
1 INTRODUCTION 

It is well known that the use of short fibers dispersed 
in fresh concrete in an adequate percentage and ge-
ometry ensures, in the hardened state, effective flex-
ural and shear reinforcement in reinforced-concrete 
beams and deep elements. 

For fibrous reinforced concrete (FRC) also the ul-
timate shear strength increases with increasing flex-
ural reinforcement ratio and with increasing com-
pressive strength, while not increases with the shear 
span-to-depth ratio. 

From the mechanical point of view several stud-
ies presented in the literature refer to the calculus of 
the shear strength of fibrous reinforced-concrete 
beams made of normal- or high-strength concretes, 
normal or lightweight. 

The analytical expressions given are often of an 
empirical nature and they account for the increase in 
the bearing capacity of the beams, owing to the 
bridging capacity of fibers across the principal 
cracks. 

It is moreover generally assumed that fibers do 
not significantly influence the mechanisms observed 
at failure for beams without fibers (e.g. beam and 
arch actions) and consequently the expressions given 
separately consider the strength contributions due to 
the several parameters governing shear failure. 

Referring to the determination of the load-
deflection curves, several analytical models based 
on plane section hypothesis are available for beams 
affected by flexural failure and implemented in well 
known computer code (e.g. DRAIN-2DX, 1993).
 Analytical simplified flexural models are also 

available for fibrous concrete beams with and with-
out steel reinforcements, but very few simple models 
are able to determine the load-deflection curves 
when shear failure occurs.  

Several models for the accurate prediction of 
load-deflection curves of beams affected by shear or 
flexural failure are available based on non linear fi-
nite element analyses such as the model proposed by 
Cervenka (2000) utilizing ATENA code or that pro-
posed by Vecchio (2000) the latter (based on the 
Modified Compression Field Theory) very success-
fully utilized in many applications. 

Very effective computational truss models are 
also proposed (e.g. Noghabai, 2000). 

Most of these models are very effective but are 
also quite complex. 

They require knowledge of the complete constitu-
tive laws of materials including the most relevant 
parameters governing phenomena, as concrete size 
effect and strain softening.  

On the basis of these considerations, the focus 
here is on the development of a simplified model 
able to determine the load-deflection curves of sim-
ply-supported, longitudinally- and transversely- re-
inforced fibrous beams under flexure and shear. 

The model proposed is specific for fibrous rein-
forced concrete beams with steel fibers (most com-
monly utilised for structural applications) and is 
based on knowledge of very few mechanical proper-
ties of plain concrete, steel bars and  the geometrical 
properties and volume content of steel fibers. 
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2 THE CASE STUDY 

The case study considers a prismatic reinforced con-
crete beam with rectangular cross-section, base B 
and depth h, which is cast with plain or fibrous con-
crete. The static scheme adopted consists of simply-
supported beams under four-point bending tests, in 
which the beams are subjected to symmetrical verti-
cal loads, V, acting at distance a from the support, as 
shown in Figure 1. 
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Figure 1. Static scheme of the beam.  
 

The beam is reinforced on the lower side with 
longitudinal deformed bars having area As with a 
cover thickness c and on the top side with steel bars 
having area A’s with a cover thickness c’. The com-
pressed area of longitudinal steel is assumed as be-
ing negligible with respect to As. Both bars had 
yielding stress fy. 

In addition, transverse steel stirrups having an 
area of one leg Ast are placed in the beam at pitch p. 

The main longitudinal steel bars (bottom bars) are 
bent at the support with an adequate anchorage 
length so as to avoid any slippage or premature split-
ting failure. The beam is reinforced at the bottom 
with geometrical ratio ρ =As/(B·d) with d effective 
depth. The stirrups had yielding stress fyw and geo-
metrical ratio ρsw the latter defined as ρsw =2·Ast 
/(B·p).  

In the case of fibrous concrete, the fibers utilized 
have length Lf, equivalent diameter φ and volume 
percentage vf. In order to take the characteristics of 
the fibers into account, in the following sections the 
fiber factor F will be introduced, defined as F= vf Lf 
β/φ, with β being the shape factor assumed as 1 and 
0.5 for deformed and straight fibers respectively. 

This assumption for β is in agreement with the 
results obtained in Banthia and Trottier (1994) from 
which it appears that the pull-out resistance of 
straight fibers is less than for hooked or crimped 
steel fibers (having a similar aspect of ratio) while 
the values of β are those suggested in Campione et 
al. (2006). 

3 SIMPLIFIED MODEL 

In the following sections the evaluation of the bear-
ing capacity of beams and their load-defection 
curves will be considered in the case of both shear 
and flexural failure. In the case of flexural failure, 
under the hypothesis of perfect bond of steel bars 
and concrete, the plane section theory will be con-

sidered, including also the strength contribution due 
to the residual tensile strength of fibrous concrete. 

No tension stiffening will be considered. Refer-
ring to shear failure (cases of shear compression and 
diagonal tension modes are considered without pre-
mature splitting failure) an analytical expression, 
based on the analysis of beam and arch actions at 
rupture, will be utilized. 

3.1 Flexural strength of fibrous reinforced concrete 
beams 

Using translation and rotational equilibrium condi-
tions it is possible to determine the position of the 
neutral axis xc, and the flexural moment at cracking, 
yielding, compressed cover spalling and failure of 
compressed zone defined as Mc, My Ms and Mu and 
the corresponding curvatures φc,φy, φs and φu. The 
above-mentioned stages are analyzed here referring 
to the strain and stress distribution shown in Figure 
2 (I, II, III, IV) and related to the shear force V by 
the equilibrium condition V=M/a.  
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Figure 2. Design assumptions in the analysis of R/C sections. 



By adopting the above-mentioned model the sim-
plified moment-curvature diagram shown in Figure 
3, (stages I, II, III, IV are also indicated), is ob-
tained. A similar approach was also utilised by 
Rashid and Mansur (2005) for high-strength con-
crete beams in flexure. 
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Figure 3. Simplified model for  moment-curvature diagram. 

 
To develop the simplified model the following 

stress-strain curve, proposed by La Mendola and 
Papia (2002), under monotonic loading is assumed: 
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in which A= Ec /E0, with E0 the secant modulus at 
peak stress defined as E0=fcf /εof , being fcf  and ε0f  
the maximum compressive strength and correspond-
ing strain respectively, and Ec the initial modulus of 
elasticity in compression assumed as in Razvi and 
Saatciouglu (1999) to be variable with the compres-
sive strength.  

The D parameter governs the slope of the de-
scending branch and was the chosen variable with F, 
according to the expression: 

F175.03136.0D ⋅+=                   (2) 
The equation (2) was calibrated on the basis of 

experimental data available in the literature for fi-
brous concrete compressed members with hooked 
steel fibers (data from Fanella and Naaman  1983).  

The maximum compressive strength fcf and corre-
sponding strain ε0f of normal strength FRC with steel 
fibers, proposed by Nataraja et al.(1999), can be as-
sumed as: 
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F00192.00f0 ⋅+ε=ε                    (4) 
being ε0 the strain at peak stress assumed as in Razvi 
and Saatciouglu (1999) to be variable with the com-
pressive strength. 

It is possible to obtain the value of strain ε085 in a 
closed form by using Eq. (1), assuming that the σ 
value is equal to 0.85 fcf for ε = ε085 resulting in the 
following second order equation: 
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This value will be assumed in the following sec-
tions for the calculus of Ms and φs. 

Referring to Case I of Figure 2 for the calculus of 
the cracking moment Mc (if the contribution due to 
the longitudinal bars is neglected) it is possible to 
adopt the following relationship: 
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MOR being the modulus of rupture in flexure of 
FRC well defined in ACI 544 (1988).  

The corresponding curvature is: 
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in which Ec can be evaluated with the expression 
Ec=4200·(f’c)0,5 (MPa) proposed by ACI 318-02 
(2002).  

Referring to the calculus of the yielding moment 
My reference is made to Case II (Fig. 2) in which the 
yielding strain (εy = fy/Es) is attained in the longitu-
dinal bars in tension and the residual strength fr of 
fibrous concrete in tension is reached (this post-
cracking tensile strength of FRC is better defined in 
the following sections). For concrete in compression 
linear elastic behavior is supposed to be due to the 
lower deformation reached. To obtain the neutral 
axis position xcy the stress distribution of Figure 2 
(stage II), is assumed. From the translational equilib-
rium we obtain the following equation: 
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ey being the distance between the more compressed 
fiber of the transverse cross-section and the fiber 
with the maximum tensile strength in concrete, 
while Ecr is a reduced value of initial modulus of 
elasticity assumed 0.5 Ec as in Rashid and Mansur 
(2005) to include an average amount of cracking and 
tension stiffening effects. Its values can be obtained 
by considering the plane section hypothesis resulting 
in: 
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Ect being the elastic modulus of concrete in tension 
assuming half of that in compression. 
 The values of xcy and ey are obtained by introduc-
ing Eq. (9) in Eq. (8) and producing the second de-
gree equation for position of the neutral axis: 
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The internal arm value can be expressed by 
means of: 

3
x
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From the rotational equilibrium it is possible to 
obtain the yielding moment My in the following 
form: 
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The curvature corresponding to step My (first 
yielding or Stage II in Fig. 2) results in: 
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 When referring to the calculus of Ms, correspond-
ing to the cover spalling process (Stage III in Figure 
2) and of Mu, at the ultimate state (Stage IV in Fig-
ure 2), it was assumed that longitudinal bars are 
yielded and maximum compressive strength of con-
crete is reached. 
 With reference to the symbols in Figure 2 (stage 
III) and considering the translational equilibrium we 
obtain: 
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 The moment corresponding to the cover spalling 
process from the rotational equilibrium results in: 
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eu being the distance between the more compressed 
fiber and the fiber at which the maximum tensile 
strength in concrete is reached. 
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Therefore the curvature at spalling state is: 
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From the rotational equilibrium the ultimate mo-
ment results in: 
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Therefore the curvature at ultimate state is: 
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εsu being the maximum strain of bar in tension as-
sumed 0.01. 

Moreover, the arm of the internal forces is j0 d in 
which j0 can be expressed by the equilibrium across 
the compressive centroid in the following form: 
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The previous equations highlight the influence of 
the main parameters governing the flexural response 
of the transverse cross-section including the effect of 
cover thickness also. It is interesting to observe that 
the cover thickness of the compressed bars plays a 
role on the ductility of the cross-section also. But, 
because low values of cover thickness are generally 
utilized, no significant changes in the overall flex-
ural behavior of the cross-section occurs, while its 
contribution can be significant in the presence of 
higher cover thickness that can be required for dura-
bility reasons. 

In the previous equations, ft and fr indicate the 
maximum and the residual strength of fibrous con-
crete. For the maximum tensile strength, the same 
value  found in the literature plain concrete was as-
sumed, while for the residual strength the proposal 
by Marti et al. (1999) was adopted: 

( ) 66.0'
cr fF375.0f ⋅⋅=     (in MPa)        (21) 

To validate the proposed model a comparison 
with data given in Swamy and Al-Ta’an (1981)  is 
shown. The experimental research refers to a third 
point bending test on fibrous reinforced concrete 
beams of 2250 mm length between the two lateral 



supports. The beams had a rectangular cross-section 
with B = 130 mm, h = 203 mm, c = 18 mm,  the area 
in tension constituted by two deformed bars of 12 
mm diameter, and the area in compression consti-
tuted by two 10 mm deformed bars. Plain concrete 
of f’c = 30 MPa and steel bars with yielding stress fy 
= 460 MPa. The beams were also reinforced with 
transverse stirrups of 6 mm diameter and pitch p = 
125 mm. Hooked steel fibers were utilised with 50 
mm length and 0.5 mm diameter at volume percent-
age of 0, 0.5 and 1%. 

Figure 4 shows the experimental and the analyti-
cal moment-curvature diagrams for cases of 0 and 
0.5 % of fibers.  
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Figure 4. Experimental and analytical moment-curvature 
curves of beams with vf =0 and 0.5% (data from  Swamy and 
Al Ta’an, 1981). 
 

The comparison shows the ability of the simpli-
fied model to predict the experimental response in-
cluding yielding of main bars and crushing of con-
crete. The model is also able to include the spalling 
of compressed cover occurring at high curvature. 

3.2. Shear  strength of fibrous reinforced concrete 
beams 

Bazant and Kim (1984) propose a mechanical model 
to calculate the flexural capacity in shear of rein-
forced concrete beams considering the sum of the 
strength contributions due to the beam and arch ac-
tions. These contributions are identified, as shown in 
Fig. 5, by imposing conditions of equilibrium of the 
beam enclosed between the support and the loaded 
section (shear span a). With reference to the symbols 
shown in Fig. 5, the bending moment M and the 
shear force V at the generic cross-section can be re-
lated to the axial force T in the longitudinal bar and 
to the internal arm jd by means of: 

jdTxVM ⋅=⋅=                                                      (22) 

Moreover, between the shear force V and the 
bending moment M there is the following, well-
known relationship: 
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Figure 5. Beam and arch actions. 
 
obtaining by means of Eq. (22) in Eq. (23) the two 
fundamental strength contributions well known in 
the literature as beam effect (jd  constant) and arch 
effect (jd variable). 

According to this model, well justified in Bazant 
and Kim (1984) and here utilized also for fibrous 
concrete beams, the following simplified hypotheses 
are assumed: - beam and arch effects are considered 
separately; - in the evaluation of arch effect it is as-
sumed that the tension force in longitudinal bar re-
mains constant across the shear span;- in the evalua-
tion of beam effect the tension force is supposed to 
be variable across the shear span. In this was the ex-
pression given by  Campione  et al. (2006) was ob-
tained including in the beam and arch effect the ef-
fect of fibers and also considering the contribution 
made by the fibers through the main cracks. For the 
beam effect it was assumed that the bond stress qb is 
proportional to the tensile strength of the concrete, 
which in turn is proportional to the square root of the 
cylindrical compressive strength f’c . This choice is 
valid for plain concrete and assumed in ACI 318-02 
(2002) and, as suggested in the original work of Ba-
zant and Kim (1984), was also supported experimen-
tally by Harajili et al. (1995) for fibrous concrete. 
Moreover the expression given by Eq.(20) for the 
arm of internal forces was assumed also taking into 
account the presence of fibers by means of the resid-
ual tensile strength of the composite. The strength 
contribution V2 to the arch action was evaluated, 
with reference to the mechanism shown in Figure 5, 
by relating the shear force to the variation in j, T as-
sumed to be constant. In the case of fibrous concrete 
Campione et al. (2006) to estimate the tensile force 
in main bars was also included the strength contribu-
tion due to the residual strength of composite result-
ing in a fictitious geometrical ratio of main steel de-
fined as: 
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in which η=σs/fy, with η (assumed 0.3) a share of 
the yielding stress assumed in accordance with ex-
perimental data available. Finally by considering the 



sum of the strength contributions due to the beam 
and arch actions and due to the fibers across the 
principal cracks we obtain: 
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where to take the size effect into account the ξ coef-
ficient given by Bazant and Kim (1984) was 
adopted:  
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where da is the maximum aggregate size of the con-
crete.  Eq. (25) was calibrated on the basis of expe-
rimental data described in the literature as in Cam-
pione et al. (2006).  

Figure 6 shows the comparison between the ana-
lytical expression here proposed (which has a simi-
lar structure to the ACI equation for shear strength) 
and the expression proposed by CNR-DT 204 (2006) 
in which the equivalent residual strength is evalu-
ated by Eq. (21). The comparison in terms of shear 
strength versus a/d ratio referring to beams with and 
without fibers shows good agreement between the 
two proposed equations although the origin of the 
two equations differs. 
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Figure 6 Comparison between analytical expressions. 
 

Several studies show that it is possible to obtain 
the shear strength of reinforced concrete beams with 
stirrups by adding the contributions due to beam and 
arch actions with the strength contribution due to the 
stirrups bridging the principal crack and not consid-
ering the interaction between the single mechanisms. 

Moreover, the inclination of the principal cracks 
is assumed to be 45°. Russo and Puleri (1997) have 
shown that the stirrups do not always yield at beam 
rupture and the effective stress can be estimated if 
the contributions of beam action to the sum of beam 
and arch action are known. Therefore, they intro-

duce an effectiveness coefficient able to determine 
the share of yielding stress in the stirrups at beam 
rupture. 

It is possible to include the effect of fibers in the 
effectiveness function of stirrups originally proposed 
by Russo and Puleri (1997) and determine the shear 
strength contribution due to stirrups, expressed as: 

ywswfst fv ⋅ρ⋅Φ=              (27) 

where the yielding stress in the stirrups is reduced 
by fΦ  defined as in Campione et al. (2006). This 
function which has to be cut at maximum value of 
one reflects the influence of the beam action (includ-
ing the effect of fibers also) on the whole strength 
contribution of the beam and is expressed: 
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Finally, using Eq. (27) and Eq. (28) we obtain the 
expression of the shear strength in the presence of 
stirrups: 
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Campione et al. (2006) also support the proposed 
expression with available experimental data. 

4 LOAD-DEFLECTION CURVES UNDER 
FLEXURE AND SHEAR 

It is possible to determine the load-deflection curves 
of the simply supported beam knowing the moment 
curvature-diagrams of the loaded sections, as deter-
mined  in the previous section, by using Mohr’s 
analogy which considers a fictitious beam simply 
supported and loaded by the curvature diagrams as 
shown to provide the simplified load-deflection 
curves shown in Figure 7. 
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Figure 7. Simplified model for load-deflection curves. 
 



It emerges from the curve that if overstrength in 
shear is attained and flexural failure occurs, the re-
sponse will be that of the simply supported beam in 
flexure which can be approximated by a four linear 
diagram (first cracking, yielding, cover spalling  and 
ultimate load). However, if the failure is in shear the 
diagram can be characterized by a bilinear behaviour 
constituted by two linear branches up to the maxi-
mum load corresponding to shear failure and by a 
second characterized by residual strength essentially 
governed by the stirrups and fibers. Consequently 
the load-deflection curve is that shown in Figure 7 
where it must be remembered that instead of V 
(V=vu bd) the whole load P = 2V appears for the dif-
ferent values of V. According to Mohr’s analogy the 
deflection of the beam is the moment in the middle 
section of the fictitious beam. In particular these de-
flections are expressed in the cases of cracking, 
yielding, cover spalling and ultimate moments as: 

At first cracking: 

⎥
⎦

⎤
⎢
⎣

⎡
++⋅φ=δ

2
ab

8
b

3
a 22

cc                     (30)                     

At first yielding: 
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with xf = (Mc/My)·a. 
At the moment corresponding to the cover 

spalling: 
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with xy = (My/Ms)·a. At the ultimate moment the de-
flection is expressed by the Eq. (32), with xy = 
(My/Mu)·a.  

Should shear failure occur before the yielding of 
the longitudinal reinforcement, beam capacity would 
be limited to Mmax=(vu·b·d)·a. 

In this case the corresponding deflection δmax can 
be obtained as shown in Figure 7 (if we consider for 
simplicity that up to this stage the response is essen-
tially flexural) as the intersection between the con-
stant value line Pmax (2·vu·b·d) and the slope line 
connecting the first cracking and the yielding stage 
ultimately state resulting in: 
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cy
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ymaxc PPP ≤≤                                                      

Should shear failure occur past the attainment of 
the yielding moment, the maximum deflection 
would be as follows: 
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yu

yu
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Moreover, if it is supposed (as also observed ex-
perimentally in Campione et al. 2003) that after 
shear failure occurs the main contribution to the re-
sidual strength is due to the effects of stirrups and 
fibres (beams and arch effects are  not included), it 
is possible to obtain the residual strength Pres =2 vres 
·b·d, vres being expressed by: 
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To validate the proposed model a comparison 
with data given in Swamy and Al-Ta’an (1981)  
mentioned in the previous section and also data from 
Mansur and Rashid (2005) is shown. The experi-
mental research of Rashid and Mansur (2005) refer 
to a four point bending test on reinforced concrete 
beams of 3400 mm length between the two lateral 
supports. Beams had rectangular cross-section with 
B = 250 mm, h = 400 mm, c = 20 mm,  the area in 
tension constituted by four deformed bars of 25 mm 
diameter, and area in compression constituted by 
two 13 mm deformed bars. Plain concrete were f’c = 
42.8 MPa and steel bars were of yielding stress fy = 
460 MPa. Beams were also reinforced with trans-
verse stirrups of 10 mm diameter and pitch p = 200 
mm. Both researches consider the flexural failure. 
Figures 8 and 9 show the experimental and analyti-
cal load-deflection curves for cases of 0 and 0.5 % 
of fibers. 
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Figure 8. Experimental and analytical load –deflection curves 
of beams with vf =0 and 0.5% (data from  Swamy and Al 
Ta’an, 1981). 

 
The comparison shows the ability of the simpli-

fied model to predict the experimental response in-
cluding yielding of main bars and crushing of con-
crete. The model is also able to include the spalling 



of compressed cover occurring at high curvature lev-
els when fibers are added or high strength concrete 
is utilized.  

The results from Campione et al. (2003) refer to 
four-point bending tests on medium size beams of 
2500 mm length and a/d = 2.8 in the presence of 
longitudinal bars, stirrups and fibers. The stirrup di-
ameter was 6 mm, pitch 200 mm and with yielding 
stress of 510 MPa. In the case of fibers F = 0, 0.6 
and 1.2 were assumed (Fig. 10). In this case shear 
and flexural failures are obtained depending on fiber 
amount.
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Figure 9. Experimental and analytical load –deflection curves 
of beams (data from Rashid and Mansur 2005). 
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Figure 10. Experimental and analytical load – deflection curves 
of beams with data from Campione et al. (2003). 
 

In all cases examined the model shows a good 
ability to describe the overall flexural behavior of 
the beams including flexural and shear modes of 
failure and cover spalling processes. 

5 CONCLUSIONS 

In this paper an analytical model is proposed and 
discussed, its primary objective being the descrip-
tion of the load-deflection curve in simply-supported 
R/C beams, containing stirrups and steel fiber, and 
subjected to bending and shear.  

More specifically, the model: a) accurately pre-
dicts  the bearing capacity in bending and shear; b) 
takes care of the  spalling process ensuing from the 
compressive stresses acting in the cover of any given 
section; and c) makes it possible to evaluate the re-
sidual capacity in shear, after shear failure, taking 
into account stirrups and fiber contributions. 
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