, the plastic model is activated and pilots 
the evolutions until the extensions sufficiently 
increase to lead to a damage failure. 

Figure 8 shows the static response obtained on a 
cylindrical specimen for tri-axial tests with 
increasing lateral pressure. Tests performed on the 
GIGA machine at 3S-R Grenoble prove the 
pertinence of these results (Gabet 2006).  
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Figure 8. Stress strain response on a concrete given by the 
coupled damage and plastic model (tri-axial tests with 
increasing lateral pressure). 
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3 NUMERICAL SIMULATIONS 

This model has been implemented in the ABAQUS 
explicit finite element code and it has been 
extensively used to simulate a lot of complex 
problems. The PRM damage model can be used with 
most of the available finite elements (1D truss 
elements, beam elements, 2D plane stress and plane 
strain elements, 2D axisymmetric elements, shell 
elements, 3D solid elements, etc.). The coupled 
damage and plastic model (PRM crash model) can 
be used with 2D plane strain elements, 2D 
axisymmetric and 3D solid elements. In order to 
show the capabilities of the coupled model some 
applications are presented here and numerical results 
are compared to experimental data. 

3.1 Dynamic three points bending test on a 
reinforced concrete beam 

Figure 9 shows the experimental device and the 
beam characteristics (in mm). These tests have been 
conducted by Agardh, Magnusson & Hanson (1999) 
in Sweden on a high strength reinforced concrete 
beam.  

 

 
Figure 9. Experimental device and beam characteristics 
(dynamic three points bending tests). 

Beam elements, 2D plane stress elements and 3D 
solid elements are used to model the reinforced 
concrete beam. A single element is used in the depth 
direction with the 3D model. Taking advantage of 
the symmetry, only a half part of the beam is 
modelled. The reinforcement material model is the 
classical Johnson Cook plasticity model. The 
concrete and the steel reinforcement are supposed to 
be perfectly bonded. Figure 9 details the 
experimental apparatus. When the deflection 
becomes greater than 90 mm, shock absorbers damp 
the central part of the beam. 

Figure 10 shows, at the end of the dynamic test, 
the tensile damage contours on the 3D beam model 
(upper part of the figure). The lower part shows the 
corresponding observed crack pattern. The 
computed cracks are mainly concentrated in the 
central part of beam like in the experiment.  
In figure 11 the measured force (cross points) is 
compared to the three computed forces resulting 
from the three different meshes. The beam model 
gives the lower force. The 2D and 3D models give 
very similar results. 
 

 

 

Figure 10. Computed and observed crack pattern. 

Figure 11. Measured and computed dynamic loads (three 
points bending test). 

 
3.2 Impact on a T shape reinforced concrete 

structure 

This study is related to the analysis of the 
vulnerability of concrete structures under intentional 
actions. More specifically, the effect of a projectile 
of about 80 kg striking a reinforced concrete plate is 
studied. Such an experiment has been done by E. 
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Buzaud et al. (2003). The 35NCD16 steel projectile 
has an ogival nozzle. Its diameter is 160 mm and its 
length is 960 mm (figure 13). An accelerometer 
recorder system is mounted inside the projectile to 
measure the axial and lateral accelerations during 
the tests. Figure 12 shows the test configuration with 
a T shape concrete structure. The size of each 
reinforced concrete square plate composing the 
target is 3m. The thickness of the front part of the 
concrete target is 400 mm and the thickness of the 
rear part is 300 mm. Reinforcement is composed of 
two steel layers (one on each side of the concrete 
plate) with 16 mm diameter bars. Other 10 mm 
diameter bars link each reinforcement mesh node of 
the face to face layers. The distance that separates 
each bar is 100 mm. The distance between the 
reinforcement layer and the top (or the bottom) plate 
surface is 50 mm.  

0.85m

 
Figure 12. Test configuration, impact on T structure. 

 
 
3D numerical simulations have been done using 

the ABAQUS explicit finite element code. The total 
number of the finite elements is about 530 000 for 
the entire model. The projectile material (figure 13) 
is simulated using an elastic and perfectly plastic 
model with a plastic yield stress of 1300 MPa. The 
reinforcement is also modelled with an elasto-plastic 
model with isotropic hardening. The initial yield 
stress is 600 MPa and reaches 633 MPa for a failure 
strain ε = 0.13. The concrete behaviour is simulated 
with the coupled plastic and damage model.  

 

 
Figure 13. Projectile mesh. 

 
 
Table 1 gives the concrete material data used in 

the simulation. Most of these values are taken from 
literature data relative to similar materials. 
On figure 14, the measured deceleration is compared 
to the computed value. Some differences can be seen 

but the overall deceleration shape is correctly 
predicted. 
 
Table 1. Concrete material data 

 
Sym-
bol Parameter Value  

S.I. units
E0  Young modulus 3.5 1010 

ν0 Poisson ratio 0.2 

σc  Compressive strength - 41 106 

σt  Tensile strength 3.3 106 

Gf  Fracture energy 120 

a0  1st coefficient (shear strength) 1.8 1015 

a1  2nd coefficient (shear strength) 2.4 108 

a2  3rd coefficient (shear strength) 0.6 

n N° of points (compaction curve) 2 

P1  Pressure  60 106 

εv1  Volume -0.00308 

Pcons Consolidation pressure (last point) 2 109 

εvcons  Corresponding volume (last point) -0.1284 

Kgrain Bulk modulus at consolidation 3.9 1010 

K0grain Bulk modulus unloaded material 3.9 109 

ηeau  Water contents ratio 0 

ρ0  Density 2300 

Figure 15 shows the tensile damage contours at 
the end of the numerical simulation (T = 20 ms). The 
first part of the target is perforated and a rebound off 
the rear part is observed. This has been observed 
experimentally. The projectile velocity, at the exit of 
the first impacted plate, is also close to the measured 
one.  

 

 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 14. Measured and computed projectile decelerations. 
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Figure 15. Tensile damage contours at 20 ms. The projectile 
has perforated the upper part and penetrated the right part after 
a rebound.  

4 CONCLUSION 

A general constitutive model for a concrete structure 
submitted to extreme loading (high velocity and 
high confinement) has been developed and 
implemented into the “ABAQUS explicit” code in 
the framework of damage and plasticity mechanics. 
The resulting coupled damage and plasticity model 
(PRM crash model) can simulate a lot of physical 
mechanisms like crack opening and crack closure 
effects, strain rate effects, material damping induced 
by internal friction, compaction of porous media, 
shear plastic strains under high pressure, water 
content effects on the pressure volume behaviour 
and on the shear strength.  

To validate this particular coupling of plasticity 
and damage, an extensive experimental program has 
been performed at 3S-R Grenoble using the GIGA 
machine which allows high confinement up to 1 GPa 
(Gabet 2006), and a new program is in progress on 
the large Hopkinson bar at JRC Ispra to complete 
the data base under high velocity loading.  

The new model has been extensively used and can 
advantageously simulate a large panel of problems 
going from quasi-static simulations on concrete 
structures to high dynamic problems related to the 
effect of high velocity impacts.  

 
 
 
 
 
 
 

The examples presented here and during the 
conference, demonstrate the efficiency of the 
proposed numerical procedure. 

REFERENCES 

Agardh L., Magnusson J., Hansson H., 1999, High strength 
concrete beams subjected to impact loading, an experimen-
tal study, FOA Defence Research Establishment, FOA-R-
99-01187-311—SE. 

Bazant Z.P., 1994, “Nonlocal damage theory based on micro-
mechanic of crack interaction”. Journal Engineering Mech. 
ASCE 120, pp. 593-617. 

Brara A., 1999, Etude expérimentale de la traction dynamique 
du béton par écaillage, thèse de l'université de Metz - 
France 

Buzaud E. et al., 2003, An experimental investigation of corner 
effects resulting from vertical attack on hardened struc-
tures, proceedings of 11th ISIEMS, Mannheim,  Germany. 

Gabet T, 2006, Comportement triaxial du béton sous fortes 
contraintes : Influence du trajet de chargement, Phd thesis, 
Université Joseph Fourier, Grenoble. 

Hillerborg A., Modeer M., Petersson P. E., 1976, Analysis of 
crack formation and growth in concrete beams of fracture 
mechanics and finite elements, Cement and Concrete Re-
search, Vol. 6, pp 773-782. 

Jirásek M., 2004, “Non-local damage mechanics with applica-
tion to concrete”. Revue française de génie civil, 8 (2004), 
pp. 683-707. 

Krieg R. D., 1978, A simple constitutive description for soils 
ans crushable foams, Sandia National Laboratories, SC-
DR-72-0833, Albuquerque, New Mexico. 

Mariotti C., Perlat J. P., Guerin J. M., 2002, A numerical ap-
proach for partially saturated geomaterials under shock, 
CEA/DAM Bruyères le Châtel, International Journal of 
Impact Engineering 28 (2003) 717 - 741. 

Mazars J., 1986. A description of micro and macro scale dam-
age of concrete structures, Engineering Fracture Mechan-
ics, V. 25, n° 5/6. 

Mazars J., Pijaudier-Cabot G., 1989, “Continuum damage the-
ory - application to concrete. Journal of Engineering Me-
chanics”. 115(2), pp. 345–365. 

Ottosen N.S., 1979,  “Constitutive model for short time loading 
of concrete”. Journal of Engineering Mechanics, ASCE, 
Vol 105, pp. 127-141. 

Rouquand A., Pontiroli C., 1995, Some considerations on ex-
plicit damage models including crack closure effects and 
anisotropic behaviour, Proceedings FRAMCOS-2, Ed.F.H.  

Wittmann, AEDIFICATIO Publisher, Freiburg. 
Rouquand A., 2005, Presentation d'un modèle de comporte-

ment des géomatériaux, applications au calcul de structures 
et aux effets des armes conventionnelles, Centre d'Etudes 
de Gramat, rapport technique T2005-00021/CEG/NC. 

Van Mier J.G., Pruijssers A., Reinhardt H.W., Monnier T., 
1991, Load time response of colliding concrete bodies, J. of 
Structure Engineering, vol. 117, p. 354-374. 

 


