
 

1 INTRODUCTION 

Hardened Portland cement paste is a porous and vis-
coelastic material whose anelastic properties depend 
strongly of the relative humidity and water redistri-
bution processes in the gel pores. The smaller gel 
pores (mainly of sub-micrometer dimensions) and 
the technological pores (from small capillary pores 
with dimensions of the order of 10 mμ  to big crack-
like pores with lengths of the order of 1 mm or more) 
form a system of communicating cavities or chan-
nels, bifurcating and recombining at random. Under 
appropriate conditions, water flows through these 
tiny and irregular channels, dominated by viscous 
friction. Flowing water exerts both normal and shear 
stresses on the surface of the solid matrix, like an 
external load. After averaging to smooth the micro-
scopic spatial fluctuations of the fields, this me-
chanical effect can be described by the so called “fil-
tration pressure”, a force per unit volume of the 
porous medium, acting on the solid matrix and pro-
duced by the flow. If there are closed cavities (like 
trapped air bubbles) that remain outside the flow, 
they must be considered together with the solid ma-
trix, although they modify the local stress and strain 
distributions. 

    Thus, the strain and stresses produced by the 
filtration process must be combined with the strain 
and stresses produced by the external loads to de-
scribe the mechanical failure of a wet porous me-
dium, like saturated cement paste, mortar or con-
crete.  
          

 

It is well known that the flexural strength of a wet 
cement paste is usually higher than the flexural 
strength of this same cement paste after it is dried. 
The opposite happens with the compressive strength 
(Neville, 1995). Taking into account the differences 
between the failure mechanisms of cement paste un-
der tension and its failure mechanisms under com-
pression, the analysis of the fracture process in a po-
rous medium is used here as a starting point to 
develop an analytical approach to the relation be-
tween water flow and fracture in saturated porous 
cement pastes. This approach is then applied to 
study the relation between the field of filtration pres-
sures and: (a) the compressive strength of cylinders 
of cement paste, mortar or concrete (used as stan-
dard test bodies), (b) the flexural strength of beams 
of these same materials (that are also used as stan-
dard test bodies in four-point bending). 

 
 

2 MODELLING TOOLS 
 

To model the aforesaid filtration and fracture proc-
ess in the cement paste we will use three kinds of 
tools: 
(1) An average form of the equations that govern 
the transport processes in the pore space and the 
stresses in the solid matrix (Hall and Hoff, 2002; 
Bear, 1972; Scheidegger, 1963). 
(2) Some results for solenoidal and almost gradient 
fields, taken from classical field theory and differen-
tial geometry, and applied to the average field  
 

Wet versus dry cement pastes and concretes: A mathematical approach
to their strength and fracture properties 

R. Suárez-Ántola 
School of Engineering and Technologies, Catholic University of Uruguay, Montevideo, Uruguay 
 
 

ABSTRACT: The fracture process of a continuous matrix in a porous medium under the combined effect of 
filtration and external mechanical loads is considered. Taking into account the differences between the failure 
mechanisms of cement paste under tension and its failure mechanisms under compression, an analytical ap-
proach to the relation between water flow and fracture in saturated porous Portland cement pastes is devel-
oped.  The well known differences in behaviour between the flexural and compressive strengths of wet and 
dry Portland cement pastes is explained.  The extension of the obtained results to the flexural and compres-
sive strength of normal concrete is briefly discussed, including suggestions for further experimental and digi-
tal simulation work. 



variables (Ericksen, 1960; Suárez-Ántola, 1983; 
Suárez-Ántola, 1997). 
(3) A certain population of defects included in the 
matrix and a quantitative expression of the com-
monly admitted mechanisms of fracture of cement 
pastes under flexural and compressive loads 
(Chtchourov, 1980; Wittmann, 1983). 

2.1  Average field equations 
The fields of velocity and stress in the fluid and the 
stress field in the solid matrix fluctuate randomly 
along distances of the order of the local pore’s di-
ameter d  (for a definition of the local pore diameter 
see Scheidegger, 1963). However it is possible to 
smooth out these fluctuations by averaging the field 
variables over regions of characteristic length l  , 
much greater than d  and called Darcy’s scale. Se-
lecting l , at its turn, much less than a characteristic 
length L of the whole porous body, we obtain aver-
ages that can be considered as true local values. A 
possible choice for l is the geometric 
mean Ldl .= . In our case we can estimate 

m 10  d -5≅  or less, and m 10  L -1≅  or less, so that 
  dL  ≅l  between 410− and m310−   may be a suit-

able length scale for averaging purposes. 
  For each point in the porous medium we con-

sider an averaging region that has this point as its 
centre, and then we assign to the point the averaged 
values of all the field variables, with independence 
of the true location of the point (in interconnected 
porous space, in solid matrix, including isolated 
voids, or in the boundary between them). We thus 
obtain a vector field of filtration velocities vf , a sca-
lar field of averaged pore hydrostatic pressure p , a 
scalar field of effective porosity φ  and a tensor field 
of averaged matrix stressesσ .   
   The emergent equations at Darcy scale are: 

   v  f•−∇=
∂
∂

t
φ                                                       (1)             

 ff    K - = v π
μ

∇                                                        (2)      

where ) (  •∇  represents the divergence, ∇ ( )  the 
gradient, • the scalar product, z g  + p = f ρπ  is the fil-
tration potential ( ρ  is water density, g  is gravita-
tional acceleration, z  is the vertical position from a 
reference horizontal plane, z  increasing upwards), 
μ  is water’s dynamic viscosity and K is a scalar 
field that express the local hydraulic conductivity of 
the porous medium . Equation (2) gives Darcy’s law 
for an isotropic medium.  Equation (1) connects the 
variation of the fraction of pore’s volume with water 
flow (Jaeger, 1969).   
If σ̂ is the tensor of averaged stresses in the matrix, 
the force acting on an element of surface of area 

Δ A  and unit normal vector n , at the scale of Darcy 
is given by the formula:                                                          
                                                        

n  )Î  p - ˆ(A   = F •ΔΔ φσ                                           (3)           
Then the complete average stress tensor in the solid 
matrix verifies the emergent static equation  

  X = )Î p  - ˆ(  φσ•∇                                                  (4)    
 Here I  is the unit tensor and X is the average ex-
ternal force per unit volume. The average force on 
the matrix, per unit of volume of a saturated porous 
medium, due to water flow, is the filtration pressure:   
            - = p ff πφ ∇                                                  (5) 
 So pf is everywhere orthogonal to a surface of con-
stant fπ . The filtration pressure is related with the 
average matrix stresses due to the filtration proc-
essσ f by:        
 ff ˆ   - = p σ•∇                                                           (6) 

2.2 Solenoidal and almost gradient fields 

For an isotropic medium, from equation (2) and (5) 
it follows that    

   ff v 
K
  = p μφ                                                         (7) 

If the phenomena of interest occur in time scales that 
are much less than the time scale of variation of 
pore’s volume, equation (1) reduces to this one:           

0 v  f =•∇                                                              (8) 

      Let us consider a vector line of the field vf .  If 
t  (s)f   is the unit tangent vector at the point of in-
trinsic coordinate s  ( s  being the arc length), given 
any two points Q and P  that belong to the line, we 
may apply Bjørgum’s characterization of solenoidal 
(divergence-free) fields (Ericksen, 1960; Suárez-
Ántola, 1983, Suárez-Ántola, 1997)  

∫ •∇
Qs

Ps
f ds (s) t    -

ff e (P) v= (Q)v                                      (9) 

(Here ff v = v  is the magnitude of the vector field).
    Now, according to equation (2), v f is an almost 
gradient field. Then each tangent unit vector tf  at a 
point of a filtration line is at the same time a unit 
normal vector to the surface of constant filtration po-
tential that pass through the same point. In this case 
we have the additional relation, between t (P)f  and 
the mean curvature H(P) of the surface of constant 
π f  at a given point P of the porous medium: 

H(P) 2 - = (P)t  f•∇                                               (10)   

 From (9) and (10) it follows that:   

∫
Qs

Ps

ds H(s) 2

ff e (P) v= (Q)v                                          (11) 



Then, from (7) and (11) we have:                               

     e  
K(Q) (P)
K(P) (Q) = 

(P)p
(Q)p

Qs

Ps

ds H(s) 2

f

f
∫

φ
φ                           (12)  

 To apply this last equation to study the fracture 
process in the cement paste, we need information 
about the filtration lines and the distribution of mean 
curvatures of the surfaces of constant π f  distributed 
along and orthogonal to the filtration lines. From 
equations (2) and (8) it follows that the filtration po-
tential verifies the elliptical equation:                     

( ) 0=∇•∇ fK π                                                    (13) 
 At an impermeable boundary (as the interface be-
tween the steel plates of the compression machine 
and the tested standard cylinder or cube) 0 = n  vf • , 
n  being the unit normal vector to the interface at the 
considered point, so   

     0 =     n fπ∇•                                                (14a)    
At free water interface (as the free interfaces of the 
cylinders, cubes or beams used in standard strength 
tests:      

tconstanf =π                                                  (14b)    
Equation (13) jointly with the boundary conditions 
(14a) and (14b) forπ f , allows us to determine the 
surfaces that correspond to constant values of fπ . 

2.3 Population of matrix defects and fracture under 
flexural and compressive loads 

The characteristic length l of Darcy’s scale may be 
used to classify the population of defects in two 
broad classes: the microscopic defects whose sizes 
are much smaller than l and the macroscopic ones, 
much larger than l . The usually small fraction of de-
fects with the same order of magnitude than l  may 
be called mesoscopic.  
       At a microscopic level the irregular fracture sur-
face of the cement paste seems to advance through a 
pull out process that separates the lenticular crystals 
of hydrated calcium silicate from each other, break-
ing the van der Waals bonds between these fairly 
elastic elements.  
       But from a macroscopic point of view the fail-
ure under simple compression begins with the grow-
ing of many micro-cracks from small pores, parallel 
to the external load, and continues with the fusion of 
the pores in master cracks (Zaitsev, 1980). Thus the 
compressive strength depends strongly of the cement 
paste porosity. Also from a macroscopic standpoint, 
the failure under tension often begins with the 
growth of a master crack already located in a highly 
stressed volume (HSV, having tensile stresses be-
tween 95 and 100% of the maximum) and often con-
tinues with relatively few accompanying small 
cracks. So, the tensile strength depends weakly of 
the cement paste porosity, and strongly of the 
lengths of the big crack-like pores in the HSV 
(Kendall et al., 1983). 

      Size and shape of the body, the load distribution 
applied to it and other systemic properties (Bazant, 
2004), have a strong influence on the fracture proc-
ess and the measured strength values.  So, two spe-
cific cases of practical interest will be considered 
first: the test of the compressive strength of standard 
cylinders and the test of flexural strength of standard 
beams of square cross section.   

 
 

3 SOME SIMPLE MODELS OF FLOW AND 
FRACTURE IN CYLINDERS AND BEAMS OF 
CEMENT PASTE 

3.1 Filtration effects in uniaxial compression of a 
porous cylinder  

 
To study the compressive strength, let us consider a 
vertical cylinder of saturated porous body, with a 
population of spherical cavities (Figure 1).   

 
 

 
 
 
 
 
 
 
 
 

 
Figure1. Sketch of a compressed porous cylinder with a popu-
lation of spherical pores 

 
The radii of these cavities are at least of the same 
order that the Darcy’s scale for the porous medium, 
so that they don’t belong to the interconnected pore 
space used to construct the averaged fields. Many 
little cracks begin at the surfaces of the cavities, and 
go into the matrix, in all directions.  If we apply 
compressive external loads to the flat faces, a radial 
filtration pressure field will be produced, directed 
toward the curved face which is both free from stress 
and a free-water boundary of the porous body. The 
vertical component of filtration field, due to gravity, 
may be neglected in the modelling of fracture in 
compressive strength tests. Then, the nominal stress 
field is the superposition of a vertical compressive 
stress (due to external load) and a horizontal plane 
tensile stress field (due to filtration) with both ra-
dial rf ,σ  and tangential θσ ,f  principal components. 
The compressive stress zσ by itself produces a tensile 
stress in the matrix surrounding the upper and lower 
parts of the spherical cavities. If this stress is big 
enough, a crack located there will grow and a frac-

 



ture process will begin. The radial and tangential 
tensile fields will produce an increment of the tensile 
stress already induced in the matrix by the compres-
sive external load. As a consequence, due to filtra-
tion, the compressive strength of the wet porous 
body will be less than its compressive strength when 
it is dry.  The symmetry of the problem simplifies 
the derivation of formulae for the filtration stresses 

rf ,σ and θσ ,f  , once the field of filtration pressures 
( )rtp f ,  is known. Let 0r be the radius and h the 

height of the standard cylinder. Applying a volume 
balance to a coaxial cylinder of radius r less than 0r , 

and height h , (
t

hr
∂
∂

−=
φππ ....r.h.v2. 2

f ) we obtain 

the field of radial filtration velocities 

 
t

rv f ∂
∂

−=
φ.

2
                                                     (15) 

From (15) and (7), it follows that  

( ) ( )rtfrtp f ., =                                                (16a) 

( )
tK

tf
∂
∂

−=
φφμ .

.2
.                                              (16b) 

As the time scale of the filtration process is at least 
an order of magnitude greater than the duration of 
the strength test, during the period of load applica-
tion ( ) ( )0ftf ≈ .  But from (5) it follows that: 

r
tKr

f ..
.2 ∂

∂
=

∂

∂ φμπ
 Integrating between 0 and 0r  and 

taking into account that ( ) ( ) 000 ,0, πππ =≈ rrt ff  is 
the atmospheric pressure (neglecting gravity) and is 
thus negligible relative to ( ) ( ) zff t σππ ≈≈ 0,00, , 
we obtain: 
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σ .

.4
. 2

0                                               (17)  

Then, from (16b) and (17),  

 ( ) ( ) zr
ftf σφ ..20 2

0

≈≈                                         (18)    

 Now, the problem of finding the filtration stresses 
when the filtration pressure verifies (16) and the 
solid matrix is homogeneous, isotropic and linear 
elastic is mathematically the same as the well known 
problem of finding the stresses in a linear elastic ro-
tating disc (Nadeau, 1964).  Adapting the solution of 
this classical problem to the filtration case we obtain 
(being ν Poisson’s ratio): 

     ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

2

0
, 1..

4
.3

r
r

zrf σφνσ                   (19a)  

 

    ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+
+

−
+

=
2

0
, 3

311..
4

.3
r
r

zf ν
νσφνσ θ       (19b) 

Figure 2 shows a spherical cavity located at a dis-
tance r from the axis of the cylinder.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2 Sketch of a spherical cavity with a vertical crack of 
length c 
 

A vertical crack extends from the upper surface of 
the cavity, with its plane orthogonal to the radial di-
rection (tangential crack). Let us suppose that the 
onset of crack propagation occurs when the nominal 
tensile stress field at the crack location reaches a 
threshold value thσ . If there is no filtration stress, the 
only nominal tensile stress is due to the compressive 

load cP and its value is
0

2.r
Pc

z π
σ = . At the critical 

state, the threshold load is thcth Pr ,
2

0 .. =σπ  . If there 
are filtration stresses, θσ ,f has no effect in this case, 
but rf ,σ  produces a nominal tensile stress rf ,.3σ at 
the location of the crack, so that now the total nomi-
nal tensile stress is rfz ,.3σσ + .   Taking into ac-
count equation (19a), the critical stress would be 
reached when  
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old one by the relation:  
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 If the plane of the vertical crack is radial, rf ,σ has 
no effect and θσ ,f is active now. In this case we ob-
tain from (19b): 
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3.2 Filtration effects in bending of a porous beam 
in a flexural strength test  

Now, consider a wide master crack in a saturated 
porous beam with a continuous matrix, such that the 
crack reaches the lower boundary of the body. If the 
beam is in the air and is flexed as suggested in fig. 3, 
water will tend to flow downwards.  

 
 
 

 
 
 
 
 
 
 
 
Figure 3. Sketch of a flexed porous beam with some filtration 
lines (represented by continuous curves) and several surfaces 
of constant filtration potential (represented by dotted curves). 

 

When water is filtering, a congruence of regular sur-
faces of constant π f  fills the porous body. The flow 
velocity and the vector of filtration pressure are at 
every point orthogonal to the surface of constant fil-
tration potential that passes through this point. At 
each boundary with free water conditions, a surface 
of constant  π f  closely follows the boundary. The 
water inside the wide crack can be considered as 
free water. Then a surface of constant filtration po-
tential will follow closely the lateral faces of the 
crack, and the other surfaces of constant π f will be 
disposed as is shown qualitatively in the figure. The 
tip of the crack is in a tensile nominal stress field 
due to the external loads. However the filtration 
lines will arrive orthogonally to the crack surface, so 
that the magnitude of the tensile components will be 
diminished by the effect of the filtration forces (that 
tend to close the crack). So, while the presence of 

the crack lowers the local elastic energy, the filtra-
tion pressure around the crack raises this local elas-
tic energy and modifies the global energy balance 
that appears in the energy theory of fracture. Indeed, 
from equation (3) it follows that the tensile compo-
nents of the matrix stress tensor will be larger in lo-
cations where the product p φ  is higher, if we as-
sume static conditions. If we follow a given 
filtration line, the average pore pressure p  will be a 
decreasing function of the arc length, so that if φ  
doesn’t increase too much and the other conditions 
remain constant, the tensile components of the ma-
trix stress tensor will decrease along the filtration 
line. Beginning with equation (4), it is possible to 
derive an approximate formula for the elastic energy 
release in the solid matrix, due to the presence of the 
crack, including the effect of the filtration process. If 
the master crack crosses completely the beam of 
width a , and if c is its length, then the elastic energy 
released is    
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Here xσ  is a horizontal nominal tensile stress in the 
matrix, p is a nominal pressure in the pore space, 
and E  is Young’s modulus. If sG  is the average en-
ergy absorption in the fracture process zone (FPZ) 
per unit area of crack advance, the increase in the 
beam’s energy due to the presence of the crack 
is caGs ...2  (22). The sum of these two energies will 
have a maximum when the stress in the matrix veri-
fies the threshold condition:     
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 Both xσ and p are proportional to the bending mo-
ment M  produced by the loads during the strength 
test:   

 ( )Mzkx .σσ =                                                  (23a)             

 ( )Mztkp p .,=                                                 (23b) 

As the master crack length may be several mm , 
while the height a of the beam is not less 

than mm50 , we may suppose that 
J

ak
.2

≈σ   ( J is 

the moment of area of the cross section). The de-
pendence of pk on the system’s parameters remains 
to be studied. Nevertheless, for the same reasons that 
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in the compressive strength test, we can suppose that          
( ) ( )zkztk pp ,0, ≅  

 From (22) and (23) we obtain:   
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well known stress threshold of fracture mechanics. 
As a consequence the flexural strength of the porous 
beam will be higher when it is wet and saturated, 
relative to its value when the body is dry. This dif-
ference should increase when the average porosity 
(of the pore space in which water flows) increases.  
If as a coarse approximation we put pkk ≈σ , from 
(24) it follows that the quotient of threshold bending 
moments is only a function of the porosity of the 
pore space engaged in filtration. 

     To quantify the concentration of filtration pres-
sures due to the crack, let us follow a filtration line 
in the flow direction. If the line ends in a flat portion 
of the lower boundary of the beam, there is not a 
significant variation in pf  along the line, when we 
pass from a point P1 in the bulk of the medium to a 
point Q1 in the interface (fig. 3), because the integral 

∫
1 Q

1 P

s

s
ds H(s)  that appears in formula (12) will be nearly 

zero. If the filtration line ends in the bottom of a 
cavity, then when we pass from a point P2  in the 
bulk of the porous medium to a point Q2  in the in-
terface, pf  can increase significantly, because in a 
neighbourhood of the interface the line will cross the 
surfaces of constant π f in points where the mean 
curvature is positive and non-negligible (fig. 3). 
When the depth of the cavity increases and the mean 
curvature at Q2 increases also, the integral 

∫
2 Q

2 P

s

s
ds H(s)  will increase too. The extrapolation of the 

results of the analysis of several idealized models 
with plane symmetry (for example, an infinite 
groove with half-elliptical cross section in the sur-
face of a half-space filled with a porous medium, 
homogeneous and isotropic; see Harr, 1991) suggest 
that p (Q )f 2  must be an increasing function of the 
product of a measure of the depth of the groove (or 
notch) by the mean curvature at the bottom. For 

lengthen cavities like cracks, p (Q )f 2  may be one or 
two orders of magnitude greater than p (P )f 2 .                       

 
  
4 MORTARS AND PLAIN CONCRETES 
 
Up to now, we studied the onset of crack propaga-
tion under the combined effects of external loads 
and filtration pressure, in two idealized situations: a 
spherical cavity with a vertical crack in a com-
pressed cylinder of hardened cement paste, and a 
vertical master crack in a beam of cement paste in 
four points bending. 

In order to extend the analysis of the effects of 
the filtration pressure to the cases of compressive 
and tensile failures of normal mortars and concretes, 
several things must be considered. Amongst them:  

(1)The transition ring, that appears at the inter-
face between the paste and the aggregates (Maso, 
1980).  

(2) The difference in stiffness between the ce-
ment paste and the fine and coarse aggregates.   

(3)The gradual strain softening and the crack 
band in the FPZ (Bazant and Oh, 1983).  

(4)The stages of crack growth prior to fracture: 
initiation, slow stable crack growth, crack arrest, a 
true threshold condition, and unstable crack propa-
gation up to definitive rupture. 

Let us consider the typical case of a mortar or 
concrete with relatively non-porous aggregates, 
stiffer and stronger than the cement paste that sur-
rounds them. 

At the time of mixing, a film of water appears be-
tween the surface of the non-porous aggregate and 
the bulk of the water-cement mix.  Due to this cir-
cumstance a transition ring of cement paste is 
formed, usually weaker and more porous than the 
bulk of the paste. 

If the aggregates are stiffer than the bulk of the 
cement paste, this usually produces stress concentra-
tions in the aggregates and in the adjacent transition 
rings. In a nominal one dimensional stress field, like 
the one found in a standard compression test of a 
cylinder of mortar or plain concrete (neglecting the 
complications introduced by the restrictive action of 
the plates of the testing machine), or in a small 
enough region of a beam in the standard four-point 
bending test), a non-uniform three dimensional state 
of stress is produced in the composite material due 
to the abovementioned difference between the elas-
tic moduli of the paste and the aggregates.  

If the aggregates are stronger than the hardened 
cement paste, a growing crack will run around the 
aggregate travelling in the transition ring and even-
tually leaving it behind if the crack growth contin-
ues. Then, the crack path in normal concretes will be 
fairly tortuous, and the aggregate particles will act as 



crack arresters. In high strength concretes things are 
usually different (Wittmann, 2002).   

In both, mortars and normal concretes, the frac-
ture process begins with the growing of one or more 
cracks suitably located and oriented in relation with 
the stress field. Satellite micro- cracks emerge from 
the growing tortuous crack. A band-like fracture 
process zone (associated with the strain softening al-
ready mentioned) is produced. As a consequence of 
the crack arresting processes and the complex pat-
tern of cracks that is produced, hardened mortars 
and concretes are usually less brittle than hardened 
cement pastes. Concretes show two critical loads in 
standard compressive strength tests. The first critical 
load corresponds to crack growth initiation. In con-
crete, above the first critical load, Poisson’s modulus 
begins to increase monotonically towards 5.0 . Be-
tween the first and the second critical loads there is 
stable crack growth. At the second critical load the 
cubic dilatation of the stressed cylinder reaches its 
maximum value. 

Above the second critical load there is unstable 
crack propagation to definitive rupture.   

However, the effect of the filtration field in the 
fracture processes of mortars and concretes, at least 
up to the first critical load, should be in its main 
traits fairly similar to the effect already discussed for 
cement pastes,  not only for the compression test, but 
also (and mainly) for the bending test.  

Consider first a vertical cylinder of concrete, po-
rous and wet saturated, under uniaxial compression. 
Due to the assumed differences in stiffness, the bulk 
of cement paste is less stressed than the transition 
rings, and these are less stressed than the cores of 
the aggregate particles. These variations are mild in 
relation with sand particles, but very significant in 
the case of coarse aggregates.  

The fields of filtration velocities and filtration 
pressures are locally modified by the non-
uniformities in the stresses (that produce variations 
in the dimensions of the interconnected pore space), 
by the stress-independent variations in porosity 
(higher in the transition rings than in the bulk of the 
matrix), and by the blocking effect of the impervious 
aggregate particles over the water flow in the pores. 
Nevertheless, on the average, they point outwards 
from the cylinder axis, as in the case of the cement 
paste, and tend to enhance the growth of cracks, 
mainly in vertical direction. Thus, the first critical 
load in compression must be smaller for a wet cylin-
der in comparison with a dry one (all the other 
things remaining equal).  We could expect that for a 
splitting mode of crack growth, the difference in the 
first critical load should increase with porosity in a 
way similar to the cement paste threshold load stud-
ied above. Between the first and the second critical 
load, the changing and expanding pattern of cracks 
and micro-cracks produces a progressive modifica-

tion of the filtration field and the corresponding fil-
tration pressures.  

The filtration field and filtration pressures in 
bended beams of mortars and concretes are locally 
modified by the heterogeneities as were described 
for a cylinder under compression. However, the 
lower portion of the beam, where the fracture proc-
ess begins with the growing of a master crack, is un-
der tensile nominal stress. On the average this en-
hances the filtration process and increases the 
filtration pressures that tend to close the crack for 
the same reasons already considered for the cement 
paste beam. Nevertheless, the arresting effect of the 
aggregates and the transition rings increases the 
number and tortuosity of the pattern of satellite mi-
cro-cracks connected with the master crack. In spite 
of the blocking effect of the impervious aggregates, 
this could enhance the local filtration process even 
more. As a consequence, for a wet saturated beam of 
mortar or concrete, the critical value of the bending 
moment that corresponds to the onset of a master 
crack growth should be greater than the critical 
value for a dry beam, all the other things remaining 
equal.      

 
 
CONCLUSIONS 

 
Now we have a solution to the problem posed in the 
introduction: to explain the differences in the behav-
iour of the flexural and the compressive strengths of 
a body of cement paste when it is tested wet and 
saturated or when it is tested dry.  

In the case of compressed cylinders, given a 
crack with a tangential plane and a threshold stress, 
from (20a) it follows that the most dangerous cracks 
from the standpoint of the onset of crack propaga-
tion are the ones located on the axis of the cylinder. 
The tangential cracks located near the surface of the 
cylinder are almost not affected by filtration stresses. 
Given a crack with a radial plane, from (20b) it fol-
lows that again the most dangerous cracks are lo-
cated on the axis. However, now the cracks located 
near the surface of the cylinder are affected by filtra-
tion stresses, and if they size is big enough, a frac-
ture onset may happen in one of these radial cracks. 
In the case of bended beams, the model should be 
completed with a formula for pk . In principle this 
could be done from a water balance as was done for 
the cylinder, but the arguments are subtler and 
lengthier and will be developed elsewhere. 

Albeit the analytical formulae obtained in this 
work are crude approximations to very complex 
situations, they can be improved by means of more 
realistic analytical models of the onset of crack 
propagation. The energetic approach used here could 
be extended to cope with the essentially heterogene-
ous nature of fracture processes in cement pastes, 
mortars and concretes. The obtained results may be 



compared with true experimental results, or with the 
results of digital simulations done with realistic 
nonlinear models and suitable computer codes. 

Even in the case of cylinders of cement paste, 
compressed without filtration pressure effects, it is 
well known that the pattern of crack growth that 
leads to fracture may sometimes correspond to what 
seems to be a shear mode. In fact, if the pores are 
randomly distributed, the pore cracks are randomly 
oriented and the pores are near enough, both digital 
simulations and experiments suggest that the prob-
ability of having a pattern of crack propagation that 
ultimately leads to rupture in an apparent shear 
mode instead of a vertical splitting mode, increases 
with the pore density (Zaitsev, 1980). From the 
qualitative discussion of the fracture processes of 
mortars and normal concretes under filtration pres-
sure fields, given in part 4, it follows that the ana-
lytical approach could be only a guide to further ex-
perimental and numerical studies in the subject of 
the present paper. Only a thorough numerical ap-
proach can afford suitable tools and realistic results 
for an in depth study of the fracture processes under 
the effects of filtration pressure fields in concrete, 
especially in problems related with structures. 
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